Semantic Web Services - Concepts and
Technology

Michael Stollberg, Cristina Feier, Dumitru Roman, and Dieter Fensel

Digital Enterprise Research Institute
Institut fiir Informatik, Universitat Innsbruck, Austria
{firstname.lastname}@deri.org

Abstract. Although the Internet provides a world wide infrastructure
for information provision and communication, the initial web technology
stack has substantial draw-backs with regard to automated web content
processing. Consequently, the Semantic Web is envisioned as the next
evolution step of web technology that shall overcome these deficiencies.
Ontologies and Web Services are identified as the key technologies: every
resource and every data element interchanged shall be semantically de-
scribed by ontologies; Web services shall provide access to and usage of
computational resources over the Web in order to combine the benefits
of the Internet with computational power. The emerging concept of Se-
mantic Web services aims at an integrated technology for amending the
Web with semantically enhanced information processing and distributed
computing, hence realizing the vision of the Semantic Web. This article
explains the idea of Semantic Web services and presents technological so-
lutions developed around the Web Service Modeling Ontology WSMO,
a comprehensive framework for Semantic Web Services.

1 Introduction

Invented by Tim Berners-Lee in 1989 as a system for information exchange
between researchers, the World Wide Web has established a world wide infras-
tructure for information provision and communication. The Web is the latest
achievement of computer technology with a real impact on society, comparable
to the development of affordable personal computers in the 1980ies. Nowadays,
there is no computer without Web access, and there is no computer technology
without Web support.

The reason for the impressive acceptance and growth of the Web relies on its
technical design principles. The foundation is the unambiguous identification of
every existing resource via a Uniform Resource Identifier (URI). By combing hy-
pertext technology and internet transfer protocols, the Web allows locating and
linking up of arbitrary resources by facile technical means in a decentralized man-
ner [7]. However, the mark-up language for web-content HTML is unstructured
which hampers automated web content processing, so that the current Internet
is limited to be a world-wide information repository for human consumption
only. To overcome these deficiencies, the Semantic Web has been envisioned as

2 Stollberg, Feier, Roman, Fensel

the next Web technology evolution step that shall allow automated and seamless
information processing and interchange along with computation over the Web.
Ontologies and Web services have been identified as the enabling technologies
for realizing this vision: the former shall ensure semantic interoperability be-
tween Web resources on basis formal terminology definitions, while the latter
shall allow usage of computational functionalities over the Internet [6].

Augmenting ontologies and Web services with respective Al-techniques en-
ables more sophisticated Web technology. For turning the Internet into a world-
wide infrastructure for distributed computing, respective ontology techniques
for semantically enabled information integration or natural language processing
allow advanced, semantically enabled information processing over the Web [42].
Moreover, the ultimate aim of Web services is to serve as the basis for dy-
namic, service-orientated system architectures wherein exactly those services
are selected, arranged, and executed that are needed for processing a specific
request [17]. For example, consider a langauge technology system that encom-
passes several components like an automated information extraction tool, some
natural language translation facilities, and ontology learning tools. Imagine each
component is maintained by different providers and accessible as a Web service.
If a user requests a translation from Japanese to English, the system determines
the most appropriate Web service for this; for more complex requests like ’extract
the information from this Japanese text and let my ontology, which is defined
in English learn these’, the system shall dynamically determine the usable Web
services and execute them in a appropriate order.

While the initial Web service technology stack only provides syntactic means
and thus limits Web service usage to manual inspection and integration, the
emerging concept of Semantic Web services aims at an integrated technology for
realizing the vision of the Semantic Web. Applying ontologies as the underlying
data model and on basis of exhaustive semantic description frameworks, intelli-
gent mechanisms are envisioned for automated discovery, composition, contract-
ing, and execution of Web services [35], [21]. This article provides an overview
of the concepts and most recent technology developments for Semantic Web
services and is structured as follows: Section 2 introduces Semantic Web ser-
vices, and Section 3 explains their realization within the Web service Modeling
Ontology WSMO. Section 4 presents most recent technology developments for
Semantic Web services, and Section 5 concludes the article.

2 Semantic Web Services: Aims and Approaches

Ontologies are a state-of-the-art knowledge representation technology developed
in the Al-fields of Knowledge Representation and Knowledge Engineering. An
ontology is defined as a ”formal, explicit specification of a shared conceptu-
alization”[19]. This means that an ontology defines a conceptual model of a
domain, representing a commonly accepted consensus among involved parties.
An ontology model shall be explicit, i.e. every aspect is modelled precisely with-
out omitting any aspect. This model is formalized into an appropriate ontology

Semantic Web Services - Concepts and Technology 3

language as a machine-readable representation formalism that serves as unam-
biguous terminology definitions for advanced information processing. Because of
these characteristics, ontologies have been identified as a main building block
for the Semantic Web. In order to enable semantic interoperability, each Web
resource shall be described on basis of ontologies, and every data element ex-
changed via the Semantic Web is related to an ontology. The World Wide Web
Consortium (W3C, website: www.w3c.org) has released a number of technology
recommendations for the use of ontology languages on the Semantic Web: the
Extensible Markup Language XML for structured web content specification (see:
http://w3c.org/XML/), the Resource Description Framework RDF as an initial,
low level ontology language [30], and the Web Ontology Language OWL as a
comprehensive ontology specification language [34].

However, apart from that sophisticated ontology languages for the Seman-
tic Web are still subject of scientific discussion [15], the usage of ontologies
as envisioned for the Semantic Web requires sophisticated means for ontology
management and integration. The former refers to facilities for editing, storage,
and retrieval, and evolution support for large scale ontologies [45]; the latter is
concerned with handling mismatches between heterogeneous ontologies in order
to establish semantic interoperability by means of ontology mapping, merging,
and alignment [1]. Several research and development efforts are concerned with
ontology technologies for the Semantic Web. We observe that methodologies
for ontology engineering as well as ontology specifications have reached a pre-
liminary level of maturity [22], while current research and development efforts
have identified the requirements for appropriate ontology management technolo-
gies and provide prototypical solutions (for example the Ontology Management
Working Group OMWG, see website: www.omwg.org).

While ontologies provide the basic means for semantic interoperability and
advanced information processing, Web services shall enable computation over
the Web. The ultimate goal of Web services is to enable web-based, service-
orientated architectures as a novel paradigm of future IT system design [17]. As
outlined introductory, Web services shall provide seamless access interfaces to
computational facilities accessible on the Web along with means for ad-hoc usage
and combination for Enterprise Application Integration (EAT) and E-Commerce
as the preliminary application fields [9], [2]. The initial Web service technology
stack allows exchange of messages between Web services (SOAP) [25], describing
the technical interface for consuming a Web Service (WSDL) [11], and advertis-
ing a Web services in registries (UDDI) [13]. However, these technologies only
support Web Service usage by manual inspection and integration. In a typical
setting, a developer manually searches a Web service that provides the desired
functionality in a UDDI repository, then he needs to inspect the WSDL de-
scription in order to determine when and how which information need to be
interchanged with the Web Service, and then integrate the respective SOAP
message handling into the application. Besides, SOAP and WSDL are based on
XML as the underlying data model, thus do not support ontologies with respect
to semantic interoperability and the vision of the Semantic Web.

4 Stollberg, Feier, Roman, Fensel

Consequently, the emerging concept of Semantic Web services aims at pro-
viding more sophisticated Web Service technologies along with support for the
Semantic Web. Mentioned first in [35] and [21], Semantic Web services shall uti-
lize ontologies as the underlying data model in order to support semantic inter-
operability between Web services and its clients and apply semantically enabled
mechanisms for automated discovery, composition, conversation, and execution
of Web Services. Therefore, exhaustive description frameworks are required that
define the semantic annotations of Web services needed for automatically deter-
mine their usability.

Chronologically, the first approach for Semantic Web services has been pro-
vided by OWL-S [33], the Semantic Web services effort of the DAML-programme
(the major US-American Semantic Web research effort, see website: www.daml.org).
Using OWL as the description language (s.a.), OWL-S defines an upper ontol-
ogy for semantically describing Web services that is comprised of three top-level
elements: the Service Profile holds information for ’service advertisement’, con-
taining the name of the service, its provider, a natural language description,
and a black-box description of the Service (input and output, and preconditions
and effects, short: IOPE); the Service Model contains a functional description
of a service and its composition out of other services, whereby the service func-
tionality is conceived as a process. The model defines three types of processes
(atomic, simple, and composite processes), whereof each construct is described
by IOPE as in the Service Profile, with optional conditions over this; and the
Service Grounding gives details of how to access the service, mapping from an
abstract to a concrete specification for service usage. OWL-S provides a default
grounding to WSDL (s.a.). Therewith, OWL-S provides a model for semantically
describing Web services and serves as a basis for various research and develop-
ment activities on Semantic Web service technologies [46]. However, OWL-S is
criticized for conceptual weaknesses and incompleteness: the meaning of the de-
scription elements is not clearly defined and thus used ambiguously, leading to
misinterpretations and incompatible service descriptions; furthermore, although
OWL-S allows other languages like KIF and SWRL for process descriptions be-
sides OWL, their formal intersection is not defined, hence a coherent formalism
for semantically describing Web services is not provided [31].

In contrast, the Web Service Modeling Ontology WSMO [39] defines an over-
all framework for Semantic Web services consisting of four top level elements:
Ontologies that provide the semantic terminology definitions used in all other
element descriptions as well as for the information interchanged in Web ser-
vice usage, Goals for representing the objective that a client wants to achieve
by using Web services, semantic description of Web services, and Mediators for
resolving potentially occurring mismatches between elements that should inter-
operate. While OWL-S only provides a model for semantically describing Web
services, the four WSMO top level elements of WSMO represent the core build-
ing blocks for Semantic Web service enabled systems. Hence, the subsequent
sections explain Semantic Web services on basis of WSMO in order to provide
a comprehensive overview.

Semantic Web Services - Concepts and Technology 5

3 The Web Service Modeling Ontology WSMO

Taking the Web Service Modeling Framework WSMF as its conceptual basis [21],
the WSMO project is an ongoing research and development initiative for defin-
ing a capacious framework for Semantic Web services along with a description
language (the Web Service Modeling Language WSML [16]) and a reference
implementation (the Web Service Execution Environment WSMX [26]).!

In order to provide a detailed synopsis of the aims, challenges, and respective
solutions for Semantic Web services, the following explains the design principles
and element definitions of WSMO in detail. On this basis we explain respective
technologies in Section 4.

3.1 Design Principles and Approach

Semantic Web services aim at realizing the vision of the Semantic Web, i.e. turn-
ing the Internet from an information repository for human consumption into a
world-wide system for distributed Web computing. Therefore, WSMO is based
on the following design principles that integrate Web design principles, Seman-
tic Web design principles, as well as design principles for distributed, service-
oriented computing for the Web.

‘Web Compliance: WSMO inherits the concept of IRIs (Internationalized Re-
source Identifier) for unique identification of resources as the essential design
principle of the Web. Moreover, WSMO adopts the concept of Namespaces for
denoting consistent information spaces, and supports XML as well as other W3C
Web technology recommendations.

Ontology-Based: Ontologies are used as the data model throughout WSMO,
meaning that all resource descriptions as well as all data interchanged during
service usage are based on ontologies. Following the idea of the Semantic Web,
this allows semantically enhanced information processing as well as support for
semantic interoperability.

Goal-driven Architecture: User requests are formulated as goals indepen-
dently of available Web services. Thereby, the underlying epistemology of WSMO
differentiates between the desires of clients and available Web services.

Strict Decoupling: Each WSMO resource is specified independently, without
regard to possible usage or interactions with other resources. This complies with
the open and distributed nature of the Web.

Centrality of Mediation: Mediation addresses the handling of heterogeneities
that naturally arise in open environments like the Web. As a complementary
design principle to strict decoupling, WSMO recognizes the importance of medi-
ation for the successful deployment of Web services by making mediation a first
class component of the framework.

1 WSMO is a working group of the SDK-Cluster, a joint initiative of European research
and development efforts around the Semantic Web and Web services (homepage:
www.sdk-cluster.org). All specifications and related information are available at the
WSMO homepage: www.wsmo.org.

6 Stollberg, Feier, Roman, Fensel

Description versus Implementation: WSMO differentiates between the de-
scription and the implementation of Web services. The former denotes the un-
ambiguous description of Web services that is needed for automated usage of
Web services; the latter is concerned with the internal implementation of the
Web Service which is not of interest for Semantic Web service technologies.
Execution Semantics: The formal execution semantics of reference implemen-
tations like the Web Service Execution Environment WSMX as well as other
WSMO-enabled systems verify the WSMO design and specification.

The design principles are reflected in the four WSMO top level elements
shown in Figure 1. Ontologies provide the formal terminology definitions that
are used as the data model throughout WSMO, ensuring web compliance by the
design of the specification language WSML; Goals are formal specifications of
objectives that a client aims to achieve by using Web services, realizing a goal-
driven approach that ontologically decouples requesters and providers; WSMO
Web Services are formal descriptions needed for automated service handling and
usage, whereby the internal implementation of a Web service is not of interest;
finally, Mediators are the top level element for handling heterogeneity.

Objectives that a client wants to
achieve by using Web Services

Goals

Provide the Semantic description of
formally specified Web Services:
terminology Ontologies Web Services - Capability (functional)
of the information - .
used by all other Interfaces (usage)
components

Mediators

Connectors between components
with mediation facilities for handling
heterogeneities

Fig.1. WSMO Top Level Elements

In terms of the OMG’s Meta Object Facility (MOF, a classification frame-
work for system modelling [24]), WSMO provides a comprehensive meta-level
ontology for semantically describing the top level elements as the core building
blocks of Semantic Web services. Apart from the constitutive description notions
for each element, the general structure of WSMO element definition consists
four elements: namespaces that declare the Web namespaces of used terminol-
ogy, importsOntology and usesMediator for denoting the ontologies, respectively
mediators used in the element description, and non-functional Properties that
allow a complete element description used for resource management.?

2 WSMO defines the following non-functional properties (in alphabetical order): Accu-
racy, Contributor*, Coverage*, Creator*, Date*, Description*, Financial, Format*,

Semantic Web Services - Concepts and Technology 7

While referring to the WSMO specification for detailed definitions [39], the
following explains the WSMO elements with regard to their purpose and con-
stitutive description elements. For exemplifying the modelling of WSMO ele-
ments, we consider the following application scenario from the e-tourism domain
throughout this section: a user wants to travel from Innsbruck to Venice on a
certain date, which is specified as a goal for buying a ticket for the trip. A hy-
pothetical Web service called the ”"Book Ticket Web Service” is available and
capable of solving the goal. This Web service allows searching and buying train
tickets for itineraries starting in Austria; the only accepted payment method is
credit card that must be a valid visa or mastercard. We refer to [18] for a detailed
exemplification of this use case scenario.

3.2 Ontologies

In compliance to the vision of the Semantic Web, WSMO uses ontologies as the
underlying data model for Semantic Web services. This means that all resource
descriptions and all information interchanged during collaboration execution is
based on ontologies, thereby providing the basis for semantically enhanced in-
formation processing and ensuring semantic interoperability between Semantic
Web services.

In accordance to the Al-theory of ontologies [42], WSMO ontologies consists
of the following elements: Concepts describe the entities of a domain that are
characterized by Attributes; Relations describe associations between concepts,
whereby subsumption and membership relationships define the taxonomic struc-
ture of an ontology. An Instance is a concrete individual of a concept, and Az-
toms define constraints and complex aspects of the domain in terms of logical
expressions. Regarding engineering methodologies developed for the Semantic
Web [19], ontology design in WSMO demands and supports modularization, i.e.
small-sized and concise ontologies, decoupling, i.e. distributed and multi-party
ontology development, and ontology mediation for resolving possibly occurring
mismatches between loosely coupled ontologies for a specific usage scenario.

Before discussing the constituting elements of ontologies, the following shows
the header of the ”Trip Reservation Ontology” that defines the terminology for
trip and reservation related information used throughout the running exam-
ple. This contains the namespace definitions as IRIs (Internationalized Resource
Identifier), the IRI of the ontology, and examples for the non-functional proper-
ties title, creator, and format. Furthermore, it denotes that two other modular
ontologies are imported into the ” Trip Reservation Ontology”, and that a media-
tor is used that transforms a person ontology specified in OWL into the required
WSML format. The ontology header as well as all other examples are modelled
in the Web Service Modeling Language WSML; we refer to [16] for the WSML
syntax and semantics definition.

Identifier*, Language®, NetworkRelatedQoS, Owner, Performance, Publisher*, Re-
lation*, Reliability, Rights*, Robustness, Scalability, Security, Source*, Subject*,
Title*, Transactional, Trust, Type*, TypeOfMatch, Version; those denoted by (*)
are based on the Dublin Core Meta Data Set [47].

8 Stollberg, Feier, Roman, Fensel

namespace {_"http://example.org/tripReservationOntology#",

dc _"http://purl.org/dc/elements/1.1#",

loc _"http://example.org/locationOntology#",

po _"http://example.org/purchaseOntology#",

foaf _"http://xmlns.com/foaf/0.1/",

wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

prs _"http://example.org/owlPersonMediator#"
}

ontology _"http://example.org/tripReservationOntology"
nonFunctionalProperties
dc#title hasValue "Trip Reservation Ontology"
dc#creator hasValue _"http://example.org/foaf#deri"
dc#format hasValue "text/x-wsml"
endNonFunctionalProperties

importsOntology{ _"http://example.org/locationOntology",
_"http://example.org/purchaselntology"}
usesMediator _"http://example.org/owlPersonMediator"

The following provides examples for modeling the constituting elements of
ontologies. Concepts are defined by their subsumption hierarchy and their at-
tributes, including range specification. The range of the attributes can be a
datatype or another concept. The extension of a concept can be defined or
restricted by one or more logical expressions embedded in axioms. The cor-
responding axioms are declared in the dc#relation non-functional property
of the concept. In the example below, the concept tripFromAustria is sub-
sumed by the concept trip, and its definition is completed with an axiom,
tripFromAustriaDef, specifying that for an individual to be an instance of this
concept is to have Austria as the value of its origin attribute.
concept trip

origin impliesType loc#location
destination impliesType loc#location
departure ofType _date
arrival ofType _date
concept tripFromAustria subConceptOf trip
nonFunctionalProperties
dc#relation hasValue tripFromAustriaDef
endNonFunctionalProperties
axiom tripFromAustriaDef
definedBy
forall {?x ,7origin}
(7x memberOf tripFromAustria
implies
?x[origin hasValue ?7origin] and
?origin[loc#locatedIn hasValue loc#austrial).

Relations describe interdependencies between a set of concepts. A relation
declaration comprises the identifier of the relation and (optionally) its arity,
its superrelations, the domain of its parameters, and non-functional properties.
Like for concepts, axioms can be used for defining or constraining the relation
extension. WSMO also supports Functions are a special type of relations that
have a unary range beside the set of parameters. The example below is a relation
with a credit card as its single argument that holds when the credit card is valid.
Accompanying this relation is an axiom that compares the credit card expiry
date with the current date for establishing its validity.

relation validCreditCard(ofType creditCard)
nonFunctionalProperties

Semantic Web Services - Concepts and Technology 9

dc#relation hasValue ValidCreditCardDef
endNonFunctionalProperties
axiom ValidCreditCardDef definedBy
forall {7x, 7y} (
validCreditCard(?x) impliedBy
?x[expiryDate hasValue 7y] memberOf creditCard and
neg (wsml#dateLessThan(?y, wsml#currentDate()))).

Instances are concrete individuals of concepts or relations, being defined
either explicitly by specifying concrete values for attributes or parameters, or by
a link to an instance store. The below example shows an instance of the concept
tripFromAustria.

instance tripInnVen memberOf trip
origin hasValue loc#innsbruck
destination hasValue loc#venice

departure hasValue _date(2005,11,22)
arrival hasValue _date(2005,11,22)

Azioms denote constraints or complex aspects of the domain, specified as
logical expressions. The above definitions present some examples of axioms.

3.3 Web Services

WSMO defines a description model that encompasses those information needed
for automatically determining the usability of a Web service. As shown in Figure
2, a WSMO Web service description is comprised of four elements: (1) non-
functional properties, (2) a capability as the functional description of the service;
summarized as service interfaces, (3) a choreography that describes the interface
for service consumption by a client, and (4) an orchestration that describes how
the functionality of the service is achieved by aggregating other Web services.
These notion describe the functionality and behavior of a Web service, while its
internal implementation is not of interest.

- complete item description
- Quality aspects
- Web Service Management

- Advertising of ¥Web Service
- Suppart for W5 Discovery

Non-functional Properties Capability

DC + QoS + Yersion + financial] [functional description I

client-service realization of

interaction interface

for consuming W3

- External isible
Behavior

- Communication
Structure

- 'Grounding’

Web Service
Implementation

{not of Iterest in Web
Service Description)

functionality by

aggregating

other Web Services

- functional
decaomposition

- interaction with
aggregated Ws

Choreography — Service Interfaces — Orchestration

Fig. 2. WSMO Web Service Description

10 Stollberg, Feier, Roman, Fensel

While the non-functional properties contain an item description, quality of
service and financial information, and versioning information of the description
used for item management and non-functional selection, the functional service
description elements are the Capability and the Service Interfaces. The former
describes the functionality of a Web services from a black box perspective for
supporting automated functional discovery, meaning to determine whether a
Web service can be used to satisfy a user request on basis of its capability. The
Service Interfaces describe the interaction behavior of the Web service for con-
suming, respectively achieving its functionality: a client that wants to utilize
the Web service needs to comply with its Choreography Interface; similar, a
Web service that realizes it functionality by aggregating other Web services in
its Orchestration - which is a main objective of Web service technology - needs
to consume these via their respective Choreography Interfaces. This service de-
scription model encompasses all information needed for automatically determine
usability of a Web service. The following explains the WSMO capability and ser-
vice interface definitions in more detail.

A capability describes the functionality of a Web service by conditions that
need to hold before the service can be executed and by the result that is achieved
by service execution. Therefore, WSMO Web Service Capabilities are defined by
four notions: preconditions for defining conditions on the information space (that
is the information used for computation) that have to hold before execution, i.e.
on the input required by the service; assumptions as conditions on the world (de-
noting aspects not related to computation) that have to hold before execution;
postconditions define conditions on the information space after execution, i.e.
the output of the service, and effects as conditions on the world that hold after
service execution. These constitutive elements of capability descriptions are ex-
pressed as axioms on ontologies. A set of shared variables can be declared which
are implicitly all-quantified and whose scope is the whole Web service capability.
Informally, the logical interpretation of a Web service capability is that for any
values taken by the shared variables, the precondition and the assumption imply
the postcondition and the effect.

The below example shows the capability of the ”Book Ticket Web Service”
in our running scenario. When its execution is successful, the service provides a
reservation that includes the reservation holder and a ticket for the desired trip
(postcondition) if there is a reservation request for a trip with its starting point
in Austria for a certain person (precondition), and if the credit card intended
to be used for paying is a valid one, and its type is either visa or mastercard
(assumption). As a consequence of the execution of the Web service, the price
of the ticket will be deducted from the credit card account (effect).

capability BookTicketCapability
sharedVariables {?creditCard, ?initialBalance, ?trip,
?reservationHolder, ?ticket}
precondition
definedBy
?reservationRequest [
reservationltem hasValue 7trip,
reservationHolder hasValue ?reservationHolder
] memberOf tr#reservationRequest and

Semantic Web Services - Concepts and Technology 11

?trip memberOf tr#tripFromAustria and
?creditCard[balance hasValue ?initialBalance
] memberOf po#creditCard.
assumption
definedBy
po#validCreditCard(?creditCard)and
(?creditCard[type hasValue visa] or
?creditCard[type hasValue mastercard]).
postcondition
definedBy
?reservation memberOf tr#reservation[
reservationItem hasValue 7ticket,
reservationHolder hasValue ?reservationHolder]and
7ticket [trip hasValue 7trip] memberOf tr#ticket.
effect
definedBy
ticketPrice(?ticket, "euro", ?ticketPrice)and
?finalBalance= (?initialBalance - ?ticketPrice)and
?creditCard[po#balance hasValue ?finalBalance] .

As outlined above, WSMO differentiates two Service Interfaces that are con-
cerned with the interaction behavior of the Web service. The Choreography
Interface describes the behavior of the Web Service for consuming its function-
ality in terms of the information interchange expected, and the Orchestration
describes how the Web service interacts with other Web services in order to
achieve its functionality.

In contrast to several existing Web service technologies that focus on describ-
ing the interaction execution in detail - like WSDL, BPEL4WS, and WS-CDL
(see [4] for an extensive discussion) - the aim of WSMO Service Interface de-
scriptions is to provide the foundation for determining automatically whether the
interactions between a Web service, its clients, and other aggregated Web ser-
vices that need to be performed for achieving its functionality. Therefore, WSMO
defines a formal model for Service Interface descriptions that supports ontologies
as the underlying data model as is based on the Abstract State Machine (short:
ASM) framework, a high-level, abstract technique for validating complex sys-
tems or programs and provide a highly expressive, flexible, and formally sound
means for representing dynamics [8]. According to the ASM principles, WSMO
Service Interface descriptions consists of three notions [40]:

— a Signature (2 that defines the information space of a service interface
on the basis of ontologies. This is defined as the ontological schema of the
information interchanged in a service interface by denoting the used con-
cepts, relations, and functions of ontologies. The communicative usage of
this ontological schema information is indicated by sub-information spaces
for ontologies instances: §2;,, denotes the vocabulary of information received
by the service interface; 2,,; the vocabulary of information that is provided
by the service interface; 2sn4req denotes the vocabulary of information both
received and provided by the service interface; (2stqt5 defines the vocabu-
lary of ontology notions that cannot be changed by the service interface, and
Qcontrolled denotes those that can only be changed by the service.

— States w({2) that denote a status of the information space within the dy-
namics of a service interface that is defined by the attribute values of the

12 Stollberg, Feier, Roman, Fensel

ontology instances of {2. A state denotes a stable status within the dynamics
of a service interface that is existent as long as attribute values of instances
are not changed; changes occur as results of information interchange with
interaction partners.

— Guarded Transitions T that specify the dynamics of a service interface.
The general structure of T is: if condition(w) then action, whereby the ac-
tion denotes the communicative information interchange to be performed for
reaching the subsequent state w’. At a state change from w to w’, all T are
executed whose condition is satisfied.

In principle, this model defines an evolving ontology on the information space
that progresses during service usage by the information interchange with inter-
action partners. Thereby, {2 contains the concepts, relations, functions, and ax-
ioms as ontology schema on basis of a domain ontology. A state w({2) is stable
status of the information space of a service interface, defined by the concrete
attribute values of ontology instances; the communicative activities to be per-
formed on instance data are denoted by the sub-information spaces of 2. The set
of guarded transitions T defines state changes with regard to the evolution of the
information space. While the general structure of Choreography Interface and
Orchestration descriptions is the same, only the actions in Guarded Transitions
are modelled differently: while for Choreography Interfaces the action describes
the expected communicative interactions in order to reach the next state, defined
as updates that define changes in the attribute values of some (or all) instance
data of the information space. Actions in Orchestration descriptions consists of
so-called operations operation(WS, update), thereby additionally declaring the
Web service that the interaction is to be performed with.

The following exemplifies the Choreography Interface definition of the ”Book
Ticket Web Service” from our running scenario. For the sake of simplicity, we
assume the following behavior: at first, the service expects a reservation request
for a train trip that starts in Austria. If this is the case, it creates a temporary
reservation for that ticket. The next step is to wait for credit card information
for payment: if the credit card provided by the client is valid , a reservation is
created, otherwise a negative acknowledgement is created. Therefore, the Chore-
ography Interface in this example has three transition rules with respect to the
vocabulary definitions. The first one checks whether a reservation request for
a trip from Austria instance exists (i.e. it has been already received, since the
corresponding concept has the mode n). If this is the case, it creates a tempo-
rary reservation for that ticket. The second rule creates a reservation for a ticket
after reception of a valid credit card for payment by the client, which is sent to
the client (denoted by the mode out of reservation in the signature). The third
rule sends a negative acknowledgement to the client in case of invalid credit card
information.

choreography BookTicketServiceChoreographyInterface
importsOntology{ _"http://example.org/tripReservationOntology",
_"http://example.org/purchaseOntology"}

Semantic Web Services - Concepts and Technology 13

vocabulary_in hasValue

{tr#reservationRequest, tr#tripFromAustria, tr#ticket}
vocabulary_out hasValue

{tr#reservation, tr#negativeAcknowledgement}
vocabulary_shared hasValue

{tr#tempoaryReservation, po#fcreditCard}

guardedTransitions BookTicketChoreographyTransitionRules

if (reservationRequestInstance [
reservationItem hasValue ?7trip,
reservationHolder hasValue ?reservationHolder
] memberOf tr#reservationRequest and
7trip memberOf tr#tripFromAustria and
ticketInstancel[
trip hasValue ?trip,
recordLocatorNumber hasValue ?rln
] memberOf tr#ticket
then
temporaryReservationInstance[
reservationItem hasValue ticketInstance,
reservationHolder hasValue ?reservationHolder
] memberOf tr#temporaryReservation

if (temporaryReservationInstancel[
reservationItem hasValue ticketInstance,
reservationHolder hasValue ?reservationHolder
] memberOf tr#temporaryReservation and
creditCardInstance member0f po#creditCard and
po#validCreditCard(creditCardInstance))
then
reservationInstance[
reservationItem hasValue ticketInstance,
reservationHolder hasValue ?reservationHolder
JmemberOf tr#reservation

if (temporaryReservationInstance [
reservationItem hasValue ticketInstance,
reservationHolder hasValue ?reservationHolder
] memberOf tr#temporaryReservation and
creditCardInstance member0f po#creditCard and
neg (po#validCreditCard(creditCardInstance)))
then
negativeAcknowledgementInstance member0Of tr#negativeAcknowledgement

As already said, the ”Book Ticket Web Service” accepts credit cards of type
visa or mastercard for payment. Assuming that the Web service aggregates other
Web services for processing payment, and that these are different for the respec-
tive credit card types, it must interact with the correct payment Web service
for achieving its functionality during the ticket booking process. Therefore, the
”Book Ticket Web Service” defines two sets of transition rules in its orchestra-
tion, one for consuming a visa card payment Web service and one for a master-
card payment service. Referring to [40], we omit further examples here.

3.4 Goals

In order to facilitate automated Web service usage and support ontological sep-
aration of user desires, service usage requests, and Web service descriptions,
Goals in WSMO allow specifying objectives that clients - which can be humans
or machines - wish to achieve.

14 Stollberg, Feier, Roman, Fensel

The general structure of WSMO Goal descriptions is similar to Web service
descriptions. The client can specify the functionality expected in a requested
capability that can consist of the same elements as Web service capabilities as
discussed above. Also, a Goal can carry information on the expected behavior
of an acceptable Web service in so-called requested interfaces that can define
the excepted communication behavior for consuming a Web service with respect
to its Choreography Interfacem as well as restrictions on other Web services
aggregated in the orchestration of an acceptable Web service (e.g. only Web
services are accepted that utilize a trusted payment facility). It is important to
remark that Goal descriptions are defined from the client perspective, thereby
decoupled from Web service descriptions.

By intention, WSMO does not prescribe which aspects of goals need to be
modelled. For instance in our running example, the user objective is to buy a
ticket for traveling from Innsbruck to Venice on a certain date. Therefore, the
relevant aspect of a Goal description is the postcondition. As shown is the listing
below, this states that as a result of Web service usage, the user wants to receive
a reservation for a ticket for the respective trip.

goal _"http://example.org/havingAReservationInnsbruckVenice"
importsOntology {
_"http://example.org/tripReservationOntology",
_"http://www.wsmo.org/ontologies/locationOntology"}
capability
postcondition
definedBy
?reservation[
reservationHolder hasValue 7reservationHolder,
item hasValue ?ticket] memberOf tr#reservation
and 7ticket[trip hasValue ?trip] memberOf tr#ticket
and 7tripl
origin hasValue loc#innsbruck,
destination hasValue loc#venice,
departure hasValue 20050715_1800] memberOf tr#trip.

The goal resolution process (i.e. how goals are utilized in order to automat-
ically discover, compose, and execute Web Services) is by intention left open
to WSMO-enabled applications. Several different possibilities are considered in
ongoing applications. Some implementations request complete goals in order to
enable completely automated Web service usage (meaning that all aspects of
a Goal description should be defined), others utilize Goals with only requested
capability definitions along with other means for receiving the input for Web
services in the system.

3.5 Mediators

Mediation is concerned with handling heterogeneity, i.e. resolving possibly oc-
curring mismatches between resources that ought to be interoperable. Hetero-
geneity naturally arises in open and distributed environments, and thus in the
application areas of Semantic Web services. Hence, WSMO defines the concept
of Mediators as a top level notion.

Semantic Web Services - Concepts and Technology 15

Mediator-orientated architectures as introduced in [48] specify a mediator as
an entity for establishing interoperability of resources that are not compatible a
priori by resolving mismatches between them at runtime. The aspired approach
for mediation relies on declarative description of resources whereupon mecha-
nisms for resolving mismatches work on a structural, semantic level, in order to
allow generic, domain independent mediation facilities as well as reuse of media-
tors. Concerning the needs for mediation within Semantic Web services, WSMO
distinguishes three levels of mediation:

1. Data Level Mediation - mediation between heterogeneous data sources;
within ontology-based frameworks like WSMO, this is mainly concerned with
ontology integration.

2. Protocol Level Mediation - mediation between heterogeneous commu-
nication protocols; in WSMO, this mainly relates to choreographies of Web
services that ought to interact.

3. Process Level Mediation - mediation between heterogeneous business
processes; this is concerned with mismatch handling on the business logic
level of Web services (related to the orchestration of Web services).

With regard to this, WSMO Mediators define a mediation-orientated ar-
chitecture for Semantic Web services, providing an infrastructure for handling
heterogeneities that may arise between WSMO components and implementing
the design concept of strong decoupling and strong mediation. A WSMO Me-
diator serves as a third party component that connects heterogeneous elements
and resolves mismatches between them. Figure 3 shows the general structure of
WSMO mediators with further explanation below.

Source Mediator
Element - has Mediation Definition Target
i.n - uses a Mediation Service] Element
Source
Element - via goal
1 - directly

| -viaaincl. Mediation

Mediation
Services

Fig. 3. WSMO Mediator Structure

A Mediator can have several source elements that denote the heterogeneous
resources that are to be made interoperable, and one target element as the re-
source that applies the mediated source elements. So-called mediation definitions
define the operations needed to resolve the mismatches between the source com-
ponents in an appropriate mediation definition language. These operations are
executed in a mediation service that has processing capability for the mediation

16 Stollberg, Feier, Roman, Fensel

definition language. The link to the mediation service used can be defined either
directly or indirectly via a goal, including a discovery process for an adequate
service to be used, or defined via another mediator that resolves mismatches
between the mediator and the mediation service.

Furthermore, WSMO distinguishes four mediator types that connect respec-

tive WSMO elements and resolve mismatches between them. The different medi-
ators are named by prefixes, denoting WSMO elements as the respective source
and target components. Referring to [41] for further information, the following
explains the usage and definition of the WSMO Mediator types.
OO Mediators. OO Mediators are used to establish semantic interoperability
between components if this is not given a priori. OO mediation is concerned with
ontology integration techniques (i.e. ontology mapping, merging, and alignment),
as well as with transformations between languages (transformation between dif-
ferent ontology languages as well as lifting and lowering between structural and
ontological languages). Most common usage scenarios for OO Mediators are:

1. for describing a Goal or a Web service, we want to use several modular
ontologies O1, 02, O3; therefore, we define an OO Mediator that merges O1,
02, and O3 into one homogeneous ontology that provides the terminology
needed to specify the Goal or Web Service.

2. we want to use an ontology defined in OWL in a WSMO Web service de-
scription, wherefore we need to transform the OWL ontology into a WSML
representation. Therefore, we utilize a ”OWL2WSML Mediator” that is spec-
ified as follows: the source component is some OWL ontology, and the tar-
get component is some WSML ontology. The used mediation service en-
compasses generic mappings from OWL to WSML (e.g. "owl:Class equals
wsmo:Concept”), along with the execution facilities for the transformation
mappings. When utilizing this mediator in a concrete usage scenario, we can
translate the ontology schema and instance data from the OWL ontology
into the WSML representation by execution the mappings.

3. in order to establish interoperability between WSMO components by the
other WSMO mediator types, all data level mismatches are handled by
(re)using or defining respective OO Mediators.

GG Mediators. GG Mediators specify logical interrelations between Goals in
order to allow definition of Goal ontologies. This means that the goal definition
process for users is supported by tools on basis of pre-defined Goals, so-called
Goal Templates; a user can select a pre-defined Goal and refine or extend it to
the concrete objective. For example, there are 2 Goal Templates pre-defined,
one "book a flight” and another ”book a hotel”; for expressing the objective of
booking a trip (consisting of booking a flight and a hotel), these two Goals are
combined by a GG Mediator that explicitly states the ontological relationships
between the ’source goals’ - e.g. that the hotel is located in the destination city
of the flight, and the arrival date at the hotel is the same the arrival date of
the flight. This supports specifying requirements for Web service composition as
well as Web service discovery.

Semantic Web Services - Concepts and Technology 17

WG Mediators. WG Mediators support establishing the usability of a Web
service for resolving a Goal if not given a priori. For example, a Web service
provides an online booking facility for train tickets, and a Goal specifies purchase
of tickets as a sub-Class of products. A Web service discoverer will not determine
this Web service to be usable for resolving the Goal; hence, we define a WG
Mediator that resolves terminology mismatches by a respective OO Mediator
(stating that a train ticket as specified by the Web service refers to ticket in the
Goal), and that the Web service is only usable if the Goal specifies purchase of
train tickets, not for other types of tickets. Thus, similar to GG Mediators, WG
Mediators explicitly state the ontological relationship between Goals and Web
services as auxiliary support for discovery.

WW Mediators. WW Mediators are used to establish interoperability between
Web services if not given a priori. With respect to WSMO Service Interfaces,
WW Mediators provide mediation facilities on all three mediation levels in order
to resolve mismatches that hamper successful interaction of Web services. Apart
from using OO Mediators for resolving data level mismatches, the source com-
ponents are the service interfaces of the Web Services that are ought to interact,
and the mediation service encompasses generic mediation patterns for resolving
protocol and process level mismatches.

4 Semantic Web Service Technologies

The preceding explorations have introduced the motivation and objectives of Se-
mantic Web services and explained the realization and resource modeling within
the Web Service Modeling Ontology WSMO, providing the basis for understand-
ing the requirements for Semantic Web service technologies and position these
with respect to thorough next generation Web technologies. This section outlines
the overall usage process of Semantic Web services and present recent solutions
for selected core technologies.

We can distinguish three phases for the overall usage process of Semantic
Web services. At first, service providers as well as potential clients edit the
descriptions of their resources and publish them, i.e. making them available on
the Web. In the second phase, intelligent mechanisms determine which clients
shall utilize which services and resources to achieve their objectives, and the
third phase is concerned with execution of Web service usage. Although tool
support is required for the editing and publishing phase3, semantically enabled
Web service technologies are mainly allocated in the second and third phase [38].

3 Several environments for editing, maintaining, and publishing are under de-
velopment: the Distributed Ontology Management Environment DOME devel-
ops an integrated ontology management tool suite for the Semantic Web
on basis of WSML (http://dome.sourceforge.net), and the WSMO Studio de-
velops an integrated management environment for Semantic Web services
(http://www.wsmostudio.org/); similar tools are under construction for OWL
and OWL-S, summarized in the OWL-S Integrated Development Environment
(http://projects.semwebcentral.org/projects/owl-s-ide/).

18 Stollberg, Feier, Roman, Fensel

Hence, the main working areas of Semantic Web service technologies for
enabling automated Web service usage address the following aspects wherefore
we outline most recent approaches below.

— Discovery and Selection: how to determine appropriate Web services for
solving the goal of a client, and how to select the concrete Web service to be
used in case several service can be used?

— Composition: if there does not exist a Web service that can completely
satisfy a more complex goal, how to determine Web services that can be
combined for solving the goal, and how to determine a suitable execution
order for these services?

— Conversation Validation: given the behavior descriptions of Web services
and clients that are ought to interact, how to determine whether the infor-
mation interchange expected by each party can be achieved successfully?

— Mediation: how to resolve mismatches and heterogeneities that hamper
Web services and clients to interoperate?

— Execution Support: how to manage and control execution of Web services,
and how to ensure information interchange with respect to Web scale?

4.1 Discovery

Discovery within Web services is concerned with detecting suitable Web services
for achieving a requester’s objective, i.e. a goal. As outlined introductory, UDDI
supports discovery in conventional Web service technology as follows. The service
requester, which in this setting is expected to be a system developer, browses
a UDDI repository, retrieving information on available Web services. Then, he
manually inspects the usability of a Web service and integrates the respective
technical service invocation into the target application. As this technology sup-
port appears to be unsatisfactory for automated Web service usage, Semantic
Web service discovery aims at automatically determining the usability of a Web
service by semantic matchmaking.

Referred to as functional discovery, the general approach is to inspect certain
logical relationships between the semantic capability descriptions of requests (i.e.
Goals) and Web services. If such a relationship holds, the Web service is con-
sidered to be usable for resolving the client’s goal. On basis of several preceding
works on semantic matchmaking [37], [32], the Web service discovery frame-
work defined for WSMO [28] identifies five matchmaking notions as the core
for functional discovery as shown in Figure 4. The important characteristic of
these notions is that each one denotes a different logical relationship that has
to hold for considering a Web service to be suitable for achieving a given Goal.
For instance, the Exact Match holds if and only if for each possible ontology
instance that can satisfy the Web service holds that it also satisfies the Goal,
and that there exists no possible ontology instance that satisfies only the Goal
or the Web service. In contrast, the Intersection Match holds if there exists one
possible instance that can satisfy both the Goal and the Web service. Hence,
in order to precisely express client objectives with respect to discovery, WSMO

Semantic Web Services - Concepts and Technology 19

Goals carry an additional non-functional property typeOfMatch denoting the
matchmaking notion to be applied.

Q= @=ws
Exact Match:
G. WS, 0. M FVx. (G(x) <=> WS(x))

Plugin Match:
G.WS. 0. M Fvx. (G{x) => WS(x))

Subsumption Match:
G.WS, 0, M F¥x. (G(x) <= WS(x))

Intersection Match:
G. WS, 0, M E3x. (G(x) A WS(X))

Non Match:
G. WS, 0. M [ax. (G(x) A WS(x) }

0806

Fig. 4. Semantic Discovery Matchmaking Notions

Several prototypical realizations for semantically enabled discovery are ex-
isting: [32] and [23] apply Description Logic reasoners, the approach in [29] is
based on Frame- and Transaction Logic, and [44] use a FOL theorem prover
as the technical platform for semantically enabled discovery. However, all these
approaches are restricted to the specific reasoning support provided by the used
tools. Hence, it is expected that these approaches will converge towards an inte-
grated discovery framework for Semantic Web services that provides appropriate
reasoning facilities.*

4.2 Choreography and Orchestration

Another major working area of Semantic Web service technologies is concerned
with control and execution of the interactions that need to be performed for
consuming Web services.

Therefore, three aspects are differentiated: the behavior interface of a Web
service or a client that describes the communicative behavior expected or sup-
ported for service consumption, so-called choreographies that describe the inter-

4 Description Logic and Logic Programming are the most prominent decidable subsets
of First Order Logic; existing reasoners for each subset provide specific reasoning
support. For discovery, as well as for several other reasoning tasks on the Semantic,
facilities from both fractions are required. Hence, ongoing efforts aim at defining
the maximal intersection of Description Logic and Logic Programming languages in
order to facilitate integrated reasoning support. See [15] for further discussion.

20 Stollberg, Feier, Roman, Fensel

action protocol between several entities from a global perspective, and orchestra-
tion that defines how a Web service interacts with other Web services that are
used and aggregated to realize the service functionality (see [4] for an exhaustive
discussion and analysis of existing technologies).

Classifying most prominent existing related languages and technologies, we
can understand the WSDL description of a Web service to be representing its
behavior interface by defining the operations (in- and outgoing messages) for
consuming its functionality; the Web service Choreography Description Lan-
guage WS-CDL [27] provides a langauge for describing choreographies as global
interaction protocols between several Web services, and BPEL4WS [3] provides
a process language along with execution support that can be applied for orches-
tration. However, these languages relate to the current Web service technology
stack, i.e. relying on XML as the data model and missing formal semantics that
allow reasoning on interaction descriptions.

As outlined above, the aim of Semantic Web service technologies related to
choreography and orchestration is to provide means for determining a priori
whether the interactions between a Web service, its clients and aggregated Web
services can be performed successfully. As an extension to functional service dis-
covery for detecting usable Web services for resolving a goal as explained above,
so-called choreography discovery is concerned with determining the existence of a
valid interaction protocol between services and clients that are ought to interact
on basis of there respective formal interface definitions. This is given if: (1) there
exists a valid start state for the interaction, (2) a termination state of the inter-
action can be reached without any additional input, and (3) if the information
to be interchanged between interaction partners in each communicative act are
compatible. Choreography discovery provides a technique to automatically de-
termine whether a client can comply with the interaction required for consuming
a Web service as defined in its behavior interface, as well as for validating the
interactions between the Web service and other services that are aggregated in
its orchestration. We refer to [43] for further details and a realization approach
for choreography discovery on basis of WSMO Service Interface descriptions as
explained in Section 3.3.

Web service composition techniques are related to validating interactions be-
tween Services, especially with regard to orchestrations. As outlined above, com-
position is concerned with determining and aggregating Web services in order
to enable resolution of more complex goals. Several approaches have been devel-
oped for (semi-)automated Web service composition, ranging from Al-planning
techniques that compose services as a sequence of actions, while others compose
services for a given goal with respect to behavioral service descriptions (see [5]
for an extensive discussion on Web service composition techniques). However,
as existing composition techniques are not aligned with Semantic Web service
description frameworks like WSMO or OWL-S, the composed Services possibly
neglect aspects of interaction validation. Hence, validation of the interaction of
a composite Web service and its client as well as with the composed Services
needs to be performed after the composition.

Semantic Web Services - Concepts and Technology 21

4.3 Mediation

While not addressed explicitly in any other approach, WSMO identifies media-
tion as a central aspect of Semantic Web services. In addition to the ontological
definition of Mediators in WSMO (see Section 3.5), the following outlines exist-
ing and ongoing work on techniques for the distinct mediation levels identified
for Semantic Web services.

Data level mediation refers to the resolution of terminological mismatches
that hampers resources from interoperability. Within ontology-based technolo-
gies like the Semantic Web and Semantic Web services, this is mainly concerned
with ontology mapping, merging, and alignment, summarized as ontology in-
tegration techniques [1]. The basis for such techniques is the identification of
possibly occurring and resolvable mismatches between heterogeneous ontologies,
and an appropriate language for specifying mismatch resolutions along with ex-
ecution facilities. With respect to previous works on ontology integration, [14]
presents an ontology mapping specification language for specifying mismatch
resolution between heterogeneous ontologies. This allows defining mappings be-
tween ontology concepts, relations, and individuals along with mapping patterns
for denoting the ontological relation between elements from different ontologies.
The mapping language is language-neutral in order to allow data level media-
tion between ontologies defined in different ontology languages. An execution
environment for this mapping language is under development within the Web
Service Execution Environment WSMX, which presents an implementation for
WSMO OO Mediators [36].

Process mediation is concerned with resolving behavioral mismatches that
hamper entities from interaction with respect to communication protocols and
business processes. This relates to choreography, orchestration, and interaction
validation as explained above. More precisely: if there does not exist a valid
interaction protocol for services and clients that are ought to interact, then a
mediator is invoked as a third party component that resolves interaction re-
lated mismatches. Similar to the data level, process level mediation relies on a
classification of possibly occurring mismatches along with respective mediation
patterns and execution facilities for these. We refer to [12] for further elaboration
on process mediation along with a prototype implementation.

4.4 Semantic Web Service Execution

Semantic Web services require advanced execution environments. Apart from
executing Web services - which means control and monitoring of the information
interchange between Web services and their clients while the internal service
implementations are executed at their respective physical location - the Semantic
Web service usage process needs to be managed and controlled.

The Web Service Execution Environment WSMX develops such an environ-
ment as a reference implementation of the WSMO framework: given a WSMO
Goal of a requester, WSMX invokes functional components like a service discov-
erer, mediators, and a service invoker in order to resolve the goal automatically.

22 Stollberg, Feier, Roman, Fensel

The main merits of the WSMX architecture are the event based component
architecture along with formal execution semantics that allow dynamic invo-
cation of the system components as needed to process a specific client goal.
The ultimate aim of WSMX is to serve as a distributed environment for Web
service execution with its functional components to be provided as Semantic
Web services themselves [49]. While referring to [26] and the respective specifi-
cations of the WSMX architecture and components (see WSMX homepage at:
Www.wsmx.org), we want to outline a novel approach for communication and
information exchange for Semantic Web services developed in WSMX.

Current Web service technologies utilize SOAP as the messaging protocol
for exchanging information; apart from not supporting ontologies as the un-
derlying data model, such point-to-point message exchange technologies tightly
bind participants to each other in terms of time (HTTP requires participants
to communicate synchronously, i.e. to be online at the same time), of reference
(messages are addressed to a specific participant, requiring the requester and
provider to explicitly know and refer to each other), and of data format (WSDL
requires requesters to conform to the data schema defined by the provider). In
order to overcome these deficiencies, so-called Triple-Space Computing is envi-
sioned [10], [20]: on basis tuple-space computing, wherein communicating parties
write information to be exchanged into a common information space wherefrom
the respective participants read the data, the interchanged information are on-
tology instances for supporting semantically enhanced processing. Apart from
defeating the limitations on communication support, Triple-Space Computing
co-aligns with the Web design paradigm of persistent publishing and reading of
information that enables large scale information interchange.

5 Conclusions

This article has introduced the emerging concept of Semantic Web services. Us-
ing ontologies as the data model and on basis of exhaustive semantic description
frameworks, intelligent techniques shall automatically perform discovery, com-
position, conversation, and execution of Web services. Supporting seamless and
automated information interchange along with distributed computation over the
Web, Semantic Web services promise an integrated technology for realizing the
vision of the Semantic Web.

In order to give a profound overview and understanding of the objectives,
challenges, and solutions for Semantic Web services, we have extensively dis-
cussed their realization within the Web Service Modeling Ontology WSMO. We
have explained the design principles and motivation for Ontologies, Web ser-
vices, Goals, and Mediators as the four core elements of Semantic Web services,
as well as their definition and modeling in WSMO. On basis of this, we have
outlined most recent approaches on semantic discovery, conversation validation,
composition, mediation, and execution support as the main areas of research and
development within Semantic Web services. Although still under development
at the moment, these technologies have the potential to serve as the basis for

Semantic Web Services - Concepts and Technology 23

flexible, dynamic service-oriented architectures on the Web in numerous appli-
cation areas like Knowledge Management, Enterprise Application Integration,
and E-commerce.

Concluding, we remark that Semantic Web services are an ongoing, dynamic
research field. Nevertheless, they have the potential of providing a foundational
pillar for the next generation of Web technology, as emphasized by the sub-
mission of WSMO and OWL-S to the W3C as starting points for upcoming
standardization efforts.

Acknowledgements The work presented here is funded by the European Com-
mission under the projects DIP, Knowledge Web, SEKT, ASG, and Esperonto;
by Science Foundation Ireland under the DERI-Lion project; and by the Aus-
trian government under the FIT-IT programme. We would like to thank all
members of the WSMO, WSML and WSMX working groups for providing input
and feedback to this article.

References

1. V. Alexiev, M. Breu, J. de Bruijn, D. Fensel, R. Lara, and H. Lausen. Information
Integration with Ontologies. Wiley, West Sussex, UK, 2005.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer,
Berlin, Heidelberg, 2004.

3. T. Andrew et al. (eds.). Business Process Execution Language
for Web Services. Specification BEA Systems, IBM Corp., Mi-
crosoft Corp., SAP AG, Siebel Systems 1.1, 2003. available at:

ftp:/ /wwwb.software.ibm.com/software /developer/library /ws-bpel.pdf.

4. A. Barros, M. Dumas, and P. Oaks. Standards for Web Service Choreography and
Orchestration: Status and Perspectives. In Proceedings of the 1st International
Workshop on Web Service Choreography and Orchestration for Business Process
Management at the BPM 2005, Nancy, France, 2005.

5. D. Berardi. Automatic Service Composition. Models, Techniques and Tools. Phd
thesis, University of Rome ”La Sapienza”, 2005.

6. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5), 2001.

7. Tim Berners-Lee. Weaving the Web. Harper, San Francisco, USA, 1999.

8. E. Boerger and R.F Staerk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

9. C. Bussler. B2B Integration: Concepts and Architecture. Springer, Berlin, Heidel-
berg, 2003.

10. C. Bussler. A Minimal Triple Space Computing Architecture. In Proceedings of
the 2nd International WSMO Implementation Workshop (WIW 2005), Innsbruck,
Austria, 2005.

11. R. Chinnici, M. Gudgin, J-J. Moreau, J. Schlimmer, and Weer-
awarana. S. (eds). WSDL. Working draft, W3C, 2004. Available from
http://www.w3.org/TR/wsdl20.

12. E. Cimpian and A. Mocan. WSMX Process Mediation Based on Choreographies.
In Proceedings of the 1st International Workshop on Web Service Choreography

24

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Stollberg, Feier, Roman, Fensel

and Orchestration for Business Process Management at the BPM 2005, Nancy,
France, 2005.

L. Clement, A. Hately, C. von Riegen, and T. (eds) Rogers. UDDI Ver-
sion 3. Uddi spec technical committee draft, OASIS, 2004. Available from
http://uddi.org/pubs/uddi-v3.htm.

J. de Bruijn and A. Polleres. Towards an Ontology Mapping Specification Lan-
guage for the Semantic Web. Technical Report 2004-06-30, DERI, 2004. avail-
able at: http://www.deri.at/publications/techpapers/documents/ DERI-TR-2004-
06-30.pdf.

J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight:
Conceptual Modeling and Reasoning for the Semantic Web. In Proceedings of
the 14th International World Wide Web Conference (WWWZ2005), Chiba, Japan,
2005., 2004.

J. de Bruijn (ed.). The Web Service Modeling Language WSML.
WSML Deliverable D16.1 final version 0.2, 2005. available from
http://www.wsmo.org/TR/d16/d16.1/v0.2/.

T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall PTR, 2004.

C. Feier (ed.). WSMO Primer. Deliverable D3.1, final version 0.1, 2005. Available
from http://www.wsmo.org/TR/d3/d3.1/.

D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and E-
Commerce. Springer, Berlin, Heidelberg, 2 edition, 2003.

D. Fensel. Triple-Space Computing: Semantic Web Services based on persistent
publication of information. In Proceedings of the IFIP International Conference
on Intelligence in Communication Systems, INTELLCOMM 2004, Bangkok, Thai-
land, November 23-26., 2004.

D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. FElec-
tronic Commerce Research and Applications, 1(2), 2002.

A. Gomez-Perez, O. Corcho, and M. Fernandez-Lopez. Ontological Engineering:
With Exzamples from the Areas of Knowledge Management, E-Commerce and Se-
mantic Web. Series of Advanced Information and Knowledge Processing. Springer,
Berlin, Heidelberg, 2003.

S. Grimm, B. Motik, and C. Preist. Variance in e-business service discovery. In
Proc. of the ISWC 2004 workshop on Semantic Web Services: Preparing to Meet
the World of Business Applications, Hiroshima, Japan, Nov. 2004, 2004.

OMG: The Object Management Group. Meta-object facility, version 1.4, 2002.
M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H.F. Nielsen, editors.
SOAP Version 1.2. 2003. W3C Recommendation 24 June 2003.

A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Semantic
Service-Oriented Architecture. In Proceedings of the International Conference on
Web Service (ICWS 2005), 2005.

N Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon (eds.), editors.
Web Services Choreography Description Language Version 1.0. 2004. W3C Work-
ing Draft 17 December 2004.

U. Keller, R. Lara, and A. Polleres (eds.). WSMO Web Service Discovery. Deliv-
erable D5.1, 2004. available at: http://www.wsmo.org/TR/d5/d5.1/.

M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
Logical Framework for Web Service Discovery. In Proc. of the ISWC 2004 workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, Nov. 2004, 2004.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Semantic Web Services - Concepts and Technology 25

G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and abstract syntax. Recommendation 10 February 2004, W3C, 2004.

R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of
WSMO and OWL-S. In Proc. of the European Conf. on Web Services, 2004.

L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the 12th International Conference on the World
Wide Web, Budapest, Hungary., 2003.

D. Martin, editor. OWL-S 1.1 Release. 2004. http://www.daml.org/services/owl-
s/1.1/.

D/. M/cGuinness and F. v. Harmelen, editors. OWL Web Ontology Language
Overview. 2004. W3C Recommendation 10 February 2004.

S. Mcllraith, T. Cao Son, and H. Zeng. Semantic Web Services. IEEFE Intelligent
Systems, Special Issue on the Semantic Web, 16(2):46-53, 2001.

A. Mocan (ed.). WSMX Data Mediation. WSMX Working Draft D13.3, 2005.
available at: http://www.wsmo.org/TR/d13/d13.3/v0.2/.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In Proceedings of the First International Semantic Web Con-
ference, Springer, 2002.

C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the
Int. Semantic Web Conf. (ISWC 2004), 2004.

D. Roman, H. Lausen, and U. Keller (eds.). Web Service Modeling On-
tology (WSMO). Deliverable D2, final version 1.2, 2005. Available from
http://www.wsmo.org/TR/d2/.

D. Roman, J. Scicluna, and C. Feier (eds.). Ontology-based Choreography
and Orchestration of WSMO Services. Deliverable D14, 2005. available at:
http://www.wsmo.org/TR/d14/.

F. Scharffe (ed.). WSMO Mediators. Deliverable D29, 2005. available at:
http://www.wsmo.org/TR/d29/.

S. Staab and R. Studer, editors. Handbook on Ontologies in Information Systems.
International Handbooks on Information Systems. Springer, 2004.

M. Stollberg. Reasoning Tasks and Mediation on Choreography and Orchestra-
tion in WSMO. In Proceedings of the 2nd International WSMO Implementation
Workshop (WIW 2005), Innsbruck, Austria, 2005.

M. Stollberg, U. Keller, and D. Fensel. Partner and Service Discovery for Collabora-
tion Establishment on the Semantic Web. In Proceedings of the Third International
Conference on Web Services, Orlando, Florida, 2005.

M. Stollberg, H. Lausen, R. Lara, Y. Ding, H. Sung-Kook, and D. Fensel. Towards
Semantic Web Portals. In Proceedings of the WWW2004 Workshop on Application
Design, Development and Implementation Issues in the Semantic Web, New York,
NY, USA, May 18, 2004., 2004.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery,
Interaction and Composition of Semantic Web services. Journal of Web Semantics,
1(1):27-46, September 2003.

S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin Core Metadata
for Resource Discovery. Technical Report RFC 2413, 1998. available at:
http://www.fags.org/rfcs/rfc2413.html.

G. Wiederhold. Mediators in the architecture of the future information systems.
Computer, 25(3):38-49, 1994.

M. Zaremba and C. Bussler. Towards Dynamic Execution Semantics in Seman-
tic Web Services. In Proceedings of the WWW 2005 Workshop on Web Service
Semantics: Towards Dynamic Business Integration, 2005.

