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Abstract: The potential to achieve dynamic, scalable and cost-effective mar-

ketplaces and eCommerce solutions has driven recent research efforts towards

so-called Semantic Web Services, that are enriching Web services with machine-

processable semantics. To this end, the Web Service Modeling Ontology (WSMO)

provides the conceptual underpinning and a formal language for semantically

describing all relevant aspects of Web services in order to facilitate the automa-

tization of discovering, combining and invoking electronic services over the Web.

In this paper we describe the overall structure of WSMO by its four main

elements: ontologies, which provide the terminology used by other WSMO ele-

ments, Web services, which provide access to services that, in turn, provide some

value in some domain, goals that represent user desires, and mediators, which

deal with interoperability problems between different WSMO elements. Along

with introducing the main elements of WSMO, we provide a logical language for

defining formal statements in WSMO together with some motivating examples

from practical use cases which shall demonstrate the benefits of Semantic Web

Services.
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1 Introduction

Web services [1] have added a new level of functionality to the current Web

by taking a first step towards seamless integration of distributed software com-

ponents using web standards. Nevertheless, current Web service technologies

around SOAP [20], WSDL [10] and UDDI [5] operate at a syntactic level and,

therefore, although they support interoperability (i.e. interoperability between

the many diverse application development platforms that exist today) through

common standards, they still require human interaction to a large extent: The

human programmer has to manually search for appropriate Web services in order

to combine them in a useful manner, which limits scalability and greatly curtails

the added economic value of envisioned with the advent of Web services [18].

Recent research aimed at making web content more machine-processable,

usually subsumed under the common term Semantic Web [7] are gaining mo-

mentum also, in particular in the context of Web services usage. Here, semantic

markup shall be exploited to automate the tasks of Web service discovery, com-

position and invocation, thus enabling seamless interoperation between them [43]

while keeping human intervention to a minimum.

The description of Web services in a machine-understandable fashion is ex-

pected to have a great impact in areas of e-Commerce and Enterprise Applica-

tion Integration, as it is expected to enable dynamic and scalable cooperation

between different systems and organizations: Web services provided by cooper-

ating businesses or applications can be automatically located based on another

business or application needs, they can be composed to achieve more complex,

added-value functionalities, and cooperating businesses or applications can inter-

operate without prior agreements custom codes. Therefore, much more flexible

and cost-effective integration can be achieved.
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The Web Service Modeling Ontology (WSMO) aims at describing all relevant

aspects related to general services which are accessible through a Web service

interface with the ultimate goal of enabling the (total or partial) automation

of the tasks (e.g. discovery, selection, composition, mediation, execution, moni-

toring, etc.) involved in both intra- and inter-enterprise integration of Web ser-

vices. WSMO has its conceptual basis in the Web Service Modeling Framework

(WSMF) [18], refining and extending this framework and developing a formal

ontology and set of languages.

The remainder of the paper is organized as follows. In Section 2 a general

overview of WSMO is given. The top level elements of WSMO, namely Ontolo-

gies, Web services, Goals and Mediators are presented in detail in the subsequent

Sections 3 to 6. Section 7 presents a formal language for defining logical state-

ments in WSMO. Finally, Section 8 summarizes existing work in the area of

Semantic Web Services and relates this work to WSMO, and Section 9 presents

our conclusions and plans for further research.

2 WSMO: A Bird’s-Eye View

WSMO provides ontological specifications for the core elements of Semantic Web

services. In fact, Semantic Web services aim at an integrated technology for

the next generation of the Web by combining Semantic Web technologies and

Web services, thereby turning the Internet from a information repository for

human consumption into a world-wide system for distributed Web computing.

Therefore, appropriate frameworks for Semantic Web services need to integrate

the basic Web design principles, those defined for the Semantic Web, as well as

design principles for distributed, service-oriented computing of the Web. WSMO

is therefore based on the following design principles:
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– Web Compliance - WSMO inherits the concept of URI (Universal Re-

source Identifier) for unique identification of resources as the essential design

principle of the Word Wide Web. Moreover, WSMO adopts the concept of

Namespaces for denoting consistent information spaces, supports XML and

other W3C Web technology recommendations, as well as the decentralization

of resources.

– Ontology-Based - Ontologies are used as the data model throughout WSMO,

meaning that all resource descriptions as well as all data interchanged dur-

ing service usage are based on ontologies. Ontologies are a widely accepted

state-of-the-art knowledge representation, and have thus been identified as

the central enabling technology for the Semantic Web. The extensive usage

of ontologies allows semantically enhanced information processing as well as

support for interoperability; WSMO also supports the ontology languages

defined for the Semantic Web.

– Strict Decoupling - Decoupling denotes that WSMO resources are defined

in isolation, meaning that each resource is specified independently without

regard to possible usage or interactions with other resources. This complies

with the open and distributed nature of the Web.

– Centrality of Mediation - As a complementary design principle to strict

decoupling, mediation addresses the handling of heterogeneities that natu-

rally arise in open environments. Heterogeneity can occur in terms of data,

underlying ontology, protocol or process. WSMO recognizes the importance

of mediation for the successful deployment of Web services by making me-

diation a first class component of the framework.

– Ontological Role Separation - Users, or more generally clients, exist in

specific contexts which will not be the same as for available Web services.

For example, a user may wish to book a holiday according to preferences

for weather, culture and childcare, whereas Web services will typically cover
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airline travel and hotel availability. The underlying epistemology of WSMO

differentiates between the desires of users or clients and available services.

– Description versus Implementation - WSMO differentiates between

the descriptions of Semantic Web services elements (description) and ex-

ecutable technologies (implementation). While the former requires a concise

and sound description framework based on appropriate formalisms in order

to provide concise semantic descriptions, the latter is concerned with the

support of existing and emerging execution technologies for the Semantic

Web and Web services. WSMO aims at providing an appropriate ontological

description model, and to be compliant with existing and emerging technolo-

gies.

– Execution Semantics - In order to verify the WSMO specification, the

formal execution semantics of reference implementations like WSMX as well

as other WSMO-enabled systems provide the technical realization of WSMO.

– Service versus Web service - A Web service is a computational entity

which is able to achieve a users goal by invocation. A service, in contrast,

is the actual value provided by this invocation [4], [38] 3. WSMO provides

means to describe Web services that provide access (searching, buying, etc.)

to services. WSMO is designed as a means to describe the former and not

to replace the functionality of the latter.

The rest of this section gives a general overview of WSMO: the top level

elements of WSMO are succinctly introduced in Section 2.1 and their conceptual

relations are explained; in Section 2.2, by making use of the Meta Object Facility

(MOF), the meta-language used for describing WSMO is presented. An example

3 Note that [38] also distinguishes between a computational entity in general and
Web service, where the former does not necessarily have a Web accessible interface.
WSMO does not make this distinction.
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is given in Section 2.3 that will be used throughout this document in order to

define various elements of WSMO.

2.1 Top-level elements of WSMO

Following the key aspects identified in the Web Service Modeling Framework,

WSMO identifies four top-level elements as the main concepts which have to be

described in order to define Semantic Web Services:

Goals

Mediators

Ontologies Web Services   

Fig. 1. WSMO core elements

Ontologies provide the terminology used by other WSMO elements to describe

the relevant aspects of the domains of discourse. In contrast to mere termi-

nologies that focus exclusively on syntactic aspects, ontologies can additionally

provide formal definitions that are machine-processable and thus allow other

components and applications to take actual meaning into account. They are

described in detail in Section 3.

Web services represent computational entities able to provide access to ser-

vices that, in turn, provide some value in a domain; Web service descriptions

comprise the capabilities, interfaces and internal working of the service (as fur-

ther described in Section 4). All these aspects of a Web service are described

using the terminology defined by the ontologies.
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Goals describe aspects related to user desires with respect to the requested func-

tionality; again, Ontologies can be used to define the used domain terminology,

useful in describing the relevant aspects of goals. Goals model the user view in

the Web service usage process, and therefore are a separate top-level entity in

WSMO described in detail in Section 5.

Finally, Mediators decribe elements that handle interoperability problems be-

tween different WSMO elements. We envision mediators as the core concept to

resolve incompatibilities on the data, process and protocol level, i.e. in order to

resolve mismatches between different used terminologies (data level), in how to

communicate between Web services (protocol level) and on the level of combining

Web services (process level). These are described in detail in Section 6.

2.2 Language for defining WSMO

WSMO is meant to be a meta-model for Semantic Web Services related as-

pects. For defining this model we make use of Meta Object Facility (MOF) [35]

specification which defines an abstract language and framework for specifying,

constructing, and managing technology neutral meta-models.

MOF defines a metadata architecture consisting of four layers, namely:

– The information layer comprises the data we want to describe.

– The model layer comprises the metadata that describes data in the informa-

tion layer.

– The meta-model layer comprises the descriptions that define the structure

and semantics of the metadata.

– The meta-meta-model layer comprises the description of the structure and

semantics of meta-metadata.

In terms of the four MOF layers, the language in which WSMO is defined

corresponds to the meta-meta model layer, WSMO itself constitutes the meta-
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model layer, the actual ontologies, Web services, goals, and mediators specifica-

tions constitute the model layer, and the actual data described by the ontologies

and exchanged between Web services constitute the information layer. Figure 2

shows the relation between WSMO and the MOF layered architecture.

MOF

meta−model

model

information

meta−meta−model

M2 layer

M1 layer

M3 layer

M0 layer

WSMO Descriptions

WSMO

Concrete Web Services, Domains and Data to be described

Fig. 2. The relation between WSMO and MOF.

The most used MOF meta-modeling construct in the definition of WSMO

is the Class construct (and implicitly its class generalization (sub-Class) con-

struct), together with its Attributes, the type of the Attributes and their mul-

tiplicity specifications. When defining WSMO, the following assumptions are

made:

– Every Attribute has its multiplicity set to multi-valued by default; when an

Attribute requires its multiplicity to be set to ”single-valued”, this will be

explicitly stated in the listings where WSMO elements are defined.

– Some WSMO elements define Attributes taking values from the union of

several types, a feature that is not directly supported by the MOF meta-

modelling constructs; this can be simulated in MOF by defining a new Class

as super-Class of all the types required in the definition of the Attribute,

representing the union of the single types, with the Constraint that each

instance of this new Class is an instance of at least one of the types which

are used in the union; to define this new Class in WSMO, we use curly

brackets, enumerating the Classes that describe the required types for the

definition of the attribute.
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In the remainder of this paper we use listings with the MOF metamodel

to illustrate the structure of WSMO where it supports the understanding of

the overall structure. To be brief, some listings are shortened or omitted; the

complete specification of WSMO in terms of MOF can be found in [41].

2.3 Illustrating Example

In order to illustrate WSMO we will briefly describe an application scenario

based on [42]. Let us imagine a ”Virtual Traveling Agency” (VTA for short)

which is a platform providing eTourism services. These services can cover infor-

mation services concerned with tourism such as events and sights in different

areas and services that support booking of flights, hotels, rental cars, etc. By

applying Semantic Web Services, a VTA can invoke Web services provided by

several eTourism suppliers and aggregate them into new customer services in a

(semi-)automatic fashion. In this paper we only focus on the description of a

particular Web service in this scenario, we do not aim to explain the full appli-

cation of such descriptions. As a concrete example we chose a service that is able

to book and reserve a train ticket. The full example along with the supporting

ontologies is available online4. When introducing the components of WSMO, we

will occasionally refer to parts of this service description in the Web Service

Modeling Language WSML, which will be described in more detail in Section 7.

3 Ontologies

An ontology is a formal explicit specification of a shared conceptualization [21].

From this conceptual definition we extract the essential components which con-

stitute an ontology. They define an agreed common terminology by providing

concepts, and relationships between the concepts.
4 The full listing is available at http://cvs.deri.at/paper/wsmoExample.wsml
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Although there are currently several standardizations efforts for ontology

languages [23] [13] [24], none of them has the desired expressivity and compu-

tational properties that are required to describe web services at a sufficient level

of granularity. In the following we will define an epistemological model which is

general enough to intuitively capture existing languages. The semantics of this

model are defined by logical expressions (cf. Section 7).

In the following we will present the conceptual model along with concrete

examples. We will now introduce the elements that constitute an ontology using

MOF notation, defining the class ontology with the following attributes:

Class ontology
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasConcept type concept
hasRelation type relation
hasFunction type function
hasInstance type instance
hasAxiom type axiom

In the subsections which follow, we will describe all elements in more detail.

The examples used for illustration purposes are given in WSML [12], a language

specifically designed to express semantic descriptions according to the WSMO

meta model. Explained in a nutshell, while WSMO provides the conceptual

model for describing Web services, ontologies, goals and mediators semantically,

WSML provides a formal language for writing, storing and communicating such

descriptions. Although other concrete languages might be used to express our

model too, we chose WSML for its close relationship to the meta model. A com-

plete description of the language is out of the scope of this paper, but we will

give an overview and some details on the logical language used in Section 7;

necessary explanations are given throughout the text. But first, some general

remarks are in order: WSML identifiers are URIs, for readability they are ab-

breviated using the QName [8] mechanism. URIs in the default namespace do
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not need a prefix, other namespaces will be introduced in the explanatory text

sections. A QName is written in the format prefix:localPart and will be expended

to the full URI during processing.

3.1 Non-functional properties

Non functional properties are allowed in the definition of all WSMO elements.

They are mainly used to describe non-functional aspects such as creator, creation

date, natural language descriptions, etc. We take the elements defined by the

Dublin Core Metadata Initiative [45] as a starting point and introduce other

elements, for example the version of the ontology (other elements necessary for

the description of other elements of WSMO, e.g web services, are introduced in

their corresponding sections).

namespace <<http://example.org/wsmo#>>
loc : <<http://wsmo.org/ontologies/location#>>
xsd: <<http://www.w3.org/2001/XMLSchema#>>
dc: <<http://purl.org/dc/elements/1.1#>>

ontology <<http://example.org/tripReservationOntology>>
nonFunctionalProperties

dc: title hasValue ”An ontology describing trips and reservations ”
dc: creator hasValue ”DERI Innsbruck”
dc: publisher hasValue ”DERI International”
dc: contributor hasValues {<<www.deri.org/members/dumitrur>>,

<<http://homepage.uibk.ac.at/˜c703240/foaf.rdf>>}
dc:date hasValue ”2004−12−16”
dc:format hasValue ”text/x−wsml”

endNonFunctionalProperties}

The example above illustrates the use of namespace declaration to QNames

for readability. Note that those identifiers are only logical identifiers and not

physical ones. The metadata in the non-functional properties can also refer to

URIs (in case of dc:contributor to a foaf file or a homepage).
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3.2 Imported Ontologies

Building an ontology for some particular problem domain can be a rather cum-

bersome and complex task. One standard way to deal with the complexity is

by modularization. Imported ontologies allow a modular approach for ontology

design and can be used as long as no conflicts need to be resolved between the

ontologies. By importing ontologies all statements of the imported ontology will

be virtually included in the importing ontology. Every WSMO top-level entity

(cf. Section 2.1) may use this import facility to include the logical definition of

the vocabulary used.

3.3 Used mediators

When importing ontologies in realistic scenarios, some steps for aligning, merging

and transforming imported ontologies in order to resolve ontology mismatches

are needed. For this reason, and in line with the basic design principles under-

lying the WSMF, ontology mediators (ooMediator)are used when an alignment

of the imported ontology is necessary. Such an alignment can be for example

the renaming of concepts, attributes or similar. Just like the importsOntology

statement the usesMediator statement is applicable to all top level elements,

however depending on the element different mediators may be used.

An example for mediator usage for terminology import is that for describing

some WSMO element we need to merge a train connection ontology Ots and a

purchase ontology Opur, so that a train ticket in Ots is understood as a sub-

concept of product in Opur. Defining a OO Mediator that merges Ots and Opur

accordingly allows to apply the merged ontologies as the terminology definition

for the element description. The concept of Mediators is described in detail in

Section 6.
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3.4 Concepts

Concepts constitute the basic elements of the agreed terminology for some prob-

lem domain. They represent classes of objects of a real or abstract world that

have a specific shared property (e.g. being a ticket). Members of such a class

are called instances of the corresponding concept. Formally, concepts are inter-

preted under set-theoretic semantics, that means they formally represent sets of

elements.

The description of the single members of such a concept usually reveals a

specific structure: attributes that are shared between all instances of a concept.

Hence, from a high level perspective, a concept - described by a concept definition

- provides attributes with names and types. Such a set of attribute definitions,

i.e. pairs of attribute names and types, which apply to a specific concept C is

called a signature of concept C. In particular, such definitions could for instance

stem from imported definitions of a concept or its superconcepts.

Furthermore, a concept can be a subconcept of several (possibly none) direct

superconcepts as specified by the ”isA”-relation. Formally, this declares a specific

relationship between the extensions of a concept and its superconcept: every

instance of the subconcept is considered to be an instance of the superconcept

as well. Hence, subconcepts refine their superconcepts in some way thus add

some specific meaning to the superconcept which distinguishes the instances of

the subconcept from the instances of the respective superconcepts.

In the WSMO model each concept can have a finite number of concepts

that serve as a superconcept for some concept. Being a subconcept of some

other concept in particular means that a concept inherits the signature of this

superconcept and the corresponding constraints. That means for each concept

C all attributes of all superconcepts can be applied to instances of C as well.

Constraints (i.e. typing of attributes) must be refined. A detailed account to
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inheritance in object-oriented and frame-based logics can be found in [28,47,48].

In the example below, a trip in Europe is defined as subconcept of a general

trip; note that the attributes are repeated only for the reason of readability and

would have been inherited anyway.

concept tripInEurope subConceptOf trip
origin ofType loc: location
destination ofType loc: location
departure ofType xsd:dateTime
arrival ofType xsd:dateTime
definedBy

forAll ?x (?x memberOf tripInEurope equivalent
?x memberOf trip and
?x.departure . loc : locateIn=loc:europe and
?x. origin . loc : locateIn=loc:europe).

A concept provides a (possibly empty) set of attributes that represent named

slots for the data values for instances. An attribute specifies a slot of a concept

by fixing the name of the slot as well as a logical constraint on the possible

values filling that slot, which in the simple case can be another concept. Hence,

this logical expression can be interpreted as a typing constraint. Within the

example the domain of the possible attribute values for origin is restricted to

instances of the concept location (loc: is used as an abbreviation for the full

logical identifer of this external ontology). Note that in WSMO/WSML we do

not restrict ourselves to typing constraints, but also allow the types of slot fillers

to be implied by the definition. This can be modeled in WSML by means of the

keyword impliesType replacing ofType. An in-depth discussion of attributes

and their semantics, in particular the difference between the two options ofType

and impliesType in WSML, can be found in [9,12].

As every element in WSMO, a concept is ultimately defined by a logical

expression it translates to. Additionally, within the conceptual model, axioms

can be asserted to a concept that refines its meaning, e.g. with nuances that are

not expressible by attributes or the concept hierarchy. A logical expression (cf.
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Section 7) can be used to refine the semantics of the concept. More precisely, the

logical expression defines (or restricts, as the case may be) the extension (i.e.

the set of instances) of the concept. In the example we are using for illustration

purposes here, the expression refines a trip within Europe, i.e. it restricts all

attribute values of origin and destination to locations that have a locatedIn

attribute value indicating that they are located in Europe.

More generally, we allow the following type of expression for concept defini-

tions: If C is the identifier denoting the concept then the logical expression takes

one of the following forms:

forAll ?x (?x memberOf C implies lexpr(?x))
forAll ?x (?x memberOf C impliedBy lexpr(?x))
forAll ?x (?x memberOf C equivalent lexpr(?x))

where lexpr(?x) is a logical expression with precisely one free variable ?x. In the

first case, there is a necessary condition for membership in the extension of the

concept; in the second case, there is a sufficient condition and in the third case,

there is a sufficient and necessary condition for an object being an element of

the extension of the concept.

3.5 Relations

Relations are used in order to model interdependencies between several concepts

(respectively instances of these concepts). The arity of relations is not limited.

relation airLineDistance subRelationOf distance
from ofType loc: location
to ofType loc: location
distanceInMeter ofType xsd: integer

Every Relation can have a finite set of relations of which the defined relation

is declared as being a subrelation. Being a subrelation of some other relation in

particular means that the relation inherits the signature of this superrelation and
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the corresponding constraints. Furthermore, the set of tuples belonging to the

relation (i.e. the extension of the relation) is a subset of each of the extensions

of the superrelations. In the example given, we define airline distance as a sub

relation of the general distance relation.

Like attributes for concepts, each relation has a possible empty set of named

parameters. If no named parameters are given, an unnamed, ordered list is as-

sumed. Each parameter has a single value, and can have a range restriction in

form of a concept. Mixing named and unnamed parameters is not possible when

defining a relation; either all parameters are named or all of them are named.

In the case of concepts a logical expression defining the set of instances (n-ary

tuples, if n is the arity of the relation) can be specified. If the parameters are

specified, the relation is represented by a n-ary predicate symbol with named

arguments where the identifier of the relation is used as the name of the predicate

symbol. If R is the identifier denoting the relation, and impl stands for implies,

impliedBy or equivalent, then the logical expression takes one of the following

forms:

forAll ?v1 ,...,? vn (R[p1 hasValue ?v1 ,..., pn hasValue ?vn]
impl lexpr(?v1,...,?vn) )

forAll ?v1 ,...,? vn ( R(?v1 ,...,? vn)
impl lexpr(?v1,...,?vn) )

where lexpr(?v1,...,?vn) is a logical expression with precisely ?v1,...,?vn as

its free variables and p1,...,pn are the names of the parameters of the relation.

3.6 Functions

A function is a special relation, with a unary range and a n-ary domain (parame-

ters inherited from relation), where the range specifies the return value. Function

can be used, for instance, to represent and exploit built-in predicates of common

datatypes. Their semantics can be captured externally by means of an oracle, or
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it can be formalized by assigning a logical expression to the definedBy property

inherited from Relation.

The logical representation of a function is almost the same as for relations,

whereby the result value of a function (i.e. the value of a function term) has to

be represented explicitly: the function is represented by an (n+1)-ary predicate

symbol with named arguments (where n is the number of arguments of the func-

tion) where the identifier of the function is used as the name of the predicate. In

particular, the names of the parameters of the corresponding relation symbol are

the names of the parameters of the function along with one additional parameter

range for denoting the value of the function term with the given parameter val-

ues. If the parameters are not specified, the function is represented by a predicate

symbol with ordered arguments, and by convention the first argument specifies

the value of the function term with given argument values. The structure of the

logical expression defining a function is inherited from Relation augmented with

one additional parameter ”range”.

function kmToMiles
km ofType xsd:integer
range ofType xsd: integer
definedBy

forAll ?x,?y(
kmToMiles(km hasValue ?x, range hasValue ?y) equivalent

?y = (?.x ∗ 0.621371192).

kmToMiles is an example for a function that constructs the integer value

of miles corresponding to a given value in km. As with Relations, the name and

the parameters are defined. Within the logical expression, built-in functions are

used to perform operations on basic data types in this case, ∗ is used for the

multiplication of numbers.
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3.7 Instances

A concept represents a set of objects in a real or abstract world with a specific

shared property. The objects themselves are called instances. The description

of the single instances of a concept follows a common pattern: the signature

imposed by the concept definition.

Instances are either defined explicitly or by a link to an instance store, i.e., an

external storage of instances and their values. An explicit definition of instances

of concepts is as follows:

instance Innsbruck memberOf loc:location
locatedIn hasValue loc: austria

Besides the identifier of the instance (Innsbruck) the concept and the attribute

values are given. These values have to be compatible with the corresponding

type declaration in the concept definition.

Instances of relations (with arity n) can be seen as n-tuples of instances of

the concepts which are specified as the parameters of the relation.

In general, instances do not need to be specified using the explicit notation

presented above. Especially where a huge number of instances exist, a link to

a data store can be used [29]. Basically, the approach is to integrate large sets

of instances which already exist on some storage device by sending queries to

external storage devices or oracles.

3.8 Axioms

An axiom is considered to be a logical expression together with its non functional

properties. A detailed discussion of axioms can be found in Section 7. Examples

of logical expression have already been used and intuitively explained in the

examples above.
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4 Web services

The Web service element of WSMO provides a conceptual model (a meta model

in MOF terms) for describing in an explicit and unified manner all the aspects of

a Web service, including its non-functional properties, its functionality, and the

interfaces to obtain it. An unambiguous model of Web services with well-defined

semantics can be processed and interpreted by computers without human in-

tervention, enabling the automation of the tasks involved in the usage of Web

services e.g. discovery, selection, composition, mediation, execution or monitor-

ing.

A WSMO Web service is a computational entity which is able (by invocation)

to achieve a users goal. A service in contrast is the actual value provided by this

invocation. Thereby a Web service might provide different services, such as for

example Amazon can be used for acquiring books as well as to find out an ISBN

number of a book.

Note that in WSMO the interaction with a service can be accomplished by

using Web services in the WSDL [10] sense. However, we are not restricted to

WSDL, but can use other methods also to interact with the service.

Figure 3 below shows the core elements that are part of the description of a

WSMO Web service.

The main elements of a Web service description are: a capability describ-

ing the functionality of the Web service, and one or more interfaces in which

the choreography and the orchestration of the Web service are described. The

choreography specifies how the Web service achieves its capability by means of

interactions with its user - i.e. the communication with the user of the Web ser-

vice; the orchestration specifies how the service achieves its capability by making

use of other services - i.e. the coordination of other Web services.

More precisely, the WSMO Web service element is defined as follows:
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How the Web service 
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Fig. 3. WSMO Web service - general description.

Class webService
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, wwMediator}
hasCapability type capability multiplicity = single−valued
hasInterface type interface

The non functional properties of a Web service are aspects of the Web

service that are not directly related to its functionality; besides the non func-

tional properties presented in Section 3.1, they consist of Web service specific

elements like the following: Accuracy (the error rate generated by the Web ser-

vice), Financial (the cost-related and charging-related properties of a service

[36]), Network-related QoS (QoS mechanisms operating in the transport network

which are independent of the Web service), Owner (the person or organization

to which the Web service belongs), Performance (how fast a Web service re-

quest can be completed), Reliability (the ability of a Web service to perform its

functions, i.e. to maintain its Web service quality), Robustness (the ability of

the Web service to function correctly in the presence of incomplete or invalid

inputs), Scalability (the ability of the Web service to process more requests in a
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certain time interval), Security (the ability of a Web service to provide authenti-

cation, authorization, confidentiality, traceability/auditability, data encryption,

and non-repudiation), Transactional (the transactional properties of the Web

service), Trust (the trust-worthiness of the Web service), or Version5 . The non

functional properties are to be mainly used for the discovery and selection of Web

services; however, they contain information that is also suitable for negotiation.

Imported Ontologies are used to import the explicit and formal vocabulary

used in the specification of a Web service (see Section 3.2).

A Web service uses mediators in the following situations:

– when using heterogeneous terminologies and conflicts between them arise; in

these cases, a Web service can import ontologies using ontology mediators

(ooMediators), as explained in Section 3.3.

– when it needs to cope with process and protocol heterogeneity when inter-

acting with other Web services. In this case a wwMediators is used. For a

more detailed description of mediators, see Section 6.

The capability describes the real Web service provided e.g. booking of train

tickets. A more detailed description of capabilities is given in Section 4.1.

An interface describes the interface of the Web service to be used to achieve

the described Web service. Further details are given in Section 4.2.

4.1 Capability

The functionality offered by a given Web service is described by its capability;

it is expressed by the state of the world before the Web service is executed

and the state of the world after successful Web service provision. The Web

service capability is meant primarily for discovery and selection purposes i.e. the

5 For a detailed description of the non functional properties, see reference [41].
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capability is used by the requester to determine whether the Web service meets

its needs.

The definition of the capability is given below:

Class capability
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasSharedVariables type sharedVariables
hasPrecondition type axiom
hasAssumption type axiom
hasPostcondition type axiom
hasEffect type axiom

The set of non-functional properties that can be attached to a capability

is the one presented in Section 3.1. Imported Ontologies and used mediators

are defined as in Section 3.2 and Section 3.3 respectively.

Shared Variables represent the variables that are shared between of precon-

ditions, postconditons, assumptions and effects. They are universally quantified

variables in the formula that concatenates assumptions, preconditions, postcon-

ditions, and effects.

If ?v1,...,?vn are the shared variables defined in a capability, and pre(?v1,...,?vn),

ass(?v1,...,?vn), post(?v1,...,?vn) and eff(?v1,...,?vn), are used to

denote the formulae defined by the preconditions, assumptions, postconditions,

and effects respectively, then the following holds:

forAll ?v1 ,...,? vn ( pre(?v1 ,...,? vn) and ass(?v1 ,...,? vn)
implies post(?v1 ,...,? vn) and eff (?v1 ,...,? vn) ) .

In our example, for two shared variables we will use:

sharedVariables ? trip , ?creditCard

The ?trip shared variable will be used to relate preconditions and postcondition-

s/effects and the ?creditCard will be used to relate precondition/assumptions

and effects.
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Preconditions, in the description of the capability, specify the required state

of the information space before the Web service execution; i.e. they specify what

information a Web service requires, in order to provide its value. Preconditions

constrain the set of states of the information space such that each state satisfying

these constraints can serve as a valid starting state (in the information space)

for executing the Web service in a defined manner.

We extend the already described example and use the ontology presented in

Section 3; in addition we reuse an ontology about purchases6 which is assumed

to be imported, and for brevity we assume po and loc as namespace prefixes. The

following example presents a precondition saying that the information the Web

service accepts must be an instance of the trip concept. A trip is described by its

start and end locations, and its price. As restriction, the values of its origin and

destination have to be in Italy or in Austria. Moreover a credit card is required

for successful provision of this service.

precondition
axiom preconditionBooking
definedBy

exists ? origin , ? destination
(? trip [

origin hasValue ?origin ,
destination hasValue ?destination

]memberOf trip and
(? origin . locatedIn = loc: austria

or ? origin . locatedIn = loc: italy ) and
(? destination . locatedIn = loc: austria

or ? destination . locatedIn = loc: italy ) and
?creditCard memberOf po:creditCard).}

Assumptions in the description of the capability describe the state of the

world which is assumed before the execution of the Web service. Otherwise, the

successful provision of the Web service is not guaranteed. Unlike preconditions,

assumptions are not necessarily checked by the Web service. We make this dis-

6 http://wsmo.org/ontologies/purchase/
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tinction in order to allow an explicit notion of conditions which exist in the real

world, but which exist outside the information space.

Within our example we present an assumption saying that the service will be

provided only if the provided credit card is valid. The validity of the credit card

is specified using the valid relation. Although assumptions are not necessarily

checked they can be helpful during the enactment of a service. E.g. When a

requester has checked successfully the precondition (according to its input) but

the service fails, the source of the failure will be stated in the assumptions.

With the formalized additional requirements a requester can then do additional

checks (for example with external services) to also address the requirements of

the assumptions.

assumption
axiom assumptionBooking

definedBy
valid (?creditCard ) .

PostConditions in the description of the capability describe the state of the

information space that is guaranteed to be reached after the successful execution

of the Web service; it also describes the relation between the information that

is provided to the Web service, and its results.

The following example presents a postcondition saying that the information

that the Web service provides is an instance of the confirmation concept, with

the condition that the item that is confirmed is the trip initially requested.

postcondition
axiom postconditionBooking

definedBy
exists ?confirmation

(?confirmation memberOf confirmation and
?confirmation . confirmationItem = ?trip) .
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Effects in the description of the capability describe the state of the world

that is guaranteed to be reached after the successful execution of the Web service

i.e. if the preconditions and the assumptions of the Web service are satisfied.

The following example presents an effect saying that, after the execution of

the Web service, the cost of the trip will be deducted from the balance of the

credit card given as input.

effect
axiom effectBooking

definedBy
?creditCard .po:balance =

?creditCard .po: initialBalance − ?trip . tripPrice .

Intuitive Semantics: Although we do not formally define them, we make the

following intuitive assumptions about the semantics of Preconditions, Assump-

tions, Postconditions and Effects. Let PRE(?x1, . . . , ?xn), POST (?x1, . . . , ?xn),

ASS(?x1, . . . , ?xn), and EFF(?x1, . . . , ?xn) be the formulae in the definedBy

part of the respective description, with free variables in {?x1, . . . , ?xn}. Slightly

’abusing’ a situation calculus style notation (cf. for instance [39]), given the state

s0 before executing the Web service and do(service, s0) the state after executing

the Web service, we could write down the relation between these formulae as

follows:

∀?x1, . . . , ?xn holds(PRE(?x1, . . . , ?xn) ∧ ASS(?x1, . . . , ?xn), s0)

→holds(POST (?x1, . . . , ?xn) ∧ EFF(?x1, . . . , ?xn), do(service, s0))

Note that this implies that using the same free variables within different parts

of the capability means referring to the same entity.
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4.2 Interfaces

An interface describes how the functionality of the Web service can be achieved

(i.e. how the capability of a Web service can be fulfilled) by providing a twofold

view of the operational competence of the Web service:

– choreography decomposes a capability in terms of interaction with the Web

service.

– orchestration decomposes a capability in terms of functionality required from

other Web services.

This distinction reflects the difference between communication and cooperation.

The choreography defines how to communicate with the Web service in order to

consume its functionality. The orchestration defines how the overall functionality

is achieved by the cooperation of more elementary Web service providers.

The Web service interface is meant primarily for behavioral description pur-

poses of Web services and is presented in a way that is suitable for software

agents to determine the behavior of the Web service and reason about it; it

might be also useful for discovery and selection purposes and in this description

the connection to some existing Web services specifications e.g. WSDL [10] could

also be specified.

The definition of an interface is given below:

Class interface
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type ooMediator
hasChoreography type choreography
hasOrchestration type orchestration

The set of non functional properties that can be attached to an interface

is the one presented in Section 3.1. Imported Ontologies and used mediators

are defined as in Section 3.2 and Section 3.3 respectively.

26



Choreography provides the necessary information to communicate with the

Web service. From a business-to-business perspective, the choreography can be

split into two distinct choreographies:

– execution choreography - defines the interaction protocol for accessing a Web

service.

– meta choreography - defines the interaction protocol for negotiating an agreed

service and for monitoring the agreed service level agreement during the ex-

ecution of a service.

The general model for representing choreographies is a state-based mechanism

and is inspired by the Abstract State Machines [22] methodology. ASMs have

been chosen as underlying model of choreography and orchestration for the fol-

lowing three reasons:

– Minimality: ASMs provide a minimal set of modeling primitives, i.e., enforce

minimal ontological commitments. Therefore, they do not introduce any ad

hoc elements that would be questionable to be included into a standard

proposal.

– Maximality: ASMs are expressive enough to model any a spect around com-

putation.

– Formality: ASMs provide a rigid mathematical framework to express dynam-

ics.

A WSMO choreography defines a state signature that is given by elements

of the WSMO Ontology, and it remains unchanged during the execution of the

Web service, a state that is given by a set of instance statements, and guarded

transitions that express changes of states by means of rules, similar to ASM

transition rules. For a more detailed description of WSMO choreography see

reference [40].

27



Orchestration describes how the Web service makes use of other Web ser-

vices in order to achieve its capability. In many real scenarios a Web service is

provided by using and interacting with Web services provided by other appli-

cations or businesses. For example, the booking of a trip might involve the use

of another Web service for validating the credit card and charging it with the

correct amount. In that situation, the user of the booking Web service may want

to know with which other business organizations he is implicitly going to deal.

WSMO introduces the orchestration element in the description of a Web

service to reflect such dependencies. WSMO orchestration allows the use of stat-

ically or dynamically selected Web services. In the former case, a concrete Web

service will be selected at design time. In the latter case, the Web service will

only describe the goal that has to be fulfilled in order to provide its Web service.

This goal will be used to select at run-time an available Web service fulfilling it

(i.e. the Web service user could influence this choice).

5 Goals

Goals are used in WSMO to describe users’ desires. They provide the means to

specify the requester-side objectives when consulting a Web service, describing

at a high level a concrete task to be achieved.

Goals are representations of objectives for which fulfillment is sought through

the execution of Web services; they can be descriptions of Web services that

would potentially satisfy user desires.

Note that WSMO completely decouples the objectives a requester has i.e.

his goals, from the Web services that can actually fulfill such goals. Goals are

to be resolved by selecting from the available Web services whichever described

service provision best satisfies the goal (see [25] for more details).

The definition of a goal is given below:
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Class goal
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
usesMediator type {ooMediator, ggMediator}
requestsCapability type capability multiplicity = single−valued
requestsInterface type interface

Given the fact that a goal can represent the Web service that would poten-

tially satisfy the user desires, the set of non-functional properties that can

be attached to a goal is similar to the one attached to Web services (see Section

4). An extra non-functional property, the Type of Match, can be attached to a

goal, which represents the type of match desired for a particular goal (under

the assumption of a set based modelling this can be an exact match, a match

where the goal description is a subset of the Web service description, or a match

where the Web service description is a subset of the goal description; for a de-

tailed discussion see reference [26]). A goal uses imported ontologies as the

terminology to define the other elements that are part of the goal as long as no

conflicts need to be resolved.

A goal uses mediators in the following situations:

– when using heterogeneous terminologies, conflicts between them might arise;

in these cases, a Web service can import ontologies using ontology mediators

(ooMediators), as explained in Section 3.3.

– when a goal reuses already existing goals, e.g. by refining them; for this,

ggMediators are used (they are explained in more detail in Section 6).

The requested Capability in the definition of the goal describes the capa-

bility of the Web services the user would like to have.

The Interface in the definition of the goal describes the interface of the Web

service the user would like to have and interact with.

The following example presents the goal of making a reservation for a trip

between Innsbruck and Venice. More precisely, the information the user is looking
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for is an instance of the confirmation concept, with the attribute value for the

confirmed item corresponding to the trip, having the corresponding attribute

values according to his specific desire.

goal havingATripConfirmation
requestsCapability tripConfirmationCapability

postcondition
axiom postconditionGoalBooking

definedBy
?confirmation memberOf confirmation and
? trip memberOf trip and
? trip . origin = loc: innsbruck and
? trip . destination = loc: venice and
?confirmation . confirmationItem = ?trip .

6 Mediators

Mediation is concerned with handling heterogeneity, i.e. resolving possibly occur-

ring mismatches between resources that ought to be interoperable. Heterogeneity

naturally arises in open and distributed environments, and thus in the applica-

tion areas of Semantic Web Services, WSMO defines the concept of Mediators

as a top level notion.

Mediator-orientated architectures as introduced in [46] specify a mediator as

an entity for establishing interoperability of resources that are not compatible a

priori by resolving mismatches between them at runtime. The aspired approach

for mediation relies on declarative description of resources whereupon mecha-

nisms for resolving mismatches work on a structural, semantic level, in order

to allow defining of generic, domain independent mediation facilities as well as

reuse of mediators. Concerning the needs for mediation within Semantic Web

Services, the WSMF [18] defines three levels of mediation:

1. Data Level Mediation - mediation between heterogeneous data sources;

within ontology-based frameworks like WSMO, this is mainly concerned with

ontology integration.
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2. Protocol Level Mediation - mediation between heterogeneous commu-

nication protocols; in WSMO, this mainly relates to choreographies of Web

services that ought to interact.

3. Process Level Mediation - mediation between heterogeneous business

processes; this is concerned with mismatch handling on the business logic

level of Web services (related to the orchestration of Web services).

WSMO Mediators create a mediation-orientated architecture for Semantic

Web Services, providing an infrastructure for handling heterogeneities that pos-

sibly arise between WSMO components and implementing the design concept

of strong decoupling and strong mediation. A WSMO Mediator serves as a

third party components that connects heterogeneous elements and resolves mis-

matches between them. The following specifies the general definition.

Class mediator
hasNonFunctionalProperty type nonFunctionalProperty
importsOntology type ontology
hasSource type {ontology, goal , webService, mediator}
hasTarget type {ontology, goal , webService, mediator}
hasMediationService type {webService, goal , wwMediator}

As a Mediator can be provided as a Web service, the same non functional

properties as for Web services are used (see Section 4 for what these non

functional properties consist of).

Imported Ontologies allows to import ontologies as the explicit and for-

mal terminology definitions for specifying mediators (see Section 3.2); especially,

ontologies that define languages for mediation definitions are imported.

The source denotes the heterogeneous resources that are connected by the

mediator and wherefore occurring heterogeneities are resolved; a mediator can

have several source components.
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The target denotes the element that receives the mediated source compo-

nents, so that mismatches are resolved. This corresponds to the ’usedMediators’

construct of WSMO elements that utilize a mediator.

The mediation service defines the mediation facility applied for resolv-

ing mismatches. A mediation service is comprised of mediation definitions that

resolve mismatches, and a facility of executing this mappings. The link to the

mediation service used by a specific mediator can be defined in different ways:

directly (i.e. explicitly linking to a mediation service); via a goal that specifies

the desired mediation facility which is then detected by a discovery mechanism;

or via another mediator when a mediation service is to be used that is not

interoperable with the mediator.

6.1 WSMO Mediator Types

In order to allow resolving of heterogeneities between the different WSMO com-

ponents, WSMO defines different types of Mediators for connecting the different

WSMO components and overcoming heterogeneities that can arise between the

components: OO Mediators, GG Mediators, WG Mediators, and WW Mediators.

All mediators are subclasses of the general WSMO Mediator class defined above,

whereby a prefix indicates the components connected by the mediator type. The

following explains the different WSMO Mediator types, while an example for

using the different mediator types is discussed in the next section.

OO Mediators: OO Mediators resolve mismatches between ontologies and pro-

vide mediated domain knowledge specifications to the target component. The

source components are ontologies or other OO Mediators that are heterogeneous

and to be integrated, while the target component is any WSMO top level no-

tion that applies the integrated ontologies. The following shows the description

specialization of an OO Meditator:
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Class ooMediator sub−Class mediator
hasSource type {ontology, ooMediator}

OO Mediators are used to import the terminology required for a resource

description whenever there is a mismatch between the ontologies to be used.

The mediation technique related to OO Mediators is mainly ontology integra-

tion, i.e. merging, aligning, and mapping ontology definitions in order to retrieve

integrated, homogeneous terminology definitions.

GG Mediators: A GG Mediator connects goals, allowing the creation of a

new goal from existing goals and thus defining goal ontologies. GG Mediators

are defined as:

Class ggMediator sub−Class mediator
usesMediator type ooMediator
hasSource type {goal, ggMediator}
hasTarget type {goal , ggMediator}

A GG Mediator might use an OO Mediator to resolve terminology mis-

matches between the source goals. Mediation services for GG Mediators reduce

or combine the descriptions of the source goals into the newly created target

goal.

WG Mediators: A WG Mediator links a Web service to a Goal, resolves

terminological mismatches, and states the functional difference (if any) between

both. WG Mediators are defined as follows:

Class wgMediator sub−Class mediator
usesMediator type ooMediator
hasSource type {webService, wgMediator}
hasTarget type {goal , ggMediator}

WG Mediators are used to pre-link Web services to existing Goals, or for

handling partial matches within Web service discovery. As within GG Mediators,

OO Mediators can be applied for resolving terminological mismatches.
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WW Mediators: A WW Mediator is used to establish interoperability between

Web services that are not interoperable a priori. Its definition in the language

of WSMO is as follows:

Class wwMediator sub−Class mediator
usesMediator type ooMediator
hasSource type {webService, wwMediator}
hasTarget type {webService, wwMediator}

A WW Mediator mediates between the choreographies of Web services that

ought to interact, whereby mediation might be required on the data, the protocol,

and the process level. As within the other WSMO mediator types, OO Mediators

can be applied for resolving terminological mismatches.

6.2 Example for Using WSMO Mediators

In order to explain the usage of the different WSMO Mediator types, we refer

to the example from the e-tourism domain introduced above. In this example,

the following WSMO resources are defined:

– four domain ontologies. The three ontologies mentioned above: a Trip Reser-

vation Ontology Ots, a Location Oloc, a Purchase Ontology Opo; and, in

addition, a Payment Ontology Opay

– a Goal G1 that specifies ”book a trip” which is used as a template for defining

a concrete Goal G2 that states ”book a trip from Innsbruck (Austria) to

Venice (Italy) on date 2004-12-30”, as stated in Section 5.

– a Web serviceWSvta VTA described in Section 4.1 offered by a travel agency

that provides an end-user Web service for booking trips for trains, planes,

and long-distance bus connections; this Web service uses another Web service

WSpayment for handling and processing payments.

Figure 4 shows the connections between the resources of this example. In the

figure, full arrows to a mediator denote the sources (whereas full arrows to a
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goal or a Web service denote ontology import) and dashed arrows the targets of

the used mediators, with explanations below.

Fig. 4. WSMO Mediators - Usage Example

In order to define the Goal G1 and the Web service WSvta, the three domain

ontologies Ots, Oloc, and Opo are used as exemplified in the preceding sections.

As there are no terminological mismatches to be resolved, no mediator is needed.

Then, a WG Mediator WGM connects G1 and WSvta, whereby the information

space is reduced to train trips only (the Web service offers trip booking for several

means of transport, while G1 just requests a trip). A GG Mediator GGM defines

that G2 is derived from G1 by inheriting all description notions and refining the

objective specification to a concrete trip from Innsbruck to Venice on 2004-12-30;

also, the WG Mediator WGM holds between WSvta and G2 as it is inherited

from G1.

The WSvta defines in its orchestration the usage of a third party Web ser-

vice WSpayment for processing online payment. The Web service description of

WSpayment uses a different domain ontology Opay; in order to resolve the ter-

minological interoperability between WSvta and WSpayment, an OO Mediator
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OOM resolves the mismatches between Opo used by WSvta and Opay used by

WSpayment; this OO Mediator is used within a WW Mediator WWM that con-

nects both Web services and, in addition, resolves possibly occurring mismatches

on the protocol or process level.

This example exposes the need for different mediator types in order to estab-

lish interoperability in open and distributed environments. A mediator serves as

a third party component that connects source elements and resolves mismatches

between them, so that the target component receives homogeneous, mediated

elements by usage of a mediator. Mediation definitions and execution facilities

for these are provided by mediation services that are executed when invoking

a mediator. The different mediator types allow to resolve heterogeneities that

can appear between the different WSMO elements. OO Mediators are used to

ensure semantic interoperability, while the other mediator types allow handling

heterogeneities that can specifically occur between their respective source com-

ponents: GG and WG Mediators support compatibility establishment between

Goals and Web Services, and WW Mediators allow establishing interoperability

of Web Services with respect to their service interfaces.

7 A Language for defining formal Statements in WSMO

For writing down WSMO descriptions of Web services, goals, ontologies and to

some extend mediators, we have designed a formal language called WSML [11].

We have already seen sample fragments of this language in the previous sections.

The correspondence with the conceptual model for the presented fragments is

mostly self-explanatory since we used a human-readable syntax of WSML. More

precisely, WSML is a family of formal description languages, that can be used for

the precise specification of the single elements in the WSMO framework. Since

this article aims to describe the conceptual model underlying our approach, we do
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not describe the WSML family in-depth here for the sake of space restriction. The

detailed semantics and different syntaxes (including an XML exchange syntax)

of the variants of WSML are defined in [12,11].

However, some more detailed comments on the logical expressions inside ax-

ioms used almost everywhere in the WSMO model to capture specific nuances

of meaning of modeling elements are in order. In the following, we give a def-

inition of the syntax of an expressive formal language in the WSML family of

languages that can be used for specifying these logical expressions. The language

defined here basically is a first-order language, similar to First-order Logics [16]

and Frame Logic (F-Logic, resp.) [28]. In contrast to classical First-order Logic,

we use a language that provides object-oriented and frame-based modelling con-

structs which we believe is more suitable for modelling and knowledge represen-

tation for people with some background in computer science and programming.

Many things that can directly be expressed in our language, e.g. the subconcept

relation, must (and can) be artificially encoded in First-order Logic. Thus, we do

not consider First-order logic as an adequate modelling language for our domain.

In particular, we exploit the advanced object-oriented modeling constructs of F-

Logic and reflect these constructs in our language. Another important aspect in

the design of the WSML family of languages was that the single languages had

to be based on existing Web technologies and standards, like URIs, namespaces,

etc. The reason for not directly using OWL stems from the fact that OWL was

designed as a language for the Semantic Web. It is suited for the annotation

of semi-structured information with machine processable semantics. However, it

was not developed with the design rationale in mind to define the semantics of

processes that require rich definitions of their functionality.

Section 7.1 gives the definition of the basic vocabulary and the set of terms

for building logical expression. Then we define in Section 7.2 the most basic
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formulae, the so-called atomic formulae. Based on atomic formulae and terms

we can eventually define the set of logical expressions over a given vocabulary.

7.1 Basic Vocabulary and Terms

A language for defining statements about entities in a WSMO description basi-

cally is a set of expressions which is constructed from specific symbols according

to a set of rules. In this section we define this set of basic symbols called vocab-

ulary as well as the set of terms which are the most basic building blocks for

statements.

Uniform Resource Identifiers and QNames are used to identify entities [6].

Everything in WSMO is by default denoted by a URI, except when it is a

Literal, Variable or Anonymous Id. URIs can be expressed either as full URIs:

e.g. http://www.wsmo.org/2004/d2/ or using qualified Names (QNames)7 that

are resolved to full URIs using namespace declarations

Literals are used to identify values such as numbers by means of a lexical

representation. Anything represented by a literal could also be represented by

a URI, but it is often more convenient or intuitive to use literals. Literals are

either plain literals or typed literals. A Literal can be typed to a data type (e.g.

to xsd:integer) [23].

Variable Names denote variables. Variable names are strings that start with a

question mark followed by any positive number of symbols in {a-z,A-Z,0-9, ,-},
i.e. ?var or ?lastValue Of. Each variable name represents a distinct symbol that

can be used in vocabularies.

7 For more details on QNames, see reference [8].
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Anonymous Identifiers are used to denote objects that exist but do not need

an explicit identifier. They can be numbered ( #1, #2, ...) or unnumbered

( #). The same numbered Anonymous ID represents the same Identifier within

the same scope. Otherwise, Anonymous IDs represent different identifiers [49].

The concept of anonymous IDs is similar to blank nodes in RDF [23]. However

there are some differences. Blank nodes are essentially existentially quantified

variables, where the quantifier has the scope of one document, while anonymous

IDs are not existentially quantified variables, but constants. This allows two fla-

vors of entailment: strict and relaxed entailment [49]. The relaxed entailment

is equivalent to the behavior of blank nodes, while strict entailment is an iso-

morphic embedding, where named resource are mapped to identically named

resources and anonymous IDs to anonymous IDs. In addition the entailment of

proper instances is obtained by replacing one or more anonymous resources with

named resources. This way strict entailment allows for an easier implementation.

In addition, RDF defines different strategies for the union of two documents

(merge and union), whereas the scope of one anonymous ID is a logical expres-

sion and the semantics of anonymous IDs do not require different strategies for

a union of two documents or, respectively, of two logical expressions.

Definition 1. The vocabulary V of our language L(V ) consists of the following

symbols:

– A set of Uniform Resource Identifiers URI.

– A set of anonymous Ids AnID.

– A set of literals Lit.

– A set of variables names Var.

– A set of function symbols FSym which is a subset of URI.

– A set of predicate symbols PSym which is a subset of URI.
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– A set of predicate symbols with named arguments PSymNamed which is a

subset of URI.

– A finite set of auxiliary symbols AuxSym including (,),ofType,ofTypeSet,

memberOf,subConceptOf,subRelationOf ,hasValue,hasValues,false,true,[,].

– A finite set of logical connectives and quantifiers including the usual ones

from First-Order Logics, i.e. and,or,not, implies,impliedBy,equivalent,

forAll,exists.

– All these sets are assumed to be mutually distinct (as long as no subset

relationship has been explicitly stated).

– For each symbol S in FSym, PSym or PSymNamed, we assume that there is

a corresponding function arity(S) defined which gives a non-negative integer

specifying the number of arguments that are expected by the symbol S when

building expressions in our language.

– For each symbol S in PSymNamed, we assume that there is a corresponding

set of parameter names parNames(S) defined, which gives the names of the

single parameters of the symbol that have to be used when building expressions

in our language using these symbols.

As usual, 0-ary function symbols are called constants. 0-ary predicate symbols

correspond to propositional variables in classical propositional logic.

Based on a given vocabulary V we can define the set of terms Term(V )

which can be constructed from V . In general, terms can be used to describe

computations in some domain. An additional interpretation of terms is that

they denote objects in some universe and thus provide names for entities in

some domain of discourse.

Definition 2. Given a vocabulary V, we can define the set of terms Term(V)

as follows:
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– Any identifier u ∈ URI is a term in Term(V).

– Any anonymous Id i ∈ AnID is a term in Term(V).

– Any literal l ∈ Lit is a term in Term(V).

– Any variable v ∈ V ar is a term in Term(V).

– If f is a function symbol from FSym with arity(f) = n and t1, . . . , tn are

terms, then f(t1, . . . , tn) is a term in Term(V).

– Nothing else is a term.

As usual, the set of ground terms GroundTerm(V) is the subset of terms in

Term(V) which do not contain any variables.

7.2 Logical Expressions

We extend Definition 2 to the set L(V ) of logical expressions (or formulae, resp.)

in two steps: first, we define the set L0(V ) of simple logical expressions or atomic

formulae which can be considered as the most basic expressions for representing

statements. Then, we extend this set to complex logical expressions which give

enough expressivity and freedom to ensure applicability of the languages L(V )

to a wide variety of domains.

Definition 3. The set of simple logical expression in L(V) is inductively defined

by

– If p is a predicate symbol in PSym with arity(p) = n and t1, . . . , tn are terms

in Term(V), then p(t1, . . . , tn) is a simple logical expression in L(V) .

– If r is a predicate symbol with named arguments in PSymNamed with arity(p)

= n, parNames(r) = p1, . . . , pn and t1, . . . , tn are terms in Term(V), then

r[p1 hasValue t1,. . ., pn hasValue tn] is a simple logical expression in L(V).

– true and false are simple logical expression in L(V).

– If P, A, T are terms in Term(V), then P [A ofType T ] is a simple logical

expression in L(V).
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– If P, A, T1, . . . , Tn (with n ≥ 1) are terms in Term(V), then P [A ofTypeSet

(T1, . . . , Tn)] is a simple logical expression in L(V).

– If O, T are terms in Term(V), then O memberOf T is a simple logical ex-

pression in L(V).

– If C1, C2 are terms in Term(V), then C1 subConceptOf C2 is a simple

logical expression in L(V).

– If R1, R2 are both predicate symbols in PSym or both predicate symbols in

PSymNamed with the same signature, then R1 subRelationOf R2 is a simple

logical expression on L(V).

– If O, V, A are terms in Term(V), then O[A hasValue V ] is a simple logical

expression in L(V).

– If O, A, V1, . . . , Vn (with n ≥ 1) are terms in Term(V), then O[A hasValues

{V1, . . . , Vn}] is a simple logical expression in L(V).

– If T1 and T2 are terms in Term(V), then T1 = T2 is a simple logical expres-

sion in L(V).

– Nothing else is a simple logical expression.

The set of simple logical expressions is denoted by L0(V ).

The intuitive semantics for simple logical expressions is as follows:

– The semantics of predicates in PSym is the common one for predicates in

First-Order Logics, i.e. they denote basic statements about the elements of

some universe which are represented by the arguments of the symbol.

– Predicates with named arguments have the same semantic purpose but in-

stead of identifying the arguments of the predicate by means a fixed order,

the single arguments are identified by a parameter name. The order of the

arguments does not matter here for the semantics of the predicate but the

corresponding parameter names. Obviously, this has consequences for unifi-

cation algorithms.
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– true and false denote atomic statements which are always true (or false,

resp.).

– C[A ofType T ] defines a constraint on the possible values that instances of

class C may take for property A to values of type T . Thus, this is expression

is a signature expression.

– The same purpose has the simple logical expression C[A ofTypeSet (T1, . . . , Tn)].

It defines a constraint on the possible values that instances of class C may

take for property A to values of types T1, . . . , Tn. That means all values of

all the specified types are allowed as values for the property A.

– O memberOf T is true iff element O is an instance of type T , that means the

element denoted by O is a member of the extension of type T .

– C1 subConceptOf C2 is true iff concept C1 is a subconcept of concept C2,

that means the extension of concept C1 is a subset of the extension of concept

C2.

– Similarly for R1 subRelationOf R2.

– O[A hasValue V ] is true iff the element denoted by O takes value V under

property A.

– Similarly for the simple logical expression O[A hasValues V1, . . . , Vn]: The

expression holds if the set of values that the element O takes for property

A includes all the values V1, . . . , Vn. That means the set of values of O for

property A is a superset of the set {V1, . . . , Vn}.
– T1 = T2 is true iff both terms T1 and T2 denote the same element of the

universe.

Finally, we extend the set L0(V ) of simple logical expressions over vocabulary

V to the set of logical expression L(V ).

Definition 4. The set L(V ) of logical expressions (or formulae) over vocabulary

V is inductively defined as follows:
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– Every simple logical expression s ∈ L0(V ) is a logical expression in L(V).

– If L is a logical expression in L(V) , then not L is a logical expression in

L(V).

– If L1 and L2 are logical expressions in L(V) and op is one of the logical

connectives in {or,and,implies,impliedBy, equivalent}, then L1 op L2 is

a logical expression in L(V).

– If L is a logical expression in L(V), x is a variable from Var and Q is a

quantor in {forAll,exists}, then Qx(L) is a logical expression in L(V).

– Nothing else is a logical expression in L(V).

The intuitive semantics for complex logical expressions is as follows:

– not L is true iff the logical expression L does not hold

– or,and,implies, equivalent,impliedBy denote the common disjunction,

conjunction, implication, equivalence and backward implication of state-

ments

– forAll x (L) is true iff L holds for all possible assignments of x with an

element of the universe.

– exists x (L) is true iff there is an assignment of x with an element of the

universe such that L holds.

Notational conventions. For notational convenience, we introduce the follow-

ing set of abbreviations and conventions.

We use a precedence order < on logical connectives as follows (where op1 <

op2 means that op2 binds stronger than op1): implies , equivalent,impliedBy

< or, and < not. The precedence order can be exploited when writing logical

expressions in order to prevent extensive use of parenthesis. If there are am-

biguities in evaluating an expression, parenthesis must be used to resolve the

ambiguities.
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The terms O[A ofTypeSet (T )] and O[A hasValues V ] (that means for the

case n = 1 in the respective clauses above) can be written in simplified form

by omitting the parenthesis. A logical expression of the form false impliedBy

L (commonly used in Logic Programming systems for defining integrity con-

straints) can be written as constraint L.

We allow the following syntactic composition of atomic formulas as a syn-

tactic abbreviation for two separate atomic formulas: C1 subConceptOf C2 and

C1[A op V ] can be syntactically combined to C1[A op V ] tt subConceptOf C2.

Additionally, for the sake of backwards compatibility with F-Logic, we allow

the following notation for the combination of the two atomic formulae as well:

C1 subConceptOf C2[A op V ]. Both abbreviations stand for the set of the two

single atomic formulae. The first abbreviation is considered to be the standard

abbreviation for combining these two kinds of atomics formulae.

Furthermore, we allow path expressions as a syntactical shortcut for nav-

igation related expressions: p.q stands for the element which can be reached

by navigating from p via property q. The property q has to be a non-set-valued

property (hasValue). For navigation over set-valued properties (hasValues), we

use a different expression p..q. Such path expressions can be used like a term

wherever a term is expected in a logical expression.

Semantically, the various modeling elements of ontologies as defined in Sec-

tion 3 can be represented as follows: concepts can be represented as terms, rela-

tions as predicates with named arguments, functions as predicates with named

arguments, instances as terms and axioms as logical expressions.

For further details and a precise account to the definition of the semantics

of the languages L(V ), see reference [12]. Furthermore, [12] identifies several

tractable subsets and extensions of the basic language L(V ) that we have defined

here.
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8 Related Work

Other major initiatives in the area of Semantic Web Service are OWL-S, METEOR-

S, and IRS-II. OWL-S [43], part of the DAML program8, is an ontology for ser-

vice description based on the Web Ontology Language (OWL) [13]. The OWL-S

ontology consists of the following three parts: a service profile for advertising

and discovering services; a process model, which describes a service’s operation

in detail; the grounding, which provides details on how to interoperate with a

service, via messages. The vocabulary defined by OWL-S may be used to provide

semantic annotations of services, and automatic agents may process this infor-

mation. The following major differences arise between OWL-S and WSMO: in

OWL-S the language specification layers are not clearly separated using an MOF

style; OWL-S relies on OWL combined with different notations and semantics

for expressing conditions, but combinations with SWRL [24] or the syntactical

framework of DRS [32] lead to undecidability problems or leave the semantics

open, respectively, and when combining OWL with KIF [15] it is not clear how

both interact, while WSMO directly provides a family of (properly) layered logi-

cal languages which combines conceptual modelling with rules. The various lan-

guages [11] (which have not been discussed in this article in detail) of the WSML

family of ontology languages provide different expressiveness and different com-

putational guarantees; these ontology languages are based to a large extend on

research in the field of deductive databases. As a consequence, one particularly

relevant reasoning task for the Semantic Web and its applications, namely query

answering can be solved efficiently for the less expressive languages. Other rea-

soning tasks like logical entailment or satisfiability checking are decidable for

some of the languages in the family but are undecidable for the most expres-

sive ones as well. However, for concrete applications one can select the language

8 http://www.daml.org/
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which is adequate with respect to the needed expressiveness and computational

characteristics. WSMO orchestrations describe what other Web services have to

be used or what other goals have to be fulfilled to provide a higher level service,

while OWL-S does not model this aspect; WSMO allows the definition of mul-

tiple interfaces and, therefore, choreographies for a Web service, while OWL-S

only allows a single service model for a Web service i.e. a unique way to interact

with it; OWL-S uses a single modelling element for representing requests and

services provided, while WSMO explicitly separates them by defining goals and

Web service capabilities; OWL-S does not explicitly consider the heterogeneity

problem in the language itself, treating it as an architectural issue i.e. mediators

are not an element of the ontology but are part of the underlying Web service

infrastructure [37].

METEOR-S9 aims at integrating Web service technologies such as Business

Process Execution Language for Web services (BPEL4WS) [2], Web Service

Description Language (WSDL) [10] and Universal Description, Discovery and

Integration (UDDI) [5] with Semantic Web technologies in order to automate

the tasks of publication, discovery, description, and control flow of Web services.

Compared to WSMO, METEOR-S follows a much more technology centered

approach, not providing a conceptual model for the description of Web services

and their related aspects.

The Internet Reasoning Service II (IRS-II) [34] is a Semantic Web Services

framework, which allows applications to semantically describe and execute Web

services. Compared to IRS-II, WSMO focuses more on the description elements

that are needed to deal with Semantic Web Service. Conceptually, WSMO and

IRS-II are not too different in the sense that both have common roots in UPML

[19]. IRS-II and WSMO are expected to converge as future versions of IRS are

planned to be WSMO compliant.
9 http://lsdis.cs.uga.edu/Projects/METEOR-S/
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9 Conclusions and Outlook

Semantic Web Services constitute one of the most promising research direc-

tions to improve the integration of applications within and across enterprise

boundaries. In this context, WSMO aims to provide the conceptual and tech-

nical means to realize Semantic Web Services, improving the cost-effectiveness,

scalability and robustness of current solutions.

The ontology presented in this paper provides the core elements that are

needed to represent Semantic Web Services and related issues: ontologies, that

provide the common terminology used by other WSMO elements, Web services

which provide access to services that, in turn, provide some value in a domain,

goals that are a description of problems that should be solved by Web ser-

vices, and mediators, which deal with interoperability problems between differ-

ent WSMO elements. For defining logical statements in WSMO we introduce a

logical language.

In total, we believe that our framework consisting of an ontology and the

language for describing Web services semantically sets a solid basis for solving the

research issue on Semantic Web Services. A tutorial on WSMO, which explains

WSMO in more depth can be found in the WSMO Primer [17]. Several use cases

demonstrating how to use WSMO in a real-world setting can be found in the

WSMO Use Case Modeling and Testing documents [42], use cases ranging from

applications in travelling domain to applications in health domain (like one of the

use cases of the EU funded project COCOON [44]). For the different subsets of

the language for defining WSMO annotated Web services we refer to the WSML

Family of Representation Languages [12]. A logical framework for Web service

discovery in WSMO has been defined in [25].

Apart from theoretical results and investigations on how to apply WSMO

in the usage process of Semantic Web Services [27,3,30,37,31,33,26,14] at the
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current state, already a set of WSMO compliant tools have been developed

or are under development: WSMX10 - an execution environment for dynamic

matchmaking, selection, mediation and invocation of Semantic Web Services

based on WSMO, IRS-III11 - a platform and infrastructure for creating WSMO-

based Semantic Web Services, SWWS Studio12 and the WSMO Studio 13 -

WSMO compliant editors, wsmo4j14 - an API and a reference implementation

for building Semantic Web Services applications compliant with WSMO in Java.

Web Service Modeling Ontology, driven by the SDK cluster15, is being de-

veloped and adopted in several large scale research projects, where a number

of international partners fruitfully contributed to its current state. Currently

WSMO and its related specifications are being submitted for standardization to

the World Wide Web Consortium16 and is expected to have a high impact in

the development of Semantic Web Services.
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