
Semantic Web Fred – Automated Goal Resolution on the Semantic Web

Michael Stollberg1, Dumitru Roman1, Ioan Toma1, Uwe Keller1, Reinhold Herzog2, Peter Zugmann2,
Dieter Fensel1

 1DERI – Digital Enterprise Research Institute
University of Innsbruck, Austria

{michael.stollberg, dumitru.roman, ioan.toma, uwe.keller}@deri.at
2Net Dynamics Internet Technologies GmbH & Co KG

Vienna, Austria
{reinhold.herzog, peter.zugmann}@netdynamics-tech.com

Abstract

Semantic Web Fred, SWF for short, is a context-

independent, goal-driven system for automated execution
of tasks that are delegated to electronic representatives
along with dynamic service usage. A task is assigned to
an agent for automated resolution, represented as a Goal.
This is used to determine potential partners for collabora-
tive task resolution, and for discovery of suitable goal-
resolving services that can be internal implementations as
well as external Semantic Web Services. The SWF tech-
nology integrates agent technology, ontologies, and Se-
mantic Web Service technologies – the technological
building blocks identified for the Semantic Web – into a
coherent system. This paper describes the architecture of
SWF, explains the mechanisms for establishing automated
and cooperative goal resolution, and the alignment of
SWF with the Web Service Modeling Ontology WSMO, a
well-structured overall framework for Semantic Web Ser-
vices. We also outline the contribution of SWF to the de-
velopment of Semantic Web technologies.

1. Introduction

The objective of the Semantic Web is to develop en-
hanced information processing technologies for the Inter-
net. Key technologies have been identified with different
functional purposes: ontologies for semantically enhanced
information exchange over the web between different
agents (which can be individuals, organizations, or ma-
chines), Web Services for reuse and interoperability of
computational functionality over the web, and agent tech-
nology for automated execution of tasks [2]. In order to
exploit the full potential of Semantic Web enabled appli-
cations, these technologies have to be combined into co-
herent frameworks, utilizing the specific functional bene-
fits of each technology. At this point in time, numerous
research and development efforts are concerned with de-
veloping technologies for the Semantic Web, whereby
only a few address the challenge of an integrated ap-
proach.

Semantic Web Fred combines agent technology, on-
tologies and Web Services into a goal-driven approach for
resolution of tasks by services, applying emerging tech-
nologies for Semantic Web Services. Agents, called Freds
in the system, interact in order to perform tasks automati-
cally on behalf of their owners. Therefore, Freds have to
find appropriate cooperation partners, as well as the com-
putational resources for automated task resolution. With
regard to service-oriented architectures as envisioned for
Semantic Web Services [6], the main building blocks of
SWF are Goals and Services: a Goal represents a task that
a Fred has been assigned, and a Service is a computa-
tional resource that allows automated resolution of Goals.
Services to be used in the system can be internal imple-
mentations, processes, and external, semantically de-
scribed Web Services. Ontologies are used as the data
model throughout the whole system, providing machine-
processable terminology used in all other components.
The objective of the SWF project is to develop advanced
mechanisms for cooperative goal resolution, thereby pro-
viding an integrated system that combines the key tech-
nologies of the Semantic Web into a coherent framework.

The starting position of the SWF project is the FRED
platform, developed by Net Dynamics. The FRED system
is an environment for agent-based applications that sup-
port delegation of tasks to electronic representatives. Its
main building blocks is at first the FredBase as the agent
runtime environment, consisting of Meeting Rooms
wherein interactions between agents (Freds) take place,
management facilities for Freds, and interfaces for con-
nection to other systems. The second one is the Smart
Object ontology technology: ontologies are transformed
into Java Objects in order to allow usage of conventional,
sophisticated technologies for ontology data usage and
management. The third building block is a goal-driven
technology for service resolution, meaning that a Goal is
specified as the request for functionality that is resolved
by services available in the system. A complete descrip-
tion and analysis of the FRED system is provided in [24].
The aim of the SWF project is to extend the goal-driven
technology for service resolution with advanced mecha-
nisms and to align it with emerging technologies for Se-

mantic Web Services – with regard to the obvious simi-
larities in technological challenges, and in order to sup-
port Semantic Web technologies within SWF. As the
foundation for alignment with Semantic Web Service
technologies, SWF is based on the Web Service Modeling
Ontology WSMO, an initiative that aims at developing an
overall framework for Semantic Web Service description
and technologies. 1

The focus of this paper is to explain the SWF Frame-
work for automated and cooperative task resolution, with
special attention to how distinct technologies are arranged
into a coherent system as well as the approaches for tech-
nological realization of the components. The aim is to
point out how the key technologies for the Semantic Web
are combined in SWF as a substantial contribution to the
development of architectures and technologies for Seman-
tic Web applications.

The paper is structured as follows: Section 2 intro-
duces the design principles and the overall architecture of
SWF; Section 3 describes the SWF components and their
technological realization; on basis of this, Section 4 ex-
plains the mechanisms for automated and cooperative
goal resolution; Section 5 discusses the contributions to
Semantic Web development and positions SWF within
related work; finally, Section 6 concludes the paper and
points out directions for future development of SWF.

2. SWF Architecture

The following introduces the design principles under-
lying the SWF Framework, and explains the overall func-
tionality for automated, cooperative goal resolution.

2.1. System Design Principles

The traditional approach that dominated IT-system de-

sign over decades is the request-provider model: a request
carries the information of the service, invokes the service
and collects the result of the service. In order to overcome
the limitations in regard to support of the user perspective
and reusability of services, the “rational agent approach”
enforced in the AI-community introduces the notion of
goals. The major motivation for this novel approach is
that the user desire is decoupled from the resolving ser-
vices, and the connection is dynamically derived during

1 WSMO is the Semantic Web Services research effort of
the SDK-Cluster, a joined initiative of European research
around the Semantic Web (see www.sdk-cluster.org). The
aim of WSMO is to define an overall framework that cov-
ers relevant aspects for Semantic Web Services, and sub-
sequently develop technologies Semantic Web Services.
The conceptual foundation of WSMO is the Web Service
Modeling Framework WSMF [8]. See WSMO homepage
at: www.wsmo.org.

runtime by intelligent mechanisms [20]. This allows con-
text-independent architectures with maximal reuse of
existing computational resources. The technological chal-
lenge for such systems is an expressive, well-defined de-
scription language and, on this basis, a coherent frame-
work of mechanisms for goal resolution. An additional
challenge arising in open and de-centralized environments
like the Internet is heterogeneity, leading towards media-
tor-oriented architectures for resolving mismatches on a
syntactic, semantic, or behavioral level [27]. With respect
to this, WSMO envisions a goal-driven, mediator-oriented
approach for Semantic Web Services: inference mecha-
nisms for discovery, composition, and execution of Web
Services are based on a profound description framework
for Ontologies, Goals, Web Services, and Mediators as
the top-level components [8], [22].

Semantic Web Fred realizes the WSMO approach,
adding the notion of cooperative goal resolution. Accord-
ing to the paradigm of agents as autonomously acting
entities in a software environment and with regard to task
solving in real-world settings, more complex goals can
only be achieved in cooperation as needed facilities might
be held by different entities. Further, a cooperative goal
resolution will only take place if it is profitable for all
participants. In consequence, symmetry is a supplemen-
tary design paradigm of SWF: every acting entity in the
system has Goals to be resolved as well as Services that
provide the functionality the entity brings into a coopera-
tive goal resolution. The SWF architecture shown in
Figure 1 reflects this, with further explanations below.

 Figure 1: SWF Architecture

2.1. SWF Overall Workflow

Figure 1illustrates the structure of Freds, the compo-

nent repositories, and the architecture of the cooperative
goal resolution environment. For explaining the overall
functionality, we refer to the common example of pur-
chasing: a buyer wants to buy a chair, and a seller wants
to sell furniture (including chairs). These two goals can
only be achieved in a cooperation between the buyer and
seller, which is realized in SWF as follows.

Image that both parties are represented by Freds in the
system (Fred A as the buyer, Fred B as the seller), and
services for purchasing are available. At a certain point in
time, both create Goal Instances (the ball on top of a Fred-
box), indicating their desire to solve the Goal. Out of pos-
sibly several Freds in the system, so-called Goal-to-Goal
Discovery (short: GG Discovery) detects Fred A and Fred
B for cooperation by determining the compatibility of the
Goal Instances. Then, A and B have to find suitable ser-
vices that provide the specific functionalities needed for
cooperation. For instance, Fred B as the seller needs a
browsing facility for his product catalogue, ability to
place a contract of purchase, and a facility for receiving
payment; Fred A as the buyer needs the opposite facilities.
This is performed by Goal-to-Service Discovery (short:
GS Discovery) which detects appropriate services for each
Fred in the service repository, similar to Web Service
Discovery. In order to allow interaction of the services for
automated goal resolution, the services used by the coop-
eration partners have to be reconcilable with regard to
their external behavior (the external visible business proc-
esses) and the expected messaging sequence. Thus, the
third step in establishing cooperative goal resolution is
Service-to-Service Discovery (short: WW Discovery, for
societal reasons), establishing the behavioral compatibil-
ity of the services detected in GS Discovery. The result of
the three discovery mechanisms is a Cooperation Con-
tract that contains all information relevant for execution
of the cooperation (the Freds, the Goals, and the Services
to be used). Then, the cooperation partners are called into
a Meeting Room (see above), wherein this contract is
processed by the Service Execution component that han-
dles all execution-related aspects (errors, compensation,
etc.).

The goal resolution process is managed by the Goal
Solver: it controls the discovery mechanisms, including
iterations (e.g. re-call GG Discovery when GS Discovery
fails) and rollbacks when the execution of services fails; it
also monitors the resolution process of the Goal Instances
of the cooperation partners. Although the goal resolution
technology in SWF is designed for automated resolution
of cooperative goals in particular, Goals that do not need
cooperative resolution can be handled as well. Therefore,
a Fred is called in a Singleton Meeting where the required
services are executed without agent interaction.

This general overview reveals the design principles of
SWF – a goal-driven approach for de-coupling of request
and functionality, and the symmetry of Freds as the acting
entities in the system. Moreover, it emphasizes the simi-
larity of the SWF components and mechanisms with ap-
proaches currently considered for Semantic Web Ser-
vices. In order to illustrate SWF as an integrated agent
platform for the Semantic Web, the following sections
explain the technological realization of the distinct SWF
components and their interplay in more detail.

3. SWF Components

This section presents the different SWF components as
basis for the discussion of the SWF mechanisms for auto-
mated goal resolution. Apart from the technological
realization, we emphasize the demarcation of technolo-
gies for different functional purposes.

As the central components, we first discuss the de-
scription model and usage of Goals and Services. In order
to ensure conformity and interchangeability with other
Web Service-based applications, the SWF Goal and Ser-
vice Description Language is a specialization of the
WSMO description elements for Goals and Web Services
[22]. SWF uses WSML for modeling, a concise, platform-
neutral representation format for WSMO components
based on F-Logic [13] that can be transformed into differ-
ent backend technologies [16].

3.1. Goals

A Goal expresses a desire that a user delegates to a
Fred for automated resolution. When assigned to a Fred,
the information kept in the Goal is used to determine
potential cooperation partners and the SWF Services
needed to perform the resolution automatically.

The most important information of Goals is the speci-
fication of the desire, i.e. what the user wants to achieve.
This is modeled as an unambiguous ontology object with
regard to specified domain ontologies that restricts the set
of instances which can resolve the Goal. For instance, the
desire of Fred A in the example above would specify a
brown-colored, wooden chair with measures 50 x 100 x
60 cm. These restrictions might reflect only a subset of
the attributes of a chair in the referred ontology, but they
completely described the desire from the user’s perspec-
tive. If a service can return instances that are valid for
desire of the Goal, then this service can be used for exe-
cuting the goal resolution automatically (see section 4.2).
Goals are kept in the SWF Component Repository (see
section 3.3.4).

For managing and usage of Goals in SWF, additional
constructs are used that extend the notion of Goals in
WSMO (wherein a Goal models the desire only). The
following gives an overview of these constructs, explain-

ing their architectural denotation as well as their semantic
description elements.

3.1.1. Goal Schema. A Goal Schema defines the onto-
logical structure wherefrom Goal Instances are derived as
concrete expressions of a desire. Goal Schemas are pre-
defined in the system, and a task assigned to a Fred is a
Goal Instances created out of an existing Goal Schema.

A Goal Schema is equivalent to WSMO Goals, de-
scribed by the following elements:
non-functional properties. WSMO Core Properties,
based on the Dublin Core Metadata set [26]. This is in-
formation for managing items in the system, here: title,
creator, description, date, time, identifier, rights, version.
usedMediators. import of the ontologies used as termi-
nology definitions, and resolution of possible mismatches.
postcondition. ontological structure of the desire to be
achieved with conditions over this, as explained above.
effects. side-effects on the world that are expected to hold
after the Goal is solved.

3.1.2. Goal Instance. A Goal Instance is the concrete
expression of a desire, created by a Fred during runtime
by instantiating a Goal Schema (i.e. definition of specific
values for certain attributes of the ontology objects and
refinement of conditions defined in the Goal Schema). A
Goal Instance represents a task assigned to a Fred, and it
gets resolved in the goal resolution process. It might take
several cooperation meetings to resolve a Goal Instance.

A Goal Instance inherits the descriptive information of
the corresponding Goal Schema, instantiates the ontologi-
cal structures and refines the respective conditions, and
carries additional information needed for managing the
goal resolution process:
instanceOf. link to corresponding Goal Schema.
non-functional properties. in addition to those inherited
from Goal Schema: timeConstraints (time frame for reso-
lution), resourceConstraints (preferred cooperation part-
ners), goalResolutionConstraints (other user preferences).
owner. link to the Fred that created the Goal Instance.
submission. the information that will be handed over as
input to a service.
postcondition. instantiation of the Goal Schema postcon-
dition, with refinements.
effects. refined and extended from Goal Schema.
status. resolution process information, possible states:
open, processing, solved, cancelled, not solved.

3.1.3. Cooperative Goal. A Cooperative Goal describes a
Goal that has to be solved in cooperation of multiple part-
ners. It defines compatible Goals, i.e. the Goals that indi-
vidual entities carry as partners in cooperative goal reso-
lution. Referring to the example above, a Cooperative
Goal ‘purchase’ has the compatible Goals ‘buy chair’ held

by Fred A and ‘sell furniture’ held by Fred B. Thus, a Co-
operative Goal defines compatible cooperation roles on an
ontological level (see section 4.1).

Cooperative Goals are described by the following ele-
ments:
non-functional properties. same as for Goal Schemas.
compatibleGoals. links to the compatible Goal Schemas,
along with constraints on specific Goal Schemas (e.g.
cardinality constraints for the object of interest).
cooperativeGoalConstraints. conditions that resolve
structural mismatches between compatible Goal Schemas
(e.g. restricting the object of interests in compatible Goal
Schemas to an exact match).

3.2. SWF Services

The SWF Service Model is comprised of three differ-
ent service types that can be used for automated goal reso-
lution: (1) Plans are internal services implemented as Java
programs, normally used for simple functionalities; (2)
Processes are multi-step services wherein each activity
can be resolved arbitrarily by a Goal or another Service,
thus allow definition of complex, nested services; also (3)
external Web Services can be used, invoked via their
WSDL description. Each service type requires a different
execution technology: a JVM for Plans, a Process Engine
for Processes, and an execution facility for WSDL-
descriptions of external Web Services. These technologies
already exist in the FRED system, see [24].

From a user’s perspective, the service type and its
technological realization are not of interest; what is
needed is unambiguous information on what the service
provides and how it can be used. Thus, SWF Services are
described by a common description scheme of all types of
services, and the resolution of the service type is left for
service execution. SWF Services are described as WSMO
Services by the following notions: non-functional Proper-
ties (management information), a Capability as a func-
tional description, and an Interface that specifies the be-
havior interfaces of a service needed for service usage
[22]. The following explains the conceptual model and
the description elements of these notions.

Ontologies are used as terminology definitions in ser-
vice description via the usedMediators-construct as in
Goal Schemas. Services are kept in the SWF Component
Repository (see section 3.3.4).

3.2.1. SWF Service Capability. As a functional descrip-
tion, the Capability describes what the service does. It
defines the input required for the service, the result the
service returns when executed successfully, and different
conditions. The Capability of a Service serves as the in-
formation for detecting suitable services of a given Goal
in GS Discovery (see section 4.2).

The description elements for SWF Service Capabilities
coincide with those for WSMO Web Service Capabilities:
precondition. input required by the service along with
conditions.
assumptions. arbitrary constraints on state of the world
that has to hold before the service can be executed.
postcondition. result of the service in relation to the in-
put, and conditions over this.
effects. arbitrary constraints of the state of the world that
result as a change after execution of the service.

3.2.2. SWF Service Interface. This describes the behav-
ior of a Service, needed for service usage. WSMO distin-
guishes Choreography and Orchestration in a Web Ser-
vice Interface: the former describes the external visible
behavior as needed for using the Service; the latter de-
scribes the composition of several Web Services into the
functionality of the described service [22]. As Orchestra-
tion is realized by the processes in SWF and this informa-
tion is not relevant for service usage, only the Choreogra-
phy of a service is described in the SWF Interface.

The Choreography Interface of a single service de-
scribes its external visible behavior to allow interaction
with the service user. While a simple service behavior
consist of invocation and result communication only, the
Choreography of a service with a more complex behavior
describes those steps of the service’s business process
wherein interaction with the service user is required. For
instance, the selling service for Fred B in the example
above needs an acceptance notification form the user for
the contract of purchase before it can proceed with the
payment activity. Thus, the Choreography description of a
service is comprised of the externally visible activities
and transitions of its business process along with the mes-
saging sequence expected for each activity.

The underlying model of a SWF Service Choreography
Interfaces is that there is an invocation message at the
beginning of service-user interaction, and a result mes-
sage at the end. In between, there is an arbitrary exchange
of messages according to the external visible behavior of
the service. This individual Choreography Interface de-
scription is the basis for WW Discovery, wherein a global
interaction model for the services of cooperation partners
is determined.

Besides the behavior interface description, a Choreog-
raphy Interface comprises information on the physical
access to the Service, compensation information for alter-
native execution paths, the binding to the used communi-
cation protocol, and the resolution of the SWF service
type.

In accordance to Choreography Interface description in
WSMO, an SWF Service Interface is described by the
following elements:
invocationMessage. proposition of usage by service user,
including the input information required by the service.

resultMessage. notification of service finalization, hand-
ing over the result to the service user (output or error).
choreography. external visible behavior along with the
messaging sequence expected. According to Choreogra-
phy description in WSMO, activities and transitions are
described by common workflow patterns [28] in conjunc-
tion with communication patterns for describing the mes-
sages expected to be interchanged [20].
access. link to physical location of service.
binding. communication protocol of the service (sup-
ported protocols: FIPA, HTTP, SOAP).
compensation. alternative execution paths (other services
that return the same output).
serviceType. type of SWF Service, as explained above:
plan, process, webservice.

3.3. Other Components

The other SWF components are Freds, Ontologies,
Mediators, and the SWF Component Repository. We
briefly outline their technological realization in order to
complete the technical overview of the system.

3.3.1. Freds. A Fred is a software agent that acts as an
electronic representative on behalf of its owner. Goals can
be assigned a Fred for automated resolution, and a Fred
has usage permissions for Services existing in the system.

As stated above, the FredBase is the agent runtime envi-
ronment of the FRED system with efficient management
facilities for Freds. Interactions between Freds take place
in Meeting Rooms, wherein all computational resources
are available for Service Execution. We refer to [24] for
further information on the FRED agent technology.

3.3.2. Ontologies and Smart Objects. Ontologies are
transformed into Java Objects in the FRED system, so-
called Smart Objects. As exhaustively discussed in [24],
the expressiveness of Smart Objects for ontology repre-
sentation is comparable to OWL-DL. Smart Objects are
used as the data model throughout the whole SWF sys-
tem. The Smart Object technology also comprises facili-
ties for management, evolution, mismatch-handling, and
persistent storage for ontology data.

Import and export of ontology schema and instance data
to standard ontology languages (RDF and OWL) is per-
formed in the Ontology Tower, the central ontology man-
agement unit. Besides, conventional web content can be
imported into Smart Objects by semantic annotation on
basis of an existing ontology.

3.3.3. Mediators. Mediators are the central component in
WSMO for handling heterogeneity. In general, a WSMO
Mediator connects one or more sources components with
a target component, whereby optionally a mediation ser-
vices can be included for resolving possibly occurring

heterogeneities between the components. WSMO defines
four types of Mediators: OO Mediators connect ontolo-
gies and import them as terminology definitions into other
components, GG Mediators for connecting Goals, WG
Mediators connect Goals and Web Services, and WW
Mediators connect Web Services [22].

SWF applies the concept of WSMO Mediators, using
OO Mediators to import domain ontologies into compo-
nent descriptions, and the other mediator types within
specific discovery mechanisms. As the development of
mediation facilities is out of the scope of the SWF project,
existing Mediators are applied.

3.3.4. SWF Component Repository. This is an UDDI
registry which holds all SWF components, apart form
Freds. It realizes a hybrid architecture in order to com-
bines the benefits of central and peer-to-peer repositories.
Therein, the non-functional properties of each component
are mapped to equivalent UDDI information types and are
stored centrally in the registry, while the detailed seman-
tic descriptions are kept locally in a persistent repository
at the respective owner. Publishing and retrieval is sup-
ported by the regular UDDI functionalities [11].

 In order to support interchangeability, the SWF com-
ponent repository is aligned with the WSMO Registry
(which has the same architecture). For concurrent publish-
ing, SWF component descriptions are transformed into
the corresponding WSMO component description, facili-
tated by the fact that the SWF description language is a
specialization of WSMO.

4. SWF Mechanisms

After presenting the building blocks of SWF, this sec-
tion explains the mechanisms developed to establish
automated and collaborative goal resolution. We intro-
duce the steps successively, explaining the functionality
of each mechanism in the resolution process as well as the
approaches for matchmaking in the distinct discoverers.

4.1. GG Discovery

As the first step in the cooperative goal resolution, GG

Discovery detects potential cooperation partners by de-
termining the compatibility of their respective Goal In-
stances. The compatibility is given when the objects of
interest (i.e. the Goal postconditions) match, and when the
cooperation roles of the Goal Instance owners are com-
patible.

Figure 2 shows the structure of GG Discovery. A Co-
operative Goal defines compatible Goal Schemas, thus
specifying compatible cooperation roles and constituting a
pre-selection of possible cooperation partners at design
time. Optionally, a WSMO GG Mediator can be defined
that resolves mismatches between Goal Schemas that are
not compatible a priori. For checking the compatibility of

the objects of interest of Goal Instances created from
compatible Goal Schemas, the ontology objects defined in
the Goal Instances have to be either the same or be a su-
perset or subset of each other. The matchmaking between
Goal Instances is realized in the FOL-theorem-prover
VAMPIRE [19] by checking whether the Goal Instance of
the initiating Fred (Fred A is the figure) logically entails
the Goal Instances of Goal Schemas that are compatible
to the one of Fred A. The result of this mechanism is a set
of Freds (the Goal Instance owners) as potential partners
for cooperative goal resolution. For non-cooperative
goals, the GG Discovery step is skipped.

Figure 2: GG Discovery Overview

Three separate search engines initiate GG Discovery:
one explores the system for new Goal Instances created
by Freds permanently, the second one triggers GG Dis-
covery on basis of explicit events, and the third one initi-
ates GG Discovery dynamically during runtime, e.g. when
a new Goal Instance is created by a process. The separa-
tion of GG Discovery via Cooperative Goals at design
time and the compatibility check of Goal Instances at run-
time improves the performance this mechanism.

4.2. GS Discovery

The second step in the resolution process is GS Dis-
covery which detects suitable services for automated goal
resolution separately for each cooperation partner identi-
fied in GG Discovery. The result of GS Discovery is a set
of services that a partner can use for automated coopera-
tion. To use a service, a Fred needs to be either the owner
of the service or have appropriate usage permissions. GS
Discovery is analogous to Web Service Discovery, deter-
mining whether a service can fulfill the desire specified in
the Goal Instance. Figure 3 shows the structure of GS
Discovery with further explanations below.

Figure 3: GS Discovery Overview

For Fred A as one cooperation partner, the SWF Com-
ponent Repository is searched for suitable SWF Services.
The proof obligation for matchmaking between the Goal
Instance of Fred A and Service Capabilities as functional
descriptions of available Services is that under considera-
tion of all Ontologies and Mediators used in the Goal and
the Capability description, if the submission of the Goal
Instance satisfies the precondition and assumption of the
Capability, and if the Goal Instance postcondition implies
the Capability postcondition as well as if the Goal effects
imply the Capability effects, then that the Service matches
the Goal. For resolving partial Goal-Capability matches
into exact matches, a WSMO WG Mediator defines the
required reduction similar to the usage of GG Mediators
in GG Discovery. This approach is a specialization of the
Web Service Discovery defined in WSMO [12].

GS Discovery is realized by determining the logical
entailment of the Capability by the Goal, meaning that a
match is accomplished if the description elements of the
Capability are logical consequences of the corresponding
elements of the Goal. Similar to GG Discovery, the
matchmaking is realized in VAMPIRE. GS Discovery is
as well performed subsequently at design time and run-
time: when a new Goal Schema is created (design time), a
set of suitable services it detected. Out of this, a subset is
determined for specific Goal Instances during runtime.

4.3. WW Discovery

As the last step for establishing an automatically ex-
ecutable cooperation, WW Discovery determines the be-
havioral compatibility of the services detected separately
for each partner in GS Discovery. In order to allow auto-
mated interaction of services as the realization of coopera-
tive goal resolution, the Choreography Interfaces of coop-
eration partners have to be compatible with regard to be-
havioral models and messaging sequences. The result of
WW Discovery is a global interaction model of the part-
ners’ services that allows automated execution of the co-
operation.

Figure 4 illustrates the structure of WW Discovery for
two Freds (A and B) that have been determined as poten-
tial cooperation partners, and each of them has discovered
a set of possibly usable Services. The oval boxes repre-

sent the Choreography Interfaces with the external visible
behavior and the related messages.

Figure 4: WW Discovery Overview

Determining the compatibility of Choreography Inter-
faces consists of two aspects: first, the workflow of the
Service Choreographies have to compatible (process level
compatibility), and second the expected messaging se-
quence has to be compatible (protocol level compatibil-
ity). The former is considered to hold if either the process
models are the same (sequence of activities and transi-
tions), or if one of them subsumes the other. For the latter,
the Service Choreography Interfaces have to be symmet-
ric. This compatibility check works on the formal model
of Choreography Interface descriptions defined in [23]:
each Choreography Interface is represented in an Abstract
State Machine (ASM) [3], and their compatibility is de-
termined by proving that the ASM representation of a
service validates the ASM representation of a partner’s
service. For establishing a valid and deadlock-free inter-
action protocol for the services of cooperation partners, a
WSMO WW Mediator can be included that resolves mis-
matches on the process and protocol level.

4.4. Service Execution

When the three discovery mechanisms are completed

successfully, a Cooperation Contract is created. This con-
tains all information needed for automated execution of
the cooperative goal resolution: the Freds as the interact-
ing cooperation partners, their particular Goal Instances
that are to be resolved in the cooperation, and the Services
to be used along with the interaction model derived in
WW Discovery. Then, the Freds are called into Meeting
wherein the Cooperation Contract is executed.

The SWF Service Execution module resolves the type
of Service specified in the Grounding description, and
calls the respective execution environment (see above). It
monitors the execution process, including an error han-
dling framework. This identifies specific types of errors
(service not available, wrong or missing input, accessibil-
ity errors). If such an error occurs, the meeting for service

execution is re-scheduled and the Goal Instance status is
set to ‘cancelled’; for all other errors, the meeting is ab-
orted, and the Goal Instance status is set to ‘not solved’.
Also, alternative execution paths are conducted when a
service fails, if suitable compensation information is
specified in the service Grounding. When the service exe-
cution is completed successfully, the goal resolution is
finished. The processing status of the respective Goal
Instances is set to ‘solved’, and the Freds are withdrawn
from the meeting, taking over their next tasks.

In a FRED Meeting Room, the services communicate
via the FIPA ACL [7], while web protocols are used for
communicating with external resources (HTTP or SOAP).
The Meeting Room technology provides means for sched-
uling and managing meetings, described in [24].

5. Discussion and Related Work

The delineation of the SWF technology in the preced-

ing sections exposes several similarities and connections
to Semantic Web and Semantic Web Service technolo-
gies. This section reveals these, points out the contribu-
tion of SWF to the development of the Semantic Web,
and positions it within related work.

5.1. SWF as a Semantic Web Environment

To make the vision of the Semantic Web become real-
ity, the identified key technologies have to be integrated
into a coherent system in accordance to their functional
purposes and benefits. Apart from applying sophisticated
technologies for realization, the success criteria for Se-
mantic Web applications are support for reuse of and in-
terchange with external resources via standardized for-
mats, and employment of capable inference techniques for
advanced processing of semantically annotated informa-
tion [25].

The SWF technology presents such an integrated sys-
tem. Agents perform tasks automatically as electronic
representatives on behalf of their owner, interacting in a
stable and scalable runtime environment. The Smart Ob-
jects technology allows using ontologies as machine-
readable, semantically described terminology throughout
the whole system. It provides secure and performant man-
agement facilities as well as import and export of ontolo-
gies via standard ontology representation formats for in-
terchange with other Semantic Web enabled applications.
The goal resolution technology realizes a mediator-
orientated approach as envisioned for Semantic Web Ser-
vices, amending the notion of cooperative goal resolution
for more complex tasks. Reuse and interchangeability of
computational resources such as service descriptions, goal
specifications, and mediation facilities is supported by the
alignment of the SWF Component Repository with the
WSMO Repository, a general registry for Semantic Web
resources.

A major merit of WSMO is the definition of an unambi-
guous and well-structured framework for Semantic Web
Services, which is a prerequisite for effective inference
mechanisms like those for establishing cooperative goal
resolution in SWF. Although the matchmaking algorithms
are improvable with regard to their technical realization,
the SWF discoverers are concise inference mechanisms
based on a well-defined description language for Goals
and Services. The matchmaking facilities rely on ap-
proaches developed within WSMO, but their architectural
assimilation into the SWF goal resolution technology pre-
sents the realization of a goal-driven approach within dy-
namic service usage. Thus, the main contribution of SWF
to the development of Semantic Web Services technolo-
gies is the combination of emerging technologies into a
coherent, working system for automated goal resolution.

In conclusion, SWF presents a prototypical environment
for the Semantic Web that integrates key technologies
into a coherent framework, as it does not exist at this
point in time. The strong alignment with WSMO ensures
association with WSMO-based techniques as well as
compatibility with other WSMO-compliant applications.
For substantiation, the following compares our work with
related efforts.

5.2. Related Work

Working fields related to SWF are agent technologies
with support for the Semantic Web, overall frameworks
for Semantic Web Services, and approaches for inference
mechanisms to handle Semantic Web Services. We
briefly summarize promising efforts for each aspect, and
discuss benefits and shortcomings in relation to SWF.

‘TAGA – Travel Agent Game in Agentcities’
(http://taga.umbc.edu/) is research activity aiming at de-
velopment of an agent environment with support for the
Semantic Web. Based on a FIPA-compliant agent frame-
work, TAGA simulates the global travel market on the
Web [29] within Agentcities (a worldwide network of
agent platforms for intelligent service composition and
execution over the Internet, http://www.agentcities.org/).
In contrast to SWF, the TAGA system is an open envi-
ronment, but it does not provide support for ontology us-
age. Web Services usage is restricted to WSDL, and the
system does not provide means for dynamic service han-
dling. Other established FIPA-based agent platforms are
JADE [1] which applies ontologies as terminology defini-
tions, and ZEUS [5] that implements a goal-driven ap-
proach for task resolution. Similar to TAGA, the support
for Semantic Web resources in these systems is very lim-
ited.

 Concerning overall frameworks for Semantic Web Ser-
vices, the most relevant ones existing at this point in time
are OWL-S [17], successor of DAML-S Semantic Web
Services effort (http://www.daml.org/services/owl-s/), and
WSMO [22]. OWL-S defines an ontology system for de-

scribing Web Services, comprised of three top-level no-
tions: the Service Profile includes information for ‘service
advertisement’ which is used for Web Service Discovery;
the Service Model contains descriptive information on the
functionality of a service and its composition out of other
services, whereby the service functionality is conceived as
a process; the Service Grounding gives details of how to
access the service, mapping from an abstract to a concrete
specification for service usage. Although OWL-S serves
as a basis for various research and development activities,
it is heavily criticized for conceptual weaknesses and in-
completeness. Especially, the meaning of the OWL-S
description elements is not clearly defined, leading to
misinterpretations and incompatible models [14]. WSMO
aims at overcoming these deficiencies by providing an
unambiguous description framework for Semantic Web
Services. Furthermore, WSMO is not restricted to Web
Service description only, but includes additional top-level
notions: Goals for representing user desires in a service-
oriented architecture, and the concept of Mediators for
handling heterogeneity. Thus, WSMO provides a more
complete framework for aspects and challenges arising
within Semantic Web Services [9], which rationalizes the
choice for WSMO as the foundation of SWF.

Several approaches have been developed for Web Ser-
vices Discovery, applying reasoning technologies. For
example, [18] presents an approach based on subsumption
reasoning of requests and OWL-S Service Profiles. A
profile matches a request if all inputs and output of the
profile are equal to or subsume those of the request, ex-
tended with notions for handling partial matches. An
analogous approach applies DL subsumption reasoning
based on SHIQ(D), a Description Logic with a semantics
equivalent to OWL for ontology representation [15]. Al-
though these approaches are very similar to the one used
in GS Discovery (subsumption reasoning, handling of
partial matches), they naturally inherit the insufficiencies
of OWL-S for service description, as well as the absence
of a clear concept for handling partial matches. Besides,
both approaches only use T-Box reasoning (i.e. on the
ontology schema level), while the WSMO-based tech-
nique used in SWF also considers instance level informa-
tion.

 With respect to WW Discovery, there are some ap-
proaches for determining behavioral compatibility. [4]
introduces a formalization of WSCI, the W3C effort for
describing Web Services Choreographies (not continued
anymore). Single behavioral service descriptions are rep-
resented in the process algebra CCS, whereupon the com-
patibility is determined with regard to the order and the
content of messages defined in the Choreography. Also,
heuristic mediation facilities for establishing compatibil-
ity of a-priori not compatible Choreographies are out-
lined. Another approach for determining global interac-
tion models for Web Services develops heuristics for a
“Synchronizability Analysis” [10], similar to the com-

patibility analysis applied within WW Discovery. Apart
from these efforts being of academic nature only, the for-
mal processes representation used are questionable
whether being appropriate for Choreography description
[23].

6. Conclusion and Future Work

This paper has presented the Semantic Web Fred
framework and technology for automated, cooperative
goal resolution on the Semantic Web. We have outlined
the motivation and system design principles, the techno-
logical realization of system components, and mecha-
nisms developed for the goal resolution process.

The main contribution of the SWF technology is a con-
cise framework that combines the key technologies of the
Semantic Web into a system for automated and coop-
erative goal resolution with support for Semantic Web
resources. An agent runtime environment allows delega-
tion of tasks to electronic representatives, and emerging
technologies based on the Web Service Modeling Ontol-
ogy WSMO are applied in a coherent architecture for es-
tablishing automated goal resolution with dynamic service
usage. Ontologies are used as the semantic data model
throughout the whole system. Interchangeability with
other Semantic Web resources is supported by import and
export facilities as well as alignment with the WSMO
repository.

The SWF technology is currently designed for a FRED
environment, meaning that the interaction of agents and
service execution takes place in Meeting Rooms of the
FRED system. The aim for future development is to ex-
pand the SWF technology to a web environment, meaning
that agent interaction and service execution is performed
in virtual meeting rooms on the Internet. Therefore, only
specific building blocks of the SWF technology have to
be modified (namely the Meeting Room technology),
while the overall architecture of the system can remain.
This extendibility illustrates the quality of SWF in a nut-
shell, emphasizing it to be a prototypical environment for
the Semantic Web.

Acknowledgement.
The SWF project is funded by Austrian government
under the CoOperate programme 2003, and was
awarded as the 2nd best proposal in the call. We like to
thank the members of the WSMO working group for
support and fruitful input to the work presented here.

7. References

[1] Bellifemine, F.; Rimassa, G.; Poggi, A.: JADE – a FIPA-

Compliant Agent Framework. In: Proceedings of the 4th
International Conference and Exhibition on the Practical
Application of Intelligent Agents and Multi-Agents, Lon-
don, 1999.

[2] Berners-Lee, T.; Hendler, J.; Lassila, O.: The Semantic
Web. A new form of Web Content that is meaningful to
computers will unleash a revolution of new possibilities.
In: Scientific American May 2001.

[3] Borger, E.: High level system design and analysis using
abstract state machines. Springer Lecture Notes in Com-
puter Science 1641, 1{43), 1999.

[4] Brogi, A.; Canal, C.; Pimentel, E.; Vallecillo, A.: Formal-
izing Web Services Choreographies. First International
Workshop on Web Services and Formal Methods (WS-
FM 2004), Pisa February 23-24, 2004.

[5] Collis, J.; Ndumu, D.; van Buskrik, C.: The ZEUS Techni-
cal Manual, Release 1.04, 2001.

[6] Erl. T.: Service Oriented Architecture. A Field Guide to
Integrating XML and Web Services. London, Prentice Hall
PTR 2004.

[7] FIPA: Agent Communication Language Specification.
Foundation for Intelligent Physical Agents, Geneva, 1997.

[8] Fensel, D. and Bussler, C.: The Web Service Modeling
Framework WSMF. Electronic Commerce Research and
Applications, 1(2), 2002.

[9] Flett, A.: A Comparison of DAML-S and WSMF. Internal
Report, Vrije Universiteit Amsterdam, 2002.

[10] Fu, X.; Bultan, T.; Su, J.: Analysis of Interacting BPEL
Web Services. In: Proceedings of the 13th World Wide
Web Conference 2004, New York, pp. 621-630.

[11] Herzog, R.; Zugmann, P.; Stollberg, M.; Roman, D.:
WSMO Registry., WSMO Working Draft D10, 26 April
2004.

[12] Keller, U. (ed.): Inferencing support for Semantic Web
Services. Proof Obligations. WSML Working draft D5.1,
April 15 2004.

[13] Kifer, M.; Lausen, G.; Wu, J.: Logical foundations of ob-
ject oriented and frame-based languages. Journal of the
ACM, 42(4):741-843, 1995.

[14] Lara, R.; Lausen, H.; Arroyo, S.; de Bruijn, J.; Fensel, D.:
Semantic Web Services. description requirements and cur-
rent technologies, International Workshop on Electronic
Commerce, Agents, and Semantic Web Services, In con-
junction with the Fifth International Conference on Elec-
tronic Commerce (ICEC 2003), Pittsburgh, USA, 2003.

[15] Li, L.; Horrocks, I.: A Software Framework for Match-
making based on Semantic Web Technology. In Proc. of
the 12th World Wide Web Conference, May 20-24, Buda-
pest, Hungary, 2003.

[16] Oren, E.: BNF grammar for WSML user language.
WSMO Working Draft D16.1, 05 April 2004.

[17] OWL Services Coalition: OWL-S: Semantic Markup for
Web Services, version 1.0, 2004; available at:
http://www.daml.org/services/owl-s/1.0/owl-s.pdf .

[18] Paolucci M., Kawamura T., Payne T.R.; Sycara K.: Se-
mantic Matching of Web Services Capabilities. In Proc. of

the First International Semantic Web Conference. Sar-
dinia, Italia, 2002.

[19] Riazanov, A.; Voronkov, A.: The design and implementa-
tion of VAMPIRE. AI Communications 15(2), Special is-
sue on CASC, pp. 91 -110, 2002.

[20] Ruh, W.A.; Maginnis, F.X.; Brown, W.J.: Enterprise Ap-
plication Integration: A Wiley Tech Brief. Boston: John
Wiley and Sons, Inc, 2001.

[21] Russel S.J., Norvig P., Artificial Intelligence, a Modern
Approach, Prentice Hall. 1995.

[22] Roman, D.; Lausen, H.; Keller, U. (eds.): Web Service
Modeling Ontology - Standard (WSMO - Standard),
WSMO Working Draft D2, 16 August 2004.

[23] Roman, D., Vasiliu, L.; Stollberg, M.: Choreography in
WSMO, WSMO Working Draft D14, 17 July 2004.

[24] Stollberg, M.; Lausen, H.; Arroyo, S.; Herzog, R.; Smolle,
P.; Fensel, D.: Fred Whitepaper. DERI Technical Report
DERI-TR-2004-01-09, 2004; available at:
http://www.deri.at/publications/techpapers/documents/DE
RI-TR-2004-01-09.pdf.

[25] Stollberg, M.; Lausen, H.; Lara, R.; Ding, Y.; Sung-Kook,
H.; Fensel., D: Towards Semantic Web Portals. WWW
2004 Workshop on Application Design, Development and
Implementation Issues in the Semantic Web, May 2004.

[26] Weibel, S.; Kunze, J.; Lagoze, C.; Wolf, M.: RFC 2413 -
Dublin Core Metadata for Resource Discovery, 1998;
available at: http://www.faqs.org/rfcs/rfc2413.html.

[27] Wiederhold, G.: Mediators in the Architecture of Future
Information Systems, IEEE Computer, 25(3): pp. 38- 49,
1992.

[28] van der Aalst, W. M. P.; Ter Hofstede, A. H. M.;
Kiepuszewski, B.; Barros, A. P.: Workflow Patterns. In:
Distributed and Parallel Systems 14(1), 2003, p 5 – 51.

[29] Zou, Y.; Finin, T.; Ding, L.; Chen, H.; Pan, R.: Using Se-
mantic Web technology in Multi-Agent Systems: a case
study in the TAGA trading agent environment. 5th Interna-
tional Conference on Electronic Commerce: Technologies,
Pittsburg, 1-3 October 2003.

