
Semantic Caching for Service Oriented
Architectures

Michael Stollberg

Digital Enterprise Research Institute Innsbruck (DERI Austria),
Institute for Computer Science, University of Innsbruck,

Technikerstrasse 21a, A-6020 Innsbruck, Austria
michael.stollberg@deri.org

Abstract. This document presents an overview of a proposed PhD the-
sis on semantic caching for increasing the efficiency of web-based service-
oriented architectures. Such systems aim at dynamically detecting and
executing Web services for solving client requests. For real world appli-
cations, there will be a very large number of Web services available on
the Internet. The bottleneck that hampers efficiency and scalability of
such architectures is service detection, i.e. finding those Web services
out of the available ones that can be used to solve a particular request.
The proposed works develops a novel technique that captures service
detection results for goals (formalized client requests) and uses this for
performing service detection for semantically similar requests. In com-
parison to other approaches, this caching mechanism allows to achieve
the highest possible efficiency under certain constellations between the
provided Web services and requests for these. The working hypothesis
is that the constellations with a better efficiency comply with the most
common situations in real-world e-business applications, which is verified
by empirical analysis.

Keywords: Service-oriented Architectures, Semantic Web Services, Goals,
Semantic Matchmaking, Efficiency, Scalability, Goal Caching

1 Introduction

Service-oriented architectures (short: SOA) denote the most recent paradigm for
IT system design, envisioning dynamic detection and execution of available ser-
vices for solving client requests. While Web services are commonly understood as
the base technology for SOA-based computing over the Web, so-called semanti-
cally enabled service-oriented architectures (short: SESA) aim at mechanization
of service detection and execution of Web services in order to realize the SOA
vision. The central requirements for successful deployment of such technologies
are efficiency and scalability. The former refers to the time that a system needs
to solve a given client request, denoting the critical success criterion for technol-
ogy acceptance by end-users. The latter is concerned with the system’s ability
to handle the presumably very large number of Web services available on the In-
ternet, which is a pre-requisite for functional stability in real-world applications.



The bottleneck for both efficiency and scalability of in SOA / SESA systems
is discovery, i.e. the initial detection of those Web services out of the available
ones that are potentially usable for solving a given request. As the first processing
step, this needs to take all available Web services into account; all subsequent
steps deal with a significantly smaller amount of Web services. The proposed
thesis develops and validates a novel technique for overcoming this bottleneck.
The approach is to capture service detection results for goals (formalized client
requests) and, on this basis, perform service detection for new, semantically
similar requests. This technique allows to (1) attain the highest possible efficiency
via discovery-by-lookup, meaning to perform service detection without invoking
a matchmaker, and (2) to increase scalability by reducing the search space for
service detection on the basis of organizing Web services with respect goals, i.e.
the problems that can be solved with them.

The achievable increase for both efficiency and scalability is dependent on
the relationship and constellation of provided and requested functionalities. The
working hypothesis is that those situations wherein the proposed technique
achieves a better efficiency and scalability than all other known approaches cor-
relate with the most common situation in real-world SOA applications. This will
be verified by empiric analysis of existing and potential application areas.

Technically, the relevant aspects on previous service detection results is kept
in a knowledge base. Discovery and composition components utilize this as an
intermediate for accessing Web service repositories. For the technical solution,
we focus on requested and provided functionalities that are formally described
by preconditions and effects in a state-based model. While a first-order logic
framework is used for illustration and demonstration throughout the thesis, the
developed technique is independent of particular ontology languages and hence
can be applied in several frameworks for Semantic Web services.

This document concentrates on the research methodology while technical
details will be presented in other documents and the final thesis. The remainder
of this section identifies the research questions and outlines the central line of
argument. Section 2 introduces the problem context and discusses the motivation
of the undertaken approach in detail. Section 3 provides and overview of the
technical solution with respect to its design and central concepts. Section 4
explains the evaluation methodology for verifying the working hypothesis by an
empirical applicability study of the developed technique, and Section 5 concludes
the paper and discusses success factors of the proposed work.

1.1 Research Questions

The aim of the proposed thesis is to develop and evaluate a novel technology for
enhancing the efficiency and scalability of SOA / SESA technology. The main
research questions are:

1. is it possible to develop a technique that allow to perform discovery-by-lookup
for better efficiency and organization of Web services with respect to solvable
goals for increasing the scalability of service detection mechanisms?

2



2. does the most common situation in real-world SOA-applications correlate
with the constellation of Web services and requests wherein this technique
achieves a better efficiency and scalability than all other known approaches?

1.2 Hypotheses

In order to give a concise overview of the planned work, the following outlines
the central line of argument in terms of consecutive hypotheses. We explain how
each one will be corroborated below.

1. The search space (i.e. the number of available Web services) in real-world
SOA / SESA applications will huge.

2. The critical bottleneck for efficiency and scalability of SOA / SESA systems
is service detection (determine those Web services out of the available ones
that are potentially usable for solving a given request). As the first processing
step, this requires a 1:n search on the complete search space.

3. (a) Current service detection mechanisms need to search the complete search
space for each request.

(b) Existing approaches for enhancing the efficiency and scalability group
Web services with respect to the provided functionalities; this has defi-
ciencies on the accuracy and applicability in real world SOA applications.

4. Goals are formalized client objectives that allow lifting IT system usage to
the knowledge level; concrete requests are specified as instantiations of goals
with concrete inputs.

5. There is a significant degree of similarity among requests on the level of goals
in typical SOA applications. This is a promising starting point for enhancing
the efficiency and scalability of service detection mechanisms.

6. It is possible to develop a (novel) technique that captures completed service
detection results and utilizes this knowledge for
– performing discovery-by-lookup for new requests, and
– organizing Web services with respect to solvable goals.

7. This technique is able to significantly reduce the computational costs of
service detection; by overcoming the bottleneck, this allows to increase the
efficiency and scalability of SOA / SESA technology.

8. The approach is superior to all known approaches with respect to the corre-
lation of provided and requested functionalities in typical SOA-applications.

1.3 Methodology

For proper investigation of the research questions and elaboration of the scientific
contributions, the thesis consists of three main parts. At first, the concept &
terminology clarification introduces into the research context and defines

3



relevant concepts with respect to the state of the art (20% of the overall thesis).
Secondly, the technical solution presents the developed technique in detail by
formal specifications and a prototype implementation for demonstration purpose
(50% of the thesis). Finally, the evaluation provides an applicability study of
the developed technique in real-world SOA-applications for verifying the working
hypothesis (30% of the thesis). 1

To provide an overview of the research methods and tools applied through-
out the thesis, the following explains how each of the above hypotheses will be
corroborated, along with pointers to the respective sections of this document.

Hypothesis 1 verification methods (Sec.: 2.1, 4.2):
– literature proof : SOA vision expects billions of Web services available on

the Internet
– empirical corroboration: first-hand data of existing Web services in (a)

public registries, (b) industrial in-house solutions (e.g. SAP, Verizon),
(c) potential SOA-applications (e.g. Ebay)

Hypothesis 2 verification methods (Sec.: 2.2):
– technical analysis of existing SOA / SESA system architectures
– literature proof for state of the art & related work

Hypothesis 3 verification methods (Sec.: 2.3, Sec.: 2.4):
– for (a): technical analysis and literature proof of existing service de-

tection mechanisms (main focus on semantic matchmaking of formally
described requested and provided functionalities)

– for (b): requirements analysis for efficiency and scalability of service de-
tection mechanisms and technical analysis of existing approaches

Hypothesis 4 verification methods (Sec.: 3.1):
– technical solution: development / formal specification of a goal model for

SOA (formal description & goal-driven Web service usage)
– literature proof : as extension of existing approaches in accordance to AI

research
Hypothesis 5 verification methods (Sec.: 3.1):

– conceptual analysis on the structure and properties of typical SOA-
applications

– empirical corroboration: first-hand data on requests for existing Web
services (interviews & statistical data from SAP, Verizon, Ebay, etc.)

Hypothesis 6 verification methods (Sec.: 3):
– technical solution: formal specification of technical solution (Sec. 3.2)
– technical solution: demonstration of technique by prototype implemen-

tation and use case demonstration (Sec. 3.3)
Hypothesis 7 verified by technical analysis on the computational cost of the

service detection algorithms in developed technique (Sec. 3.2)
Hypothesis 8 verified by empirical applicability study (Sec. 4):

– statistical methods: specification of the evaluation methodology (Sec: 4.1)
– statistical methods: evaluation of working hypothesis (Sec. 4.2)

1 A detailed content outline is presented in: Michael Stollberg: “Semantic Goal Caching
for Service-Oriented Architectures. PhD Thesis Overview.” September 2006; avail-
able on request.

4



2 Problem Statement

This section explains the problem setting in more detail. After outlining the
larger research context, we identify service detection as the bottleneck for that
hampers efficiency and scalability of service-oriented architectures. We then de-
termine the requirements for overcoming this, and finally discuss possible tech-
nical solutions in order to motivate the approach undertaken in this work.

2.1 Research Context

To position our work in the broader research context, the following examines the
relevant properties of web-based SOA as well as of goal-driven architectures.

The SOA Vision and Beyond.
The first aspect of relevance is the idea of service orientation and its embedding
into the context of IT system design and architectures. Figure 1 illustrates the
facets relevant for the following discussion.

Fig. 1. Context of Service-Oriented Architectures

comment: figure is extendible & very ”discussable”. However, a initial version fulfils its purpose

In a nutshell, service-oriented architectures (SOA) aim at overcoming the
deficiencies in flexibility and cost-efficiency of monolithic system architectures
by dynamically detecting and executing loosely coupled software services for
solving individual client requests [25]. Web services are commonly considered
as the base technology for SOA-based computing over the Internet [3], enabling
world-wide access to deployed services with special attention to the integration
problem [11]. This technology gains high attention by industry, resulting in sev-
eral standardization activities (e.g. [45]). In contrast to previous technologies
that address the same problems – in particular component architectures on ba-
sis of object-orientated programming [13] as the direct predecessor – runtime
systems for SOA on the basis of Web services need to deal with newly arising
challenges. The ones particulary relevant for our context are:

5



– To achieve the full potential of SOA with Web services, it is expected that
the vast majority of commercial and non-commercial service providers offer
their facilities as Web services – similar to organizations’ websites as existent
today. As a rough estimation of the numeric dimension, consider that each
of the currently registered 60 million .com domains2 offers at least one Web
service. With respect to this, efficiency (time a system needs to solve a
given request) and scalability (ability to handle a large number of Web
services) become crucial success factors for SOA technology.

– The central characteristic of Web services is that they are invoked and con-
sumed via an interface that specifies the inputs and outputs to be inter-
changed between the requester and the provider over the Web. This reduces
the need for standardization to interface descriptions (e.g. WSDL [9]), so
that Web services are not tied to a specific technology for application devel-
opment – which is considered to be the central advantage as a new technology
for addressing the integration problem [12].

The technical realization of the SOA vision is a massive challenge. Several re-
search efforts are concerned with developing advanced solutions therefore. One of
the most significant and promising approaches are Semantic Web services: based
on ontologies and formal descriptions, inference-based techniques for discovery,
composition, execution, and mediation shall enable automated Web service us-
age, or at least mechanize this to a very high extend [47,27]. The most prominent
frameworks therefore are OWL-S [46], SWSF [6], WSDL-S [1], and WSMO [43]
that have been submitted to the W3C as proposals for standardization in this
field. While the former three are merely concerned with the semantic annotation
of Web services, WSMO identifies ontologies, goals, Web services, and mediators
as its top level elements and defines formal description models for each [28].

These are understood as the core elements of so-called semantically enabled
service-oriented architectures, short: SESA [10]. Expanding the idea of Semantic
Web services, the aim is to support all aspects of SOA-technology by semantic
techniques. While the efforts around WSMO are mainly centered around Web
services as problem solving facilities accessible over the Web, SESA can be un-
derstood as a basis towards future technologies for automated problem solving
integrate previous from Artificial Intelligence (e.g. [54,2]) with the benefits of
web-based SOA. In accordance to UPML [29] as the predecessor of WSMO, it is
predicable that the focus for such future developments will move from technical
infrastructure towards the problem-solving layer. Therein, the main interest is
the usability of formally described provided functionalities for solving formally
described requests, independent of technical accessibility.

Goal-Driven SOA.
The central element in SOA / SESA frameworks that of interest in our context
are goals, i.e. formalized client requests. The following outlines our the under-
standing and usage of goals and positions this within related approaches.
2 daily updated statistics at http://www.domaintools.com/internet-statistics/.

6

http://www.domaintools.com/internet-statistics/�


Following realizations of intelligent systems for automated, human-like prob-
lem solving from different AI-disciplines (see [72] for an exhaustive survey), the
concept of goals as the client-side element re-emerges in SOA / SESA frameworks
– most obviously, WSMO defines goals as a top-level entity. The basic idea is
that a client merely formulates the objective to be achieved while the system
automatically detects, combines, and executes appropriate computational facili-
ties for solving this. In the end, this shall lift IT system usage to the knowledge
level so that end-users do not have to deal with technical details [49].

Goals denote the client-side element that formally describe client requests
and allow automated usage of Web services (or any other problem solving fa-
cilities). Therefore, a goal needs to properly specify the client’s objective in a
declarative manner and carry all information that are required by the system
for its automated resolution. As the WSMO goal description model appears to
be not elaborated enough, [65] presents a refined model that specifies the for-
mal description and the usage of goals in SESA / WSMO. Figure 2 gives a
course-grained overview of the goal model, depicting the relevant aspects for the
subsequent discussions.

Fig. 2. Overview of Goal-Driven Service-Oriented Architecture

Following the conception of tasks in UPML [29] and their usage in IRS [14] –
a broker for Semantic Web services whose initial design is based on UPML – we
distinguish Goal Templates as the formal specification of a generic objective in
terms of a requested functionality, and Goal Instances that denotes a concrete
request by instantiating a goal template with specific inputs [73]. As a simple
example, consider the objective of travelling from Innsbruck to Vienna. Here,
the Goal Template specifies the origin and destination to be cities located in
Austria, and the Goal Instance instantiates them with ’Innsbruck’ and ’Vienna’
as concrete knowledge items that satisfy the goal description. We explain the
formal definition of goals below in more detail.

7



2.2 Problem Identification: Service Detection as Bottleneck

The following identifies the problem of efficiency and scalability in SOA / SESA
technologies in more detail. We determine the requirements for defeating the
problem and discuss possibilities for technical solutions in order to motivate the
approach undertaken in the proposed research work.

Figure 3 shows an abstraction of the resolution procedure for requests that
is supported by SESA realizations – in particular by WSMX [81] and IRS [14]
that are based on WSMO, but by also others such as OWL-S IDE [58]. At first,
potentially usable Web services are detected out of the available ones with respect
to the provided functionalities. This is performed by discovery or by composition
in case no directly usable Web service exists. This is followed by optional steps
for refining the detection result, such as selecting the most appropriate Web
service out of the usable ones [39] or contracting for determining details on
the provided functionality [40]. Then, the behavioral compatibility for successful
interaction between the request and the discovered or composed Web services
is tested [59]. Mediation techniques for handling possibly occurring mismatches
can be utilized as auxiliary facilities [62]. Finally, automated execution of the
detected or composed Web services results in resolution of the request.3

Fig. 3. Request Solving Procedure in SESA Systems

3 With respect to the above explanations, this procedure considers formally described
requested and provided functionalities as the central elements for determining the
usability of a Web service for solving a request.

8



This identifies discovery and composition as the bottleneck for the efficiency
and scalability of SOA, and especially SESA technologies. Commonly, discov-
ery is understood as the detection of those Web services out of the available
ones that are directly usable for solving the given request while composition is
concerned with determining an executable combination of several Web services
therefore [64]. As the first processing steps in SESA systems, these components
need to take all available Web services into account while the subsequent steps
only need to deal with a significantly smaller amount of candidates - in fact those
Web services detected by discovery and composition.

In accordance to [36] and with respect to the context of this work, we un-
derstand discovery to be concerned with detection of usable Web services with
respect to the requested and provided functionalities. Other techniques – e.g. on
basis of quality-of-service information [77] – are considered to be allocated in
subsequent selection steps. In particular, in this work we are interested in pre-
cisely determining the usability of a Web service for a given request by semantic
matchmaking of the formally described requested and provided functionality. The
basis therefore are the five matchmaking degrees that denote the common result
of several research efforts: exact, plugin, subsume and intersection that differen-
tiate situations under which a Web service is usable, and disjoint denoting that
the Web service is not usable for solving a given request. In the course of this
work, we provide a sophisticated and extended definition of the matchmaking
degrees in a language-independent framework.4

Automated Web service composition is a more complex reasoning task than
discovery. We can distinguish two approaches in literature: functional-level com-
position applies AI Planning techniques and works on the provided functional-
ities (e.g. [48,80]), while process-level composition takes the behavioral aspects
described in interfaces of Web services into account (e.g. [7,30]); in fact, both
need to be integrated in order to attain executable compositions of Web ser-
vices [75]. An integral part of Web service composition is real-world settings
is candidate detection, i.e. determining those Web services out of the available
ones that serve as the candidates for the composition algorithm. Especially for
functional composition this is closely related to discovery – it merely requires
slightly different matchmaking criteria. However, most of the existing works do
not address this explicitly but assume the composition candidates to be given
a priori. [18] presents an approach for an interleaved integration of discovery
and functional composition, meaning that candidate detection is performed for
each step of the composition algorithm. Therein, the intermediate queries cre-
ated during the composition process are structurally identical to client’s request;
hence, conventional discovery can be applied for candidate detection.

In conclusion, we observe that the bottleneck that hampers efficiency and
scalability of discovery and composition mechanisms – and therewith of SOA /
SESA technology in general – is the size of the search space, i.e. the number of

4 As the most relevant works, the degrees have been presented in [44] for discovery
on basis of DL-descriptions, used in [50] for matching in- and outputs of OWL-S
profiles, defined for discovery in WSMO in [36] and applied in [68].

9



available Web services that need to be taken into account. As outlined above, this
is expectably very large in real-world settings. We determine the requirements
for overcoming this and discuss possible technical solutions in the following.

2.3 Requirement Analysis for Efficiency & Scalability of SOA

In order to determine the requirements for enhancing the scalability of SOA
technology with special attention to SESA systems, we examine the technical
procedure for solving goals in more detail. In conformance to [51] and as an ex-
tension of the discovery procedure defined in [37], Figure 4 shows this procedure
that underlies our approach. The central aspect therein is the differentiation of
runtime operations, i.e. processing steps that need to be performed for solving a
concrete request, and operations that are orthogonal to runtime, i.e. processing
steps that can be performed at any time because they are not directly related to
resolving of a particular requests. In conformance to the Web service discovery
framework envisioned for WSMO [36], the definition of this procedure is based
on the differentiation of goal templates and instances as explained in Section 2.1.

Fig. 4. Goal Resolution Procedure

10



The runtime branch covers the processing steps for concrete requests. At first,
the client searches the repository of existing Goal Templates, i.e. generic objec-
tive descriptions. Supported by respective graphical user interfaces (e.g. [14,69]),
the client creates a Goal Instance by selecting a goal template and instantiat-
ing this with concrete inputs, possibly with refinements of the declarative de-
scription. The detection of the particular Web service or the composition to be
used for resolving a Goal Instance utilizes the service detection results from the
orthogonal-to-runtime branch. Therein, the usability of Web services for Goal
Templates is determined with respect to the different description elements of
Web services and goals. In accordance to the focus of this work, we consider se-
mantic matchmaking of formal functionality descriptions as the first step that is
followed further selection and conformance tests. The set of Web services in the
discovery result of semantic matchmaking on formalized requested and provided
functionalities is subsequently reduced by the successive detection mechanisms;
we refer to [64,65] for details on the description elements and reasoning tasks.

With respect to this, the following discusses the arising requirements for en-
hancing the efficiency and scalability of service detection mechanisms. Thereby,
we consider the following relationship on the frequency of operations that occur
in typical SOA applications (<f denoting the frequency relationship) :

new request <<f new goal <f new / updated Web Service

Requirements for Efficiency
In computational theory (e.g. [56]), efficiency is concerned with the speed and
space as desirable properties of algorithms or computer systems apart from func-
tionality and technical design. The first property – speed – refers to the time it
takes for an operation to complete, which is commonly described by the Big-O
notation as a time complexity measurement [42]. The space property refers to the
memory or non-volatile storage used up by the algorithm or system, measured
in terms of the amount of persistent and working memory required at compile
time as well as at runtime.

Naturally, adequate optimization techniques for efficiency are highly depen-
dent on the system design and functionality. In our context, efficiency is mainly
related to the runtime branch in Figure 4. As the most critical aspect of efficiency
for technology acceptance by end-users, we understand the speed of an SESA
system as the time needed for resolving a request by the usage of Web services.
While the first two processing steps – goal discovery and instantiation – require
interaction of the client with the system, the critical operation is the automated
determination of the specific Web service (or composition) to be used for solving
a Goal Instance. While the computational costs for distinct matchmaking oper-
ations can – in theory – be optimized to a negligible extend [23,33], the size of
the search space (i.e. the number of available Web services that need to be taken
into consideration) denotes the most critical bottleneck for speed efficiency of
service detection mechanisms. This also affects the space property of efficiency:
the smaller the search space, the fewer working memory will be consumed for
detecting the usable Web service or composition.

11



In conclusion, the central requirement for enhancing the efficiency of SOA
/ SESA systems is to reduce the search space for the runtime detection of the
Web service or composition to be used for solving a concrete client request.

Requirements for Scalability
As another desirable property of algorithms or computer systems, scalability is
concerned with the ability to handle large amounts of available resources in a
graceful manner [8]. Because of the high dependence of a system’s design and its
usage environment, commonly accepted measurement and analysis techniques
do not exists. However, scalability is considered as a pre-requisite for the appli-
cability of a system: if it can not handle the amount of resources in its designated
application area, then it is not considered to be functional for its purpose.

The scalability of SOA / SESA systems requires their ability to handle the
very large number of available Web services – which expectably will be several
millions (see Section 2.1). In our context, this is mainly related to the orthogonal-
to-runtime branch in Figure 4. As the first mechanism, the functional match-
maker needs to perform needs perform semantic matchmaking between the re-
quested functionality in a goal description with the functional description of
each of the available Web services. While this is only indirectly related to the
efficiency for solving a concrete request (in the runtime branch), the critical as-
pect is the scalability of the used reasoning infrastructure. As analyzed in [78],
this is hampered by (1) the general complexity of logical reasoning in compar-
ison to non-logical technologies, and (2) that most reasoner implementations
keep all relevant knowledge in the working memory, which limits the number of
processable resources tremendously.

The most promising approach for overcoming this is to reduce size of the
search space, i.e. the number of Web services that need to be taken into con-
sideration for semantic matchmaking between a requested and provided func-
tionality. Following ordinary techniques for cost-efficient search [19], the most
suitable realization is to group available Web services in a way that exhibits the
properties of an efficient search graph. As we discuss below in more detail, a
graph that organizes Web services with respect to the provided functionalities
allows to achieve a higher scalability of service detection mechanisms the better
it realizes the following properties. comment: these can / should be better substantiated

1. each node represents an accurate generalization of the functionalities grouped
in all its sub-nodes and leaves

2. the arcs explicate the semantic relationship between nodes such that the
distance between nodes is minimal

3. the number of leaves, i.e. concrete Web services, is minimal for each node.

In summary, the central requirement for achieving a sophisticated scalability
of SOA / SESA architectures is to reduce the search space for matchmaking of
requested and provided functionalities. Most adequately, this can be achieved by
organizing available Web services in an efficient search graph.

12



2.4 Solution Possibilities: Approach and Related Work

Completing the problem statement discussion, the following discusses possible
technical solutions for enhancing the efficiency and scalability of SOA and SESA
technology. On basis of the determined requirements, we investigate related work
from the field of Semantic Web services and compare them with the technique
proposed in this work.

Without any optimization, the computational costs for service detection are
in linear time, i.e. O(n) with n denoting the search space as number of avail-
able Web services. As discusses above, n is an expectably very large number in
real-world SOA applications. Not reducing the search space for service detec-
tion tremendously hampers the efficiency of SOA / SESA technology, and can
even functionally disable it for its designated application purpose. Most of the
existing works on Web service detection are merely considered with the defini-
tion of matchmaking operations for semantic matchmaking but do not consider
efficiency and scalability (e.g. [50], [44] [31], [40], [36]). Nevertheless, there are
a few approaches that address this problem. We analyze these with respect to
their accuracy and appropriateness for goal-driven, semantically enabled service
oriented architectures as proclaimed in this work.

Web Service Categorization / Keyword Annotation. Already supported
in UDDI [16], available Web services can be organized in categories on the basis
of keywords that describe the provided functionality. The keywords used for
annotation can be defined on basis of ontologies, which allows to enhance the
semantic significance and therewith increase the rate of retrieval accuracy [34]. A
recent approach that uses ontology-based keyword categorization for increasing
efficiency for search in Web service repositories is the METEOR-S Web Service
Discovery Infrastructure (WSDI) [76].

Obviously, this approach allows to reduce the search space for service de-
tection because – theoretically – only those Web services need to be inspected
that are allocated in the category relevant for the request to be solved. Besides,
it can be argued that this is the simplest to realize because does not require
detailed and correct formal descriptions – one of the central problems for broad
adaptation of Semantic Web service technologies [71].

However, this approach naturally has significant deficiencies on the accuracy
of service detection results. At first, keyword-based categorization by definition
misses details on the functionalities provided by Web services that are essential
on the usability for a concrete request. Secondly, the examination of publicly
accessible UDDI reveals that the categorization schema is pre-defined by the
repository administration; providers need to allocate their Web services therein,
which often results in the registration of a Web service in unexpected or in
multiple categories [5]. These properties result in imprecise service detection
results that – in the worst case – may miss usable Web services.

Hence, we consider this technique to not be appropriate for our purposes
but rather suitable as a supportive technique for human-driven browsing of Web
service or goal repositories.

13



Repository Indexing. A more decent means for reducing the search space for
service detection is to index Web service repositories with respect to the com-
monalities and differences of the provided functionalities. Organizing a repository
index such that it exhibits the properties of an efficient search tree allows – in the
best case – to reduce the computational costs of service detection to logarithmic
time O(log n), with is a significant improvement in respect to n being a very
large number. The work of Constaninescu et al. (most recently [17]) presents the
most sophisticated realization that we examine in more detail.

The functionality provided by Web services is described by a set of descrip-
tion elements: inputs, outputs, preconditions, and effects – similar to functional
descriptions in OWL-S and WSMO. The indexing structure is based on General-
ized Search Trees, i.e. balanced search trees wherein the inner nodes are defined
by a predicate with links to the sub-nodes, and the concrete data (i.e. Web
services) are allocated in the leaf-nodes. Constituting the index structure, each
inner node is described by two predicates: the lower bound Σ and the upper
bound Σ for all the sub-nodes Σ1, . . . , Σm such that ∀Σ1, . . . , Σm. Σ v Σ v Σ
with v denoting a complex entailment relation between the description sets of
Web services. On the basis of this and with respect to the formal relationship be-
tween matchmaking degrees – e.g. exact ⇒ plugin∧ subsume – the inner nodes
can be used as pruning conditions for detecting Web services. For instance, if a
request Q is satisfied by ΣN of an inner node N , then all Web services that are
leaf nodes of N are usable for solving Q.

Obviously, this approach is more suitable for organizing Web services than
categorization or keyword-based filtering as it builds upon the formally described
provided functionalities. Moreover, it satisfies the requirements determined for
scalability as the repository index exhibits properties of a sufficient search tree.
However, this approach shows deficiencies. Regarding the runtime efficiency, the
indexed repository needs to be traversed for each new request – even if the
request is similar to a previous one. Also, the usability of Web services under an
intersection match needs to be checked for each inner node of the index that is
traversed during service detection for a request.

Semantic Caching of Service Detection Results Another solution possi-
bility for enhancing the efficiency and scalability of service detection mechanisms
is to adopt the conception of semantic caching. Working on formally described
functionalities requested by goals and provided by Web services, the starting
point for this technique is the expectably significant rate of similarity of requests
in typical SOA applications. The main merits of this approach are:

1. Automated creation of a graph wherein the inner nodes are goals connected
by arcs that denote the degree of semantic similarity between the goals, and
the leaf nodes are the Web services usable for resolving the goal at the parent
node. Similar to repository indexing, this denotes an efficient search graph in
order to meet the requirements on scalability for the orthogonal-to-runtime
branch in Figure 4. The main difference is that it is created on basis of the
usability of Web services and the semantic similarity of goal descriptions.

14



Besides, each node has direct associated leaf nodes so that detection of usable
Web services does not require a complete branch traversal, which provides
a better search efficiency.

2. The formal relationship of goal templates and goal instances that allows to
perform discovery-by-lookup, i.e. detecting usable Web services for a concrete
request without invocation of a matchmaker. Therewith, we can achieve an
efficiency of constant time O(c) for the detection of usable Web services for
a Goal Instance for the runtime branch in Figure 4, with c being a relatively
small number in comparison to n as the number of available Web services.

A central difference to the approaches discussed above is that the achievable
increase of efficiency and scalability by caching of service detection results is de-
pendent on the application to a higher extent than techniques that only organize
Web services without considering goals and requests. In particular, the attain-
able quality of the graph for capturing service detection results is dependent
on the number of goal descriptions and their semantic similarity: the more goal
exist that can be organized in proper similarity groups, the more fine grained is
the graph and thus the better its indexing and filtering properties become.

However, we expect the high number of goals and requests with significantly
semantic similarity as the common situation in SOA application. As an example
for goal similarity, consider two goals from the ‘Virtual Travel Agency” use case
that is commonly used for illustrating Semantic Web service technologies [70]:
G1 request tickets for travels between Austrian cities, and G2 requests train
tickets for travels between Austrian cities. Here, G2 is a specialization of G1 so
that the set of usable Web services for G2 is a subset of those usable for G1.

Caching is a prominent optimization technique precisely for application areas
with many similar requests – e.g. for reduce traffic on the Web by capturing often
requested documents or parts thereof [79]. Semantic caching is a specialization
that works on the similarity of requests with its most prominent application
is the performance optimization of data base querying systems [35]: if a new
query Q′ that is semantically equal or subsumed by a Q existing in the cache,
then the answer set can be derived from the cache. Proportional to the num-
ber of semantically similar queries, this allows to attain the best efficiency in
comparison to all other known optimization techniques [15]. For more complex
reasoning tasks, [4] presents a profitable approach for increasing the efficiency of
automated theorem provers by semantic caching of proof results that frequently
occur within different proof obligations.

In conclusion, semantic caching of service detection results appears to be a
promising approach for sophisticated enhancement of the efficiency and scala-
bility of SOA and especially SESA technologies. Hence, the proposed PhD work
develops a novel technique for realizing this and evaluates its applicability for
real-world SOA applications. To explicate the motivation with respect to related
approaches, Table 1 summarizes the above discussion.

15



Table 1. Possible Solutions – Advantages and Disadvantages

Approach Advantages Disadvantages

Categorization /
Keyword

Annotation

– moderate size reduction of
search space

– ease of provision

– inaccurate (many irrelevant
Web services in result set)

– risk of wrong service detec-
tion results

Repository
Indexing

– search efficiency achievable
in best case: O(log n)

– accurate (no irrelevant Web
services in result set)

– sound (i.e. correct service
detection results)

– runtime efficiency achiev-
able in best case: O(log n)

– no re-use of previous service
detection results

Semantic
Caching

– runtime efficiency: O(1)
(constant time)

– re-use of service detection
results

– accurate & sound service
detection

strong dependence of achiev-
able enhancements on the
number & semantic similar-
ity of goals and usable Web
services in SOA application

3 Technical Solution – Overview

This section explains Semantic Goal Caching (short: SGC), which is the re-
alization of the semantic caching technique developed as the main contribution
of the thesis. The SGC technique exhibits the properties for enhancing efficiency
and scalability of service detection mechanisms as outlined above, and is a lan-
guage independent technique that can be adopted to several frameworks for
SESA and Semantic Web services. Throughout the thesis, we apply first-order
logic for specification, illustration, and demonstration purpose. This provides a
sufficiently rich descriptions language that covers the Description Logic branch
of ontology languages defined for the Semantic Web.

The SGC specification consists of three major parts. At first, Section 3.1
introduces the underlying model for formally describing functionalities requested
in goals and provided by Web services. Then, Section 3.2 explains the design and
formal specification of the SGC technology. This includes the graph for capturing
service detection results for goals and its evolvement, and the service detection
algorithms that work upon this. Finally, we outline the technical architecture of
the SGC prototype and the demonstration use case scenario in Section 3.3. With
respect to the scope of this document, we merely explain the central concepts
while conceptual and formal details are presented in the following documents. 5

5 Written by or with main contributions from the author: [64] introduces the research
field of Semantic Web services with attention towards the SESA vision, and [61]

16



3.1 Semantic Web Service Discovery Framework

As the framework that underlies the SGC technology, the following outlines the
definitions of Web services, goals, and semantic enabled discovery by matchmak-
ing of formalized provided and requested functionalities. Each aspect is defined
with respect to the state of the art, along with deepening extensions necessary
in our context.

Web Services.
In accordance to the common understanding, we understand Web services to
provide a computational facility that can be accessed over the Internet via
an interface. Abstracting the commonalities of different Semantic Web services
frameworks, Figure 5 shows how initial WSDL-descriptions are extended to-
wards comprehensive semantic annotations of Web services: usage of ontologies
as the data model, formal descriptions of the supported communication behavior
for consumption and aggregation, further non-functional aspects, and a formal
description of the overall provided functionality.

Fig. 5. Web Services and Their Semantic Annotation

The most relevant description element in our context is the functional de-
scription that formally specifies the overall provided functionality – which refers
to WSMO capabilities [53] and is a part of the service profile in OWL-S [46].

presents the initial of the SGC technology. [65] specifies the goal model in detail,
with respect to [72] as an exhaustive survey on goal-driven architectures. [38] presents
the underlying model used for formally describing requested and provided function-
alities. On this basis, [67] presents the formal framework for Web service discovery
(submitted to IJEC Special Issue), and [60] formally specifies the SGC technology
in detail (under construction). In addition, [66] in detail specifies so-called delta-
relations that denote the semantic difference between formal functional descriptions
and are used for optimizing the SGC graph.

17



As one of the essential description elements of a Web service, this needs to de-
scribe the conditions that need to hold before the Web service can be executed
(preconditions), those that hold after successful execution (postconditions or ef-
fects), and the dependence between these. Besides, it should specify all inputs
required for invoking and consuming the Web services as well as the outputs pro-
vided from execution. While discussing a suitable formal model for functional
descriptions below, we identify the following properties of Web services:

1. Web services provide deterministic functionalities, meaning that all obtain-
able outputs and post-execution effects are completely dependent of the in-
puts provided for invocation and consumption. Without this restriction, a
Web service could create arbitrary objects in the world that are not related
to a usage request. This would disable automating and composability of Web
services, which are prerequisites for service-oriented architectures [28].

2. Functionalities provided by Web services are static and passive. As the main
distinction criterion to intelligent software agents [20], this means that (a)
the provided functionality does not dynamically change during runtime, and
(b) the proactive usage behavior is driven by the real-world actors (service
requester or provider), but not by the Web service itself.

Goals.
As the client side element in SESA frameworks, goals formally describe the
objectives that clients want to achieve. Extending the WSMO goal model, we
define a goal model that allows to properly specify client objectives and process
requests in SESA systems. Figure 6 shows its overall structure as an UML class
diagram; the detailed specification is provided in [65].

Fig. 6. Goal Model Overview

Abstract Goals formally specify generic client objectives in terms of a re-
quested functionality with respect on an ontology; as determined in [72], this is
sufficient for describing the type of functionalities offered by Web services in SOA

18



applications. Atomic Goals extend this with so-called client interfaces that al-
low automated invocation and consumption of Web services [21], and Composite
Goals specify additional workflow constraints in terms of a goal decomposition.
While the model is not limited to these, Atomic and Composite Goals denote
the most relevant goal types for current SOA applications.

Abstract, Atomic, and Composite Goals serve as goal templates, i.e. generic
objective descriptions defined as requested functionalities in terms of precondi-
tions and effects. For specifying a concrete request, a client instantiates such a
goal template with concrete input values.

Semantic Web Service Discovery.
This covers the semantic techniques for determining the usability of Web services
for solving goals by determining logical relationships between formally described
requested and provided functionalities. Without such technique, the usability of
a Web service would have to be detected manually or via test runs. In context of
this work, we also apply semantic matchmaking techniques for determining the
similarity of goals and for managing the SGC graph (see below in Section 3.2).

The pre-requisites for specifying adequate semantic matchmaking techniques
is a model of the world where Web services act in, and formal functional de-
scriptions with a clearly defined. As prominent frameworks for Semantic Web
services lack of precisely defined semantics for functional descriptions6, we ap-
ply so-called Abstract State Spaces (short: ASS) as the underlying formal model.
Presented in [38], this defines a state-based model for Web services and the
world they act in with rigorous formal definitions. It allows to define semantic
matchmaking on the level of executions of Web services with formal functional
descriptions, and therewith is sufficiently expressive for our purposes.

Fig. 7. Web Service, Executions, Input Bindings in the ASS model

6 In particular, those submitted to the W3C as standardization proposals: OWL-S [46],
WSMO [43], SWSF [6], and WSDL-S [1].

19



The ASS model understands the execution of a Web service W to denote a
finite sequence of state transitions τ = (s0, . . . , sm) in an Abstract State Space.
As illustrated in Figure 7, this can be further differentiated into the distinct
sets of possible executions of W for each valid input binding W (β), so that
{τ}W = {{τ}W (β)}.

A goal denotes the formal specification of a client’s desire to change the world
from its current state into a state wherein the objective is satisfied. Therefore, the
requested functionality defined in a goal template G denotes a set of sequences of
state transitions that can satisfy the described client objective, denoted by {τ}G .
Analogously to the invocation of a Web service, a goal instance GI(G) defines
an input binding for G such that the possible solutions for GI(G) are a subset
of those for GI(G), i.e. {τ}GI(G) ⊂ {τ}G . Hence, we define the basic matching
condition for a Web service to be usable for solving a goal as:

match(G,W ) : ∃τ. τ ∈ ({τ}G ∩ {τ}W )
match(GI(G),W ) : ∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β))

It holds that ∀W. match(GI(G),W ) ⇒ match(G,W ), i.e. a Web service that
is usable for a goal instance is also usable for the respective goal template. In
consequence, it holds that ∀W. ¬match(G, W ) ⇒ ¬match(GI(G),W ), meaning
that there cannot be any Web service that is usable for a goal instance but not
for its template. Therewith, we can utilize knowledge on the usability of Web
services on the goal template level as filter for discovery on the goal instance
level [68]. This allows to define a 2-step discovery process as proposed in [36].
At first, usable Web services for goal templates G are determined by semantic
matchmaking, and then those usable for GI(G) that instantiates a particular goal
template are determined. Thereby, the first-step is allocated in the orthogonal-
to-runtime branch and the second one in the runtime branch of Figure 4.

Functional Descriptions. Evaluating these matching conditions by semantic match-
making requires adequate formal descriptions for the functionality provided by
Web services and the requested in goals. The ASS model provides a definition
of functional descriptions that is precise and sufficiently rich for our purposes.
Referring to [38,67], we desist from an exhaustive discussion but merely summa-
rize the central aspects here. Defined over a signature Σ and with respect to a
domain ontology Ω, the central description elements of a functional description
D are:

(i) IF is a set of variables i1, . . . , in whose scope is D;
this denotes all required input values wherefore an input binding
β : (i1, . . . , in) → UA assigns objects of the universe UA

(ii) φpre is a statement in L that constraints the initial state s0

wherein i1, . . . , in occur as free variables
(iii) φeff is a statement in L that constraints the final state sm

wherein i1, . . . , in occur as free variables and out denotes the output.
The meaning is that D formally describes a set of τ = (s0, . . . , sm) such that

if s0, β satisfies φpre, then sm will be reached such that sm, β satisfies φeff .

20



While the ASS model and hence functional descriptions therein are language-
independent, we use classical first-order logic (FOL) as the knowledge definition
language throughout the thesis [57]. To reduce the complexity of dealing with for-
mal functional descriptions, we define a FOL-structure sim(D) = (Σ, Ω, IF, φD)
that simulates the semantics of a functional description. In essence, sim(D) de-
fines the precondition and effect as FOL formulae and represents their relation-
ship as a logical implication. This allows to apply standard notions from model-
theoretic semantics like entailment and logical equivalence for specifying logical
relationships and operations on functional descriptions. We also omit details and
refer to [66] for the exhaustive formal substantiation.

On this basis, we specify semantic techniques for precisely determining the
usability of a Web services on the level of goal templates as well as on the level
of goal instances. We only outline the general approach while referring to [67]
for the detailed specification of both techniques.

Semantic Matchmaking – Goal Template Level. For the first step, we define
matchmaking degrees over DG as the requested functionality specified in a goal
template, and DW as the functional description of a Web service. In essence,
the matchmaking degrees denote different denote different relationships between
{τ}G as the set of possible solutions for G and {τ}W as the set of possible
executions of W as follows:

exact(DG ,DW ) : {τ}G = {τ}W intersect(DG ,DW ) : {τ}G ∩ {τ}W 6= ∅
plugin(DG ,DW ) : {τ}G ⊆ {τ}W disjoint(DG ,DW ) : {τ}G ∩ {τ}W = ∅

subsume(DG ,DW ) : {τ}G ⊇ {τ}W

Four degrees – exact, plugin, subsume, intersect – differentiate situations
wherein the basic matching condition is satisfied, and disjoint denotes that this
is not given. As this semantic matchmaking technique is also used for determin-
ing the similarity of goal templates in SGC, we provide a more general overview
in Table 2 in Appendix A.1 of this document. Previous works for semantically
enabled Web service discovery define these degrees for less expressive functional
descriptions (e.g. [50,44,36]). For candidate detection in Web service composi-
tion, slightly different matchmaking definitions are required [18].

Semantic Matchmaking – Goal Instance Level. The usability of a Web service
W for solving a goal instance GI(G) is dependent on the concrete inputs defined
by the client. It has to hold that the input binding β that is specified for in-
stantiating G triggers an execution of W that is a solution for GI(G), formally:
∀τβ . τ ∈ ({τ}G(β)∧{τ}W (β)). This can be evaluated on basis on the given descrip-
tion elements as follows: match(GI(G),W ) is given if Ω |= [[φDG ]π ∧ φDW ]βW .
Essentially, this determines whether for the input binding defined in a goal in-
stance GI(G) there exists an execution of W that satisfies the final desired state
of GI(G). To integrate both levels of discovery, this general condition can be
simplified for the distinct matchmaking degrees on the goal template level. We
refer to the detailed specification in [67].

21



3.2 Semantic Goal Caching Specification

The following explains the design and formal specification of the Semantic Goal
Caching (short: SGC) technique. This is a realization of semantic caching for
Web services in order to improve the efficiency and scalability of SOA / SESA
technology. With respect to the scope of this document, we here give an overview
of the approach and refer to [60] for the detailed specification.

The proposed PhD work concentrates on Web service discovery, i.e. the de-
tection of directly usable Web services. It works on Web services, goal templates
and goal instances, and semantic matchmaking on rich functional descriptions
as explained above. However, the technique is applicable and easy extensible to
other Web service detection scenarios, such as candidate detection for Web ser-
vice composition or other discovery techniques (e.g. on basis of keyword-based
descriptions or for quality-of-service aspects).

This section is structured as follows. At first, we explain the approach and
basic model of the SGC technique. Then, we outline the central features for ef-
ficient runtime discovery, the graph structure for capturing goal templates and
Web service results from them, and the maintenance and evolution of this graph.
Finally, we outline the allocation of the SGC in SOA / SESA system architec-
tures. The prototype and use demonstrative use case are explained in Section 3.3.

Principle & Basic Model
The aim of the SGC technique is to increase the efficiency of Web service de-
tection (with main focus on discovery) in order to improve the scalability of
technologies for automated Web service usage. To reduce the number of match-
making operations necessary to regard all potentially usable Web services as the
bottleneck hampering scalability, we group goals with respect to the semantic
similarity of the requested functionalities and inspect the logical relationship
between their discovery results (the subset of all available Web services that can
be used to solve a goal). The main merits of this approach are:

1. Web service discovery at runtime can be performed by discovery-by-lookup,
i.e. in constant time O(c) which allows to achieve a better runtime efficiency
than all other known approaches

2. organization of available Web service by grouping them with respect to solv-
able problems on the goal template level, which allows to increase scalability
by reducing the search space for service detection

3. the SGC technique is truly language independent, i.e. it is neither bound to
a particular specification language nor to a particular description model for
goals and Web services.

The central aspect of interest for the SGC technique is the logical relationship
between the functional similarity of goals and the usability of Web services for
these. Let similar(Gi, Gj , d) be a ternary relation that denotes the functional
similarity of two goals Gi and Gj , and usable(G,W, d) denote the usability of
a Web service or composition for solving a goal; in both relations, d denotes

22



the matchmaking degree between the functionalities: exact, subsume, plugin,
intersect as positive, and disjoint as the negative degree. The conceptual
basis for the SGC technique is that we can infer knowledge about the usability
of Web services by inference rules of the form

usable(Gj ,W, d3) ← similar(Gi, Gj , d1) ∧ usable(Gi,W, d2).

This means that we can infer the matchmaking degree between a goal Gj

and a Web service W from knowledge about the matchmaking degree between
Gj and another goal Gi and the degree between Gi and W . On the basis of these
rules, we can (1) use Web service discovery results on the goal template level as
a filter for the goal instance level, and (2) precisely determine the set of usable
Web services for semantically similar goal templates. Appendix A.2 provides a
concise overview of these inference rules.

Runtime Discovery by Lookup
As the first functional aspect of the SGC technique, this is concerned with Web
service discovery for the runtime branch in Figure 4. Because the requested
functionality of every goal instance is a specialization of the functionality re-
quested in the corresponding goal template, it holds that ∀W. ¬match(G,W ) ⇒
¬match(GI(G),W ) (see above). In consequence, for determining the usable Web
services for a goal instance at runtime, we only need to inspect those Web services
that are usable for the respective goal template.

We have specified a matchmaking technique that allows to precisely deter-
mine the usability of a Web service for a goal instance (see Section 3.1). Under
the exact and plugin degree, this does not require any additional matchmaking
so that we achieve computational costs of O(1); for the subsume and intersect
degree, an additional matchmaking step is need so that with overall computa-
tional time is O(nG) with nG denoting the number of usable Web services for
the goal template that is significantly smaller that the number of all available
Web services, i.e. nG ¿ n.

Figure 8 illustrates the Web service discovery procedure for goal instances.
With respect to the expectable frequency of operations in SOA applications
(new request ¿f new goal <f new / updated Web Service, see Section 2.3),
we therewith achieve a very high runtime efficiency.

Fig. 8. Procedure of Detecting usable Web Services for a Goal Instance

23



Goal-driven Web Service Indexing – The SGC Graph
The second aspect is the SGC graph that groups goals on basis of their semantic
similarity along with their respective discovery results. This organizes available
Web services with respect to problems that they can solve, therewith reduces
the search space for service detection in order to achieve a better efficiency and
scalability for the orthogonal-to-runtime branch in Figure 4.

As exemplified in Figure 9, the SGC graph is defined as follows:

– every inner node is a goal template G
– every leaf node is a Web service W
– the arcs are mediators that connect nodes and define the matchmaking de-

gree d between them, such that
• goal (inner) nodes are connected by GG Mediators with d = similarity

degree of the goal templates
• each leaf node (Web service W ) is connected by WG Mediator to a goal

template G such that d = usability degree of W for solving G

Fig. 9. Example of an SGC Graph

In the figure, G3 is a goal template that requests a functional specialization
of G1 (e.g., G1 requests the best restaurant in a city in Austria, and G3 requests
the best restaurant in a city in Tyrol). Hence, the GG Mediator is a directed
connector with G1 as the source and G3 as the target, and it specifies subsume
as the similarity degree between them. Because of the usability degree between
of the Web service W1 and W2 for G1, we can infer the usability degree for G3

on basis of the above mentioned inference rules. The right hand side of the figure
shows the rest of the SGC graph in a more coarse granularity.

Specifying the arcs between goal templates and Web service as mediators
(logical components that connect elements and resolve possible occurring het-
erogeneities) allows to integrate mediation techniques. With special attention
for an integration into WSMO, therewith data and process level mediation tech-
niques can be applied for respective heterogeneities that hamper interoperability
of goals and Web services [63].

24



SGC Graph Management
An important aspect for the operational quality and accuracy of the SGC tech-
nique is management and evolution of the SGC graph. There are two main
requirements on the SGC graph in order to provide an efficient search tree.

1. Free of Redundance.
The SGC graph should only capture the minimal information that are necessary
to be functional. In particular, this refers to redundant arcs between goal tem-
plates: GG Mediators that can be inferred from others are obsolete and hence
are removed. In the example from Figure 9, imagine a new goal template G6

such that subsume(G1, G6) and subsume(G6, G3), i.e. a functional subsumption
hierarchy G1 < G6 < G3. Here, the connection between G1 and G3 becomes
obsolete, so that the respective GG Mediator can be removed.

2. Minimal Distance for Goal Insertion.
This is concerned with the addition of new goal templates and their allocation
in the existing SGC graph. To maintain the quality of the SGC graph for rep-
resenting the occurring objectives in an application based on the similarity of
goals, it is critical to insert new goals in the appropriate place in the graph.
This is given if the distance between the new goal and its neighbor goal nodes is
minimal in comparison to all other possible places for allocating the new goal.

To ensure this, the goal insertion applies so-called ∆-relations. In a nutshell,
these describe the semantic difference between the requested functionalities re-
quested in goal templates. While we refer to [66] for the detailed definition, we
here merely illustrate the approach: defined over sim(D) as the FOL formula that
simulates a functional description, a ∆-relation is a pair of formulae ∆ = (δ1, δ2)
with δ1 = φDG1 ∧ ¬φDG2 and δ2 = ¬φDG1 ∧ φDG2 . Figure 10 illustrates this.

Fig. 10. Illustration of a ∆-relation

When inserting a new goal, we determine the correct branch and position in
the SGC graph by determining the minimal ∆-relation between the new goals
and existing ones. The addition, removal, or modification of a Web services
requires to re-compute the usability degrees for affected goal templates, but this
does not affect the critical qualities of the SGC graph. Therewith, it is ensured

25



that the SGC graph evolves towards an optimal representation of an application
with respect to the requested functionalities and the available Web services for
solving them.

Both goal insertion and Web service updates are expensive operations. How-
ever, (1) we expect them to be less frequent than concrete request formulation
in form of goal instances, and (2) they are performed orthogonal to system
runtime and hence do not hamper the efficiency of the SGC technique. While
redundance-free and optimal goal insertion are the primary aspects for ensuring
the appropriateness of the SGC graph, the following aspects are also relevant
but will not be elaborated in detail in the proposed work.

Cache Management. This refers to the removal of objects from the cache
structure that are not needed anymore. While this is critical in several
caching environments that are concerned with working memory, this is not
primarily relevant in our context. The reason is that the SGC graph is kept
in a knowledge base (not in working memory, see below), and hence its size
does not hamper the operational functionality of the SGC technique.

Goal Template Learning. Obviously, the achievable quality of the SGC tech-
nique is dependent on the number of similar goal templates. In order to in-
crease this, one can automatically learn new goal templates out of concrete
goal instances that have been formulated by clients. However, we consider
this as a suitable future extension while the proposed PhD work will be
focused on the primary aspects for realization of the SGC technique.

SGC in SOA / SESA Architectures
The final aspect of the SGC technology design is its allocation in SOA, and
especially SESA architectures. As shown in Figure 11, the SGC technique (1)
serves as an intermediate component through which the system components
that need to perform Web service detection access the available Web service
repositories, and (2) is used by client for browsing existing goal templates.

Fig. 11. SGC Allocation in SOA / SESA System Architectures

In consequence, the functional components utilize the SGC technique for
Web service detection. The proposed thesis therefore specifies an algorithm for
Web service discovery that works with the SGC technique. This algorithm en-
compasses the following features:

26



1. SGC Graph Generation (computing of goal similarity and Web service us-
ability degrees)

2. Runtime Discovery (semantic matchmaking for goal instances)
3. Goal Template Insertion and Web Service Update Management

3.3 Prototype & Demonstrative Use Case

In order to demonstrate the functionality of the SGC technique, the PhD work
encompasses a prototype implementation and its application in an illustrative
example. The the main part of the proposed work will be the formal specification
of the SGC technique as outlined above; the purpose of the prototype is merely
illustration and exemplification.

The technical platform of the prototype is comprised of flora-2 for man-
aging the SGC Graph, and vampire for semantic matchmaking. This technical
framework allows the SGC prototype to become language independent: while
flora-2 only deals with the SGC graph on basis of molecules that denote goal
similarity and Web service usability, it remains independent of the specification
language and description structure for requested and provided functionalities.

flora-2 is an open source reasoner (available at sourceforge) for Frame-
Logic, an expressive logic programming language that allows to deal with frame-
based knowledge models [41]. It has been successfully used in related efforts for
Web service discovery (e.g. [40]), and is integrated into the WSML reasoning
framework (see http://tools.deri.org/wsml2reasoner/). The reasons why
flora-2 has been chosen as the platform for realizing the SGC technique are:

– SGC graph management as a logic programs (highly expressive and adequate
for inference rules)

– the internal knowledge base can be used for storing and maintaining the
SGC graph

– preserves language independence by separation from semantic matchmaking

vampire is a resolution-based theorem prover for classical first-order logic
with equality [52] that has been dominating respective competitions in the recent
years. It has been successfully applied in previous works on semantic Web service
discovery [68]. The main benefit of using vampire is that it allows to model
goal and Web service descriptions precisely as specified in our framework (see
Section 3.1), and it supports the calculation and reasoning of ∆-relations as
shown in [66]. However, the usability of other reasoning environments will be
evaluated, especially those developed around WSML.

For illustration and demonstration purpose, the thesis exemplifies the SGC
technology and the developed prototype in a real world use case. Although not
definitely decided yet, the current planning is to use an ebay marketplace as the
use case scenario. The reasons for this choice are as follows:

– a real world use case (not an academic invention)
– a large number of semantically similar requests and offers
– existence of a domain ontology (in form of the ebay product catalogue).

27

http://tools.deri.org/wsml2reasoner/�


4 Evaluation – Overview

The increase of efficiency and scalability of SOA / SESA technology achievable by
the SGC technique is dependent on the correlation of Web services and requests
in an application. In particular, the number of goals and their degree of similarity
determines the obtainable granularity of the SGC graph. The more similar goals
are existing, the more fine grained the SGC graph becomes. In the worst case,
there are no semantically similar goals so that the SGC graph cannot be created.

As the working hypothesis, we have claimed that the common situation of
typical SOA / SEA application correlates to the constellation of goals and Web
services wherein the SGC technique achieves a better increase that all other
known approaches (see Hypothesis 8 in Section 1.2). The purpose of the evalua-
tion part of the proposed thesis is to verify this hypothesis by statistical analysis
of real-world SOA applications. We therefore examine existing as well as po-
tential SOA applications with main focus on e-commerce, which is commonly
considered as one of the most beneficial application areas of advanced Web tech-
nology [26,74]. The following outlines the approach for this evaluation.

4.1 Evaluation Methodology

The evaluation methodology needs to identify the aspects and relevant statis-
tical correlations that are critical for the empiric verification of the working
hypothesis. It therefore consists of two parts.

1. Computational Cost Evaluation of the SGC Discovery Algorithm.
This in detail analysis the computational costs of the SGC discovery algorithm.
As the basis for evaluating the efficiency increase, we therefore identify the as-
pects and dependency factors relevant for efficiency and scalability of Web service
discovery. In particular, this analysis will reveal that

– the runtime efficiency (Web service discovery on the goal instance level) is
in O(nG). Here, nG denotes the number of usable Web services for a goal
template which is dependent on the granularity of the SGC graph

– the obtainable granularity of the SGC graph is dependent on the number
of existing goals and Web services and the degree of similarity of goal tem-
plates. The optimal efficiency and scalability of the orthogonal-to-runtime
branch for Web service discovery is achieved when a functional subsumption
hierarchy of goal templates can be created and the most common usability
degree for Web services is exact or plugin.

2. Application Evaluation Scheme.
With respect to the computational costs analysis, we define the following infor-
mation to be relevant for empirical evaluation of SOA applications.

– the number and functional taxonomy of available Web services
– the number and functional taxonomy of requests for Web services.

28



On the basis of this scheme, we define the statistical correlations that allow
to properly evaluate the increase of efficiency and scalability achievable with the
SGC technology.

4.2 Evaluation Data

We concentrate on particular SOA applications from the area of e-commerce as
the data basis for the evaluation. Apart from being one of the most promising
application areas for advanced Web technology, e-commerce applications com-
monly need to process a very large amount of requests for a confined set of
offered services. Moreover, the runtime efficiency and scalability is of critical
importance for the success of e-commerce technology.

Ironically, there do not exists too many SOA-based e-commerce applications.
The reason therefore is that the current Web service technology stack around
WSDL, SOAP, and UDDI does not allow automated and dynamic usage of Web
services – which is aimed to be overcome by the emerging concept of semanti-
cally enabled SOA technology (see Section 2.1). Hence, we cannot merely apply
existing SOA applications as our data basis for evaluation but we need to exam-
ine emerging as well as potential ones. Covering both business-to-business (B2B)
as well as business-to-consumer (B2C) applications, we therefore have identified
the following examples.

– for B2B, the SOA system established at Verizon for internal software man-
agement (statistical data provision has been offered)

– for B2C, the analysis of ebay-marketplaces as a potential SOA application
(the provision of statistical data is problematic)

These applications appear to be sufficient for providing a statistically sig-
nificant evaluation of the working hypothesis. However, it might be changed or
extended with other SOA applications from real-world scenarios wherefore the
relevant statistical data are available.

4.3 Expected Results

The expected result of the evaluation is the empirical evidence for the working
hypothesis stated in the introduction. In particular, we expect a verification that
the SGC technique allows to significantly increase the efficiency and scalability
of SOA / SESA technology (Hypothesis 7), and that it is superior to all known
approaches (as discussed in Section 2.4) with respect to the common situation
in typical SOA-applications (Hypothesis 8).

Although the evaluation as outlined here has not yet been carried out, we
can observe that the working hypothesis is consistent with the design and pur-
pose of emerging SOA-applications. Regardless whether used within B2B and
B2C e-commerce [24,32], e-government [55], or Enterprise Application Integra-
tion [22], we observe the following properties of SOA systems: (1) provided Web
services provide generic functionalities designed to be (re)-usable for different

29



tasks, and (2) systems are designed to handle very many goals with a similar
semantic structure that differ in the detailed objective specifications. This pre-
cisely correlates with the above identified settings wherein the SGC technique
can achieve its optimal increase rates for efficiency and scalability.

5 Conclusions, Success Factors, Future Work

This paper has presented an overview of a PhD thesis that develops a semantic
caching technique in order to enhance the efficiency and scalability of SOA and
SESA technology.

We have shown the importance of the addressed problem with respect to
the applicability and operational functionality of SOA / SESA technology, and
identified Web service detection as the critical bottleneck. On the basis of a
detailed requirements analysis, we have motivated the technical solution; in this
paper, we have provided a conceptional overview while the detailed specifications
are available in related documents. Finally, we have outlined the approach for
evaluating the working hypothesis, stating that the developed technique achieves
a better increase of efficiency and scalability in typical SOA applications that
all other known approaches. Summarizing, the central research contributions of
the proposed work are:

1. the differentiation of goal templates and goal instances that allows a two-
phase discovery procedure with a runtime and a orthogonal-to-runtime branch

2. the formal specification of semantically enabled Web service discovery with
accurate matchmaking techniques for both branches that work on sufficiently
rich descriptions of requested and provided functionalities

3. the formal specification of the Semantic Goal Caching technique (short:
SGC) that improves efficiency and scalability for Web service discovery by
grouping goal templates with respect to the semantic similarity of the re-
quested functionalities, and enables efficient runtime Web service discovery
by capturing discovery results for goal templates

4. an applicability evaluation of the SGC technique that proofs the working
hypothesis by empirical evidence, and provides insights on the challenges for
future SOA / SESA technology developments.

The developed approaches and technologies are specified in terms of generic
formal definitions. Therewith, the presented work is independent of specific spec-
ification languages and hence can be applied within several frameworks for SOA
and Web service technology. For illustration and demonstration, we apply classi-
cal first-order logic through the work. Thus, the proposed PhD work presents a
generic solution for an important problem that is critical to the success of SOA
and especially of SESA technology. We have shown that the technical realization
of a suitable semantic caching technique is possible. Moreover, we have shown
that the critical success factor – that is whether the SGC technique allows to
achieve an sophisticated efficiency increase in typical SOA applications – can be
considered to be minimal and is explicitly addressed in the evaluation part.

30



Regarding the focus and scope of the proposed work, we concentrate on Web
service discovery whereof other service detection mechanisms can be derived. We
aim at a broader applicability and hence provide a generic, formal specification
of the developed techniques instead of a complete implementation in a particu-
lar framework. Therewith, the presented work can be adopted to several SOA
technology developments. Finally, we focus on formal descriptions of requested
and provided functionalities while neglecting technical details of Web services.
This, potential impact of the proposed work ranges beyond the area of Web
services but may serve as a generic solution for future technology developments
for automated problem solving.

Concluding, this paper as presented a comprehensive overview of the pro-
posed thesis with major attention to the overall approach and line of argument.
Detailed technical specifications are available in related documents that will be-
come part of the final thesis.

Acknowledgements

This material is mainly based upon works supported by the EU funding under
the DIP project (FP6 - 507483). I would like to thank the following people for
fruitful discussions, input, and review of the proposed work: Martin Hepp, Uwe
Keller, Michael Genesereth, Stijn Heymans, and Dieter Fensel.

References

1. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and
K. Verma. Web Service Semantics - WSDL-S. W3C Member Submission 7 Novem-
ber, 2005. online: http://www.w3.org/Submission/WSDL-S/.

2. J. Allen, T. Austin, and J. Hendler. Readings in Planning. Morgan Kaufmann
Publishers, 1990.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer,
Berlin, Heidelberg, 2004.

4. O. L. Astrachan and M. E. Stickel. Caching and Lemmaizing in Model Elimination
Theorem Provers. In In Proc. of the 11th International Conference on Automated
Deduction (CADE-11), 1992.

5. D. Bachlechner, K. Siorpaes, D. Fensel, and I. Toma. Web Service Discovery - A
Reality Check. Technical Report DERI-TR-2006-01-17, DERI, 2006.

6. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,
Martin. D., McIlraith. S., D. McGuinness, J. Su, and S. Tabet. Semantic Web
Services Framework (SWSF). W3C Member Submission 9 September, 2005. online:
http://www.w3.org/Submission/SWSF/.

7. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic Composition of e-Services that Export their Behavior. In In Proc. of First
Int. Conference on Service Oriented Computing (ICSOC), 2003.

8. A. B. Bondi. Characteristics of Scalability and their Impact on Performance.
In Proceedings of the 2nd International Workshop on Software and Performance,
Ottawa, Ontario, Canada, pages 195–203, 2000.

31



9. D. Booth and C. K. Liu. Web Services Description Language (WSDL) Version 2.0
Part 0: Primer. Candidate recommendation 6 january 2006, W3C, 2006. online:
http://www.w3.org/TR/wsdl20-primer.

10. M. Brodie, C. Bussler, J. de Brujin, T. Fahringer, D. Fensel, M. Hepp, H. Lausen,
D. Roman, T. Strang, H. Werthner, and M. Zaremba. Semantically Enabled Ser-
viceOriented Architectures: A Manifesto and a Paradigm Shift in Computer Sci-
ence. Technical Report TR-2005-12-26, DERI, 2005.

11. M. Brodie and M. R. Stonebraker. Legacy Information Systems Migration: The
Incremental Strategy. Morgan Kaufmann, San Francisco, 1995.

12. C. Bussler. B2B Integration: Concepts and Architecture. Springer, Berlin, Heidel-
berg, 2003.

13. Szyperski. C. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Professional, Boston, 2 edition, 2002.

14. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and
C. Pedrinaci. IRS-III – A Broker for Semantic Web Services based Applications.
In In Proc. of the 5th International Semantic Web Conference (ISWC 2006),
Athens(GA), USA, 2006.

15. B. Chidlovskii, C. Roncancio, and M.-L. Schneider. Semantic Cache Mechanism
for Heterogeneous Web Querying. Computer Networks, 31(11-16):1347–1360, 1999.

16. L. Clement, A. Hately, C. von Riegen, and T. (eds) Rogers. UDDI Ver-
sion 3. ”uddi spec technical committee draft”, OASIS, 2004. Available from
http://uddi.org/pubs/uddi v3.htm.

17. I. Constantinescu, W. Binder, and B. Faltings. Flexible and Efficient Matchmaking
and Ranking in Service Directories. In Proc. of the 3rd International Conference
on Web Services (ICWS 2005), sFlorida, USA, 2005.

18. I. Constantinescu, B. Faltings, and W. Binder. Large Scale, Type-Compatible
Service Composition. In Proceedings of the IEEE International Conference on
Web Services (ICWS’04), San Diego, California, USA, 2004.

19. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2 edition, 2001.

20. I. Dickinson and M. Wooldridge. Agents are not (just) Web Services: Considering
BDI Agents and Web Services. In Proceedings of the 2005 Workshop on Service-
Oriented Computing and Agent-Based Engineering (SOCABE’2005), Utrecht, The
Netherlands, 2005.

21. J. Domingue, S. Galizia, and L. Cabral. The Choreography Model for IRS-III. In
Proc. of the 39th Hawaiian International Conference On System Sciences (HICSS-
39), Kauai Island, Hawaii, 2006.

22. A. Duke, J. Davies, M. Richardson, and N. Kings. A Semantic Service Orientated
Architecture for the TelecommunicationsIndustry. In Proc. of the IFIP Interna-
tional Conference on Intelligence in Communication Systems (INTELLCOMM)
2004, Bangkok, Thailand, pages 236–245, 2004.

23. O. M. Duschka and M. R. Genesereth. Query planning in Infomaster. In In Proc.
of the ACM Symposium on Applied Computing, 1997.

24. T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall PTR, 2004.

25. T. Erl. Service-Oriented Architecture (SOA). Concepts, Technology, and Design.
Prentice Hall PTR, 2005.

26. D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and E-
Commerce. Springer, Berlin, Heidelberg, 2 edition, 2003.

27. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2), 2002.

32



28. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and
J. Domigue. Enabling Semantic Web Services. The Web Service Modeling Ontology.
Springer, 2006.

29. D. Fensel et al. The Unified Problem Solving Method Development Language
UPML. Knowledge and Information Systems Journal (KAIS), 5(1), 2003.

30. C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated Composition of E-
services: Lookaheads. In Proc. of International Conference on Service Oriented
Computing (ICSOC 2004), NY, 2004.

31. S. Grimm, B. Motik, and C. Preist. Variance in e-Business Service Discovery. In
Proc. of the ISWC 2004 workshop on Semantic Web Services: Preparing to Meet
the World of Business Applications, Hiroshima, Japan, Nov. 2004, 2004.

32. H. He, H. Haas, and D. Orchard. Web Services Architecture Usage Scenar-
ios. W3C Working Group Note 11 February 2004November 2004, 2004. online:
http://www.w3.org/TR/ws-arch-scenarios/.

33. I. Horrocks and S. Tobies. Optimisation of Terminological Reasoning. In Proceed-
ings of the International Workshop in Description Logics 2000 (DL2000), 2000.

34. S. Kabel, R. de Hoog, B. J. Wielinga, and A. Anjewierden. The added value of Task
and Ontology-based Markup for Information Retrieval. Journal of the American
Society for Information Science and Technology (JASIST), 55(4):348–362, 2004.

35. A. M. Keller and J. Basu. A Predicate-based Caching Scheme for Client-Server
Database Architectures. The VLDB Journal, 5:35–47, 1996.

36. U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in
the WSMO Framework. In J. Cardoses, editor, Semantic Web: Theory, Tools and
Applications. Idea Publishing Group, 2006. (to appear).

37. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of
Services. In Proceedings of the 2nd European Semantic Web Conference (ESWC
2005), Crete, Greece, 2005.

38. U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions
of Web Services. In Proceedings of the 3rd European Semantic Web Conference
(ESWC 2006), Montenegro, 2006.

39. M. Kerrigan. Web Service Selection Mechanisms in the Web Service Execution
Environment (WSMX). In Proceedings of the 21st Annual ACM Symposium on
Applied Computing (SAC), 2006.

40. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
Logical Framework for Web Service Discovery. In Proc. of the ISWC 2004 workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, Nov. 2004, 2004.

41. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. JACM, 42(4):741–843, 1995.

42. D. Knuth. Big Omicron and big Omega and big Theta. ACM SIGACT News,
8(2), 1976.

43. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling
Ontology (WSMO). W3C Member Submission 3 June, 2005. online:
http://www.w3.org/Submission/WSMO/.

44. L. Li and I. Horrocks. A software framework for matchmaking based on semantic
web technology. In Proceedings of the 12th International Conference on the World
Wide Web, Budapest, Hungary, 2003.

45. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz. Reference
Model for Service Oriented Architecture 1.0. Committee Specification, OASIS,
2006.

33



46. D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission
22 November, 2004. online: http://www.w3.org/Submission/OWL-S/.

47. S. McIlraith, T. Cao Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, Special Issue on the Semantic Web, 16(2):46–53, 2001.

48. S. McIlraith and T. C. Son. Adapting Golog for Composition of Semantic Web
Services. In roc. of the 8th International Conference on Knowledge Representation
and Reasoning (KR ’02), Toulouse, France, 2002.

49. A. Newell. The Knowledge Level. Artificial Intelligence, 18:87–122, 1982.
50. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web

services capabilities. In Proceedings of the First International Semantic Web Con-
ference, Springer, 2002.

51. C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the
Int. Semantic Web Conf. (ISWC 2004), 2004.

52. A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE. AI
Communications, 15(2):91–110, 2002. Special Issue on CASC.

53. D. Roman, H. Lausen, and U. Keller. Web Service Modeling Ontology (WSMO).
Working Draft D2, WSMO Working Group, 2005. final version v1.2, 13 April 2005,
online at: http://www.wsmo.org/TR/d2/v1.2/.

54. S. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice
Hall, 2 edition, 2003.

55. S. K. Sharma and J. N.D. Gupta. Web Services Architecture for M-Government:
Issues and Challenges. International Journal of Electronic Government, 1(4):462–
474, 2004.

56. M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company,
2 edition, 2005.

57. R. M. Smullyan. First Order Logic. Springer, 1968.
58. N. Srinivasan, M. Paolucci, and K. Sycara. CODE: A Development Environment

for OWL-S Web services. In Demonstration at 3rd International Semantic Web
Conference (ISWC 2004), Hiroshima, Japan., 2004.

59. M. Stollberg. Reasoning Tasks and Mediation on Choreography and Orchestra-
tion in WSMO. In Proceedings of the 2nd International WSMO Implementation
Workshop (WIW 2005), Innsbruck, Austria, 2005.

60. M. Stollberg. Semantic Goal Caching. Technical Report, DERI, 2006.
61. M. Stollberg, E. Cimpian, and D. Fensel. Mediating Capabilities with Delta-

Relations. In Proceedings of the First International Workshop on Mediation in
Semantic Web Services, co-located with the Third International Conference on Ser-
vice Oriented Computing (ICSOC 2005), Amsterdam, the Netherlands, 2005.

62. M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A Semantic Web Mediation
Architecture. In Proceedings of the 1st Canadian Semantic Web Working Sympo-
sium (CSWWS 2006), Quebec, Canada, 2006.

63. M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A Semantic Web Mediation
Architecture. In M. T. Kon and D. Lemire, editors, Canadian Semantic Web,
Semantic Web and Beyond: Computing for Human Exprerience. Springer, 2006.

64. M. Stollberg, C. Feier, D. Roman, and D. Fensel. Semantic Web Services - Concepts
and Technology. In N. Ide, D. Cristea, and D. Tufis, editors, Language Technology,
Ontologies, and the Semantic Web. Kluwer Publishers (to appear), 2006.

65. M. Stollberg and M. Hepp. Goal Description Ontology. Deliverable D3.10, DIP,
2006.

66. M. Stollberg and U. Keller. Delta Relations – Semantic Difference of Functional
Descriptions. Technical Report DERI-TR-2006-08-18, DERI, 2006.

34



67. M. Stollberg and U. Keller. Semantic Web Service Discovery with Rich Functional
Descriptions. International Journal of Electronic Commerce (IJEC), Special Issue
on: Semantic Matchmaking and Resource Retrieval, 2007 (to appear). submitted
manuscript.

68. M. Stollberg, U. Keller, and D. Fensel. Partner and Service Discovery for Collabora-
tion Establishment on the Semantic Web. In Proceedings of the Third International
Conference on Web Services, Orlando, Florida, 2005.

69. M. Stollberg, U. Keller, P. Zugmann, and R. Herzog. Semantic Web Fred - Agent
Cooperation on the Semantic Web. Demontration at the 3rd International Seman-
tic Web Conference, Hiroshima, Japan, 2004.

70. M. Stollberg and R. Lara. WSMO Use Case “Virtual Travel Agency”. Deliverable
D3.3, WSMO, 2004.

71. M. Stollberg, M. Moran, L. Cabral, B. Norton, and J. Domingue. Experiences
from Semantic Web Service Tutorials. In Proc. of the Semantic Web Education
and Training Workshop (SWET’06) at the First Asian Semantic Web Conference
(ASWC 2006), Beijing, China., 2006.

72. M. Stollberg and F. Rhomberg. Survey on Goal-driven Architectures. Technical
Report DERI-TR-2006-06-04, DERI, 2006.

73. M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel.
Semantic Web Fred – Automated Goal Resolution on the Semantic Web. In Proc.
of the 38th Hawaii International Conference on System Science, 2005.

74. R. Thome, H. Schinzer, and M. Hepp. Electronic Commerce und Electronic Busi-
ness. Mehrwert durch Integration und Automation. Vahlen, Munich, 2005.

75. P. Traverso and M. Pistore. Automatic Composition of Semantic Web Services
into Executable Processes. In Proc. 3rd International Semantic Web Conference
(ISWC 2004), Hiroshima, Japan, 2004.

76. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Pub-
lication and Discovery of Web Services. Journal of Information Technology and
Management, 6(1):17–39, 2005. Special Issue on Universal Global Integration.

77. L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-Based Service Selection and Rank-
ing with Trust and Reputation Management. In Proc. of the OTM Confederated
International Conferences CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus,
pages 466–483, 2005.

78. H. Wache, L. Serafini, and R. Garćıa-Castro. Survey of Scalability Techniques for
Reasoning with Ontologies. Deliverable D2.1.1, Knowledge Web, 2004.

79. D. Wessels. Web Caching. O’Reilly & Associates Inc, 2001.
80. D. Wu, B. Parsia, Sirin E., J. Hendler, and D. Nau. Automating DAML-S Web

Services Composition Using SHOP2. In Proceedings of 2nd International Semantic
Web Conference (ISWC 2003), Sanibel Island, Florida, 2003.

81. M. Zaremba and C. Bussler. Towards Dynamic Execution Semantics in Semantic
Web Services. In Proc. of the Workshop on Web Service Semantics: Towards
Dynamic Business Integration, International Conference on the World Wide Web
(WWW2005), Chiba, Japan, 2005.

35



A Appendix

A.1 Matchmaking Degrees

Table 2. Definition of Matchmaking Degrees for D1, D2

Denotation &
Visualization

for D1,D2

Definition
for: sim(D1) ' D1

sim(D2) ' D2

Meaning
for {τ}1, {τ}2

exact(D1,D2)

sim(D1) ≡ sim(D2), i.e.
∀β. φD1 ⇔ φD2 .

{τ}1 = {τ}2

plugin(D1,D2)

sim(D1) |= sim(D2), i.e.
∀β. φD1 ⇒ φD2 .

{τ}1 ⊆ {τ}2

subsume(D1,D2)

sim(D2) |= sim(D1), i.e.
∀β. φD1 ⇐ φD2 .

{τ}1 ⊇ {τ}2

intersect(D1,D2)

∃β. φD1 ∧ φD2

∧¬(∀β. (φD1 ⇒ φD2)
∨ (φD1 ⇐ φD2)).

{τ}1 ∩ {τ}2 6= ∅

disjoint(D1,D2)

¬∃β. φD1 ∧ φD2 . {τ}1 ∩ {τ}2 = ∅

36



A.2 Inference Rules

Definition 1 (Inference Rules for Web Service Usability). Let W be a
Web service with a functional description DW , and let G1 and G2 be goal tem-
plates with functional descriptions DG1 and DG2 . Let d(G,W ) denote the match-
making degree between a goal template and a Web service, and d(Gi, Gj) denote
the similarity degree between two goal templates.

Given d(G1,W ) and d(G1, G2), we can infer knowledge about d(G2,W ) by the
following rules.

1. exact(G1, G2) : d(G1,W ) = d(G2,W ).

2. plugin(G1, G2) : (i) exact(G1, W ) ⇒ subsume(G2,W ).
(ii) subsume(G1,W ) ⇒ subsume(G2,W ).
(iii) plugin(G1,W ) ⇒ subsume(G2,W ) or
(iv) plugin(G1,W ) ⇒ plugin(G2,W ) or
(v) plugin(G1,W ) ⇒ intersect(G2,W ).
(vi) intersect(G1,W ) ⇒ subsume(G2,W ) or
(vii) intersect(G1,W ) ⇒ intersect(G2,W ).
(viii) disjoint(G1,W ): no statement possible.

3. subsume(G1, G2) : (i) exact(G1, W ) ⇒ plugin(G2,W ).
(ii) plugin(G1,W ) ⇒ plugin(G2,W ).
(iii) subsume(G1,W ) ⇒ subsume(G2,W ) or
(iv) subsume(G1,W ) ⇒ plugin(G2,W ) or
(v) subsume(G1,W ) ⇒ intersect(G2,W ) or
(vi) subsume(G1,W ) ⇒ disjoint(G2,W ).
(vii) intersect(G1,W ) ⇒ plugin(G2,W ) or
(viii) intersect(G1,W ) ⇒ intersect(G2,W ) or
(ix) intersect(G1,W ) ⇒ disjoint(G2,W ).
(x) disjoint(G1,W ) ⇒ disjoint(G2, W ).

4. intersect(G1, G2) : (i) exact(G1, W ) ⇒ intersect(G2,W ).
(ii) plugin(G1,W ) ⇒ plugin(G2,W ) or
(iii) plugin(G1,W ) ⇒ intersect(G2,W ).
(iv) subsume(G1,W ) ⇒ subsume(G2,W ) or
(v) subsume(G1,W ) ⇒ intersect(G2,W ) or
(vi) subsume(G1,W ) ⇒ disjoint(G2,W ).
(vii) intersect(G1,W ) ⇒ subsume(G2,W ) or
(viii) intersect(G1,W ) ⇒ intersect(G2,W ) or
(ix) intersect(G1,W ) ⇒ disjoint(G2,W ).
(x) disjoint(G1,W ): no statement possible.

5. disjoint(G1, G2) : (i) exact(G1, W ) ⇒ disjoint(G2,W ).
(ii) subsume(G1,W ) ⇒ disjoint(G2,W ).
(iii) d(G1,W ) and d 6= subsume: no statement possible.

37


