
Caching for Semantic Web Service Discovery

Michael Stollberg

Digital Enterprise Research Institute (DERI),
University of Innsbruck, Austria

michael.stollberg@deri.org

Abstract. This document is an extended abstract on a PhD work that
develops an efficient, scalable, and stable Web service discovery engine.
These qualities become important for discovery engines that serve as a
software component in automated SOA technologies. Based on a pro-
found formal specification, the approach is to capture design time dis-
covery results and then use this knowledge for efficient runtime discovery.
The work is evaluated by a statistical time efficiency comparison with
other Web service discovery engines, and by a applicability study in real-
world SOA applications.

Keywords: Semantic Web Services, Goals, Functional Descriptions, Dis-
covery, Efficiency, Scalability, Stability

1 Introduction

Discovery is one of the central reasoning tasks in SOA systems, concerned with
the detection of usable Web services for a specific request or application con-
text. Aiming at the automation of this task, most existing works on semantically
enabled Web service discovery focus on the quality of the applied matchmak-
ing techniques. However, the following qualities become important for using an
automated Web service discovery engine as a reliable software component in a
SOA system: efficiency as the time required for finding a usable Web service,
scalability as the ability to deal with large numbers of available Web services,
and stability as the behavioral constancy among several invocations.

My PhD work addresses this challenge by applying the concept of caching to
Web service discovery. For this, I extend the goal-driven approach that is pro-
moted by the WSMO framework (www.wsmo.org). I distinguish goal templates
as generic objective descriptions and goal instances as instantiations of a goal
template that denotes concrete client requests. At design, Web service discovery
for goal templates is performed. The result is stored in a graph that organizes
goal templates by their semantic similarity and captures the minimal knowledge
on the usable Web services for each goal template. This knowledge is utilized for
efficient runtime discovery, i.e. the detection of a usable Web service for solving
a goal instance that is defined by a client. In particular, this is achieved by:

1. pre-filtering as only the Web services that are usable for the corresponding
goal template are potential candidates for the goal instance, and

2. minimal use of a reasoner for matchmaking because in certain situations
the usability of a Web service for a goal instance can be directly inferred.

www.wsmo.org�


2 Solution Overview

My work extends the approach for Web service discovery promoted by the
WSMO framework with a refined goal model and a rigid formalization for the
functional aspects of Web service discovery. On this basis, the so-called Seman-
tic Discovery Caching technique (short: SDC) caches the minimal knowledge in
order to optimize the computational qualities of Web service discovery.

2.1 Web Service Discovery Framework

Figure 1 shows the conceptual model as a dataflow diagram. It deals with three
entities: Web services that have a formal description and are accessible via a
WSDL interface, goal templates as formalized, generic objective descriptions that
are stored in the system, and goal instances that formally describe a concrete
request by instantiating a goal template with concrete inputs. At design time,
Web services for goal templates are discovered. The result is cached in the SDC
graph, the knowledge structure for optimizing the Web service discovery process.
At runtime, a concrete client request is formulated as a goal instance. The run-
time discovery finds one usable Web service for solving this. It uses the cached
knowledge for optimization, in particular for pre-filtering and minimizing the
number of necessary matchmaking operations.

Fig. 1. Overview of Web Service Discovery Framework

In contrast to an invocation request for a Web service, a goal formally de-
scribes a client objective of getting from the current state of the world into a
state wherein the objective is satisfied. This provides an abstraction layer for
facilitating problem-oriented Web service usage: the client merely specifies the
objective to be achieved as a goal, and the system discovers, composes, and ex-
ecutes suitable Web services for solving this. The distinction of goal templates
and goal instances allows to better support the goal formulation by clients (e.g.
by form-based instantiation through a graphical user interface), and – more im-
portantly – provides the foundation for the two-phase Web service discovery
outlined above.

2



I consider functional aspects as the primary aspect for discovery: if a Web
service does not provide the functionality for solving a goal, then it is not usable
and other, non-functional aspects are irrelevant. For this, the possible solution
for goals and possible executions of Web services are formally described by func-
tional descriptions D = (Σ, Ω, IN , φpre, φeff ); Σ is the signature, Ω are domain
ontologies, IN are the input variables, the precondition φpre and the effect φeff

constraint the start- and end states. As the design time discovery result, the
usability of a Web service W for a goal template G is expressed in terms of
matching degrees (exact, plugin, subsume, intersect, disjoint). A goal instance
is defined as a pair GI(G) = (G, β) with the corresponding goal template G and
an input binding β that is used to invoke a Web service W for solving GI(G). If
W is usable for G under the degrees exact or plugin, then W is also usable for
any GI(G); under the degrees subsume and intersect, additional matchmaking
is required at runtime; if W is not usable for G it is also not usable for GI(G).

2.2 Semantic Discovery Caching

The main contribution of my work is the SDC technique as the solution for
enabling efficient, scalable, and stable Web service discovery. Its purpose is to
improve the computational quality of the runtime discovery process by exploiting
the relationships between goal templates, goal instances, and Web services.

The central element is the SDC Graph that provides an index structure for
efficient search of goal templates and usable Web services. It organizes goal tem-
plates with respect to their semantic similarity, and keeps the minimal knowledge
on the usability of the available Web services. Two goal templates Gi and Gj are
considered to be similar if they have at least one common solution; if this is
given, then mostly the same Web services are usable for them. In consequence,
the upper layer of a SDC graph is the goal graph that organizes goal templates in
a subsumption hierarchy, and the lower layer is the usability cache that captures
the minimal knowledge on the usability of the available Web services. Upon this
cache structure, the discovery operations make use of inference rules between
the similarity degree of goal templates and the usability degree of Web services.

For illustration, Figure 2 shows an example of an SDC graph along with
the most relevant inference rules. This considers three goal templates: G1 for
package shipment within Europe, G2 for Switzerland, and G3 for Germany. As
each solution for G2 is also a solution of G1, their similarity degree is subsume; the
same holds between G3 and G1. These relationships are expressed by directed arcs
in goal graph. Besides the goal templates, let there be some Web services, among
them e.g. W1 that provides package shipment within Europe, W2 throughout the
whole world, W3 within the European Union, and W4 within the Commonwealth.
Their usability degree for each goal template is explicated by directed arcs in the
usability cache. This knowledge is efficiently used for runtime discovery. Consider
a goal instance for shipping a package from Munich to Berlin: its corresponding
goal instance is G3; because W1, W2, and W3 are usable for G3 under the plugin
degree, we know that each of them is usable for solving the goal instance without
the need of a matchmaker during runtime discovery.

3



Structure of an SDC Graph inference rules for subsume(G1,G2)

(1) exact(G1, W ) ⇒ plugin(G2, W ).

(2) plugin(G1, W ) ⇒ plugin(G2, W ).

(3) subsume(G1, W ) ⇒ exact(G2, W ) or

(4) subsume(G1, W ) ⇒ plugin(G2, W ) or

(5) subsume(G1, W ) ⇒ subsume(G2, W ) or

(6) subsume(G1, W ) ⇒ intersect(G2, W ) or

(7) subsume(G1, W ) ⇒ disjoint(G2, W ).

(8) intersect(G1, W ) ⇒ plugin(G2, W ) or

(9) intersect(G1, W ) ⇒ intersect(G2, W ) or

(10) intersect(G1, W ) ⇒ disjoint(G2, W ).

(11) disjoint(G1, W ) ⇒ disjoint(G2, W ).

Fig. 2. Example of a SDC Graph and Inference Rules

The SDC graph during its life time are maintained by algorithms that handle
the addition, removal, and modification of goal templates and Web services. Two
refinements ensure that the SDC graph exposes sophisticated search properties:
(1) the only similarity degree that occurs in the goal graph is subsume, and
(2) the minimization of the usability cache in order to avoid redundancy. The
SDC technique is implemented as a discovery component of the WSMX system,
available at the SDC homepage: members.deri.at/∼michaels/software/sdc/.

3 Evaluation

To demonstrate the achievable quality increase for Web service discovery, I have
run several comparison test between the SDC-enabled runtime discovery and an
engine that applies the same matchmaking techniques but does not make use of
the cached knowledge. Table 1 shows a snapshot of the statistical prepared test
results; details and the original test data are available from SDC homepage. This
clearly shows that the SDC discovery is efficient (the average time is always
lower), scalable (the time for the SDC discovery remains the same for increasing
numbers of Web services), and stable (the standard deviation is significantly
smaller than the one of the comparison engine).

Another relevant aspect is the appropriateness of the assumptions that un-
derly the conceptual model. For this, I have examined the applicability in real-
world settings – e.g. in one of the world’s largest SOA systems at telecommuni-
cation provider Verizon. In summary, there are many Web services that provide
similar functionalities but differ in the detailed usage conditions. Also, the us-
age requests posted by the consuming applications can be expressed in terms of
goals; these can be organized in a fine-grained subsumption hierarchy in the SDC
graph so that its benefits for efficient runtime discovery can be exploited. Be-
sides, the distinction of goal templates and goal instances has been regarded by
practioneers as suitable way for realizing problem-oriented Web service usage.

4

members.deri.at/~michaels/software/sdc/�


Table 1. Comparison Test Statistics (all values in seconds)

No. of WS engine mean µ median x̄ standard deviation σ
10 SDC 0.28 0.27 0.03

non-SDC 0.41 0.39 0.21
100 SDC 0.29 0.28 0.03

non-SDC 3.96 3.68 2.55
2000 SDC 0.31 0.29 0.05

non-SDC 72.96 65.55 52.13

4 Related Work and Publications

Very few existing works address the computational quality of Web service discov-
ery techniques. I am not aware of any other approach that addresses this problem
in a similar way. The following outlines the relationship to related research fields;
details are discussed in the publications listed below.

Semantic Web Service Discovery. Most works are only concerned with
the matchmaking techniques. As a contribution to this end, my work is based
on a formal model that describes requested and provided functionalities on the
level of executions of Web services and solutions for goals (cf. Section 2).

Web Service Repository Indexing. Other approaches reduce the search
space for discovery by indexing Web service repositories. Keyword-based cat-
egorization as already supported by UDDI is imprecise in comparison to the
SDC graph. More sophisticated solutions create a search tree based on formal
descriptions; this can achieve logarithmic search time, but – in contrast to SDC
– still requires several matchmaking operations for each request.

Caching. Caching techniques are a well-established means for performance
increase in several areas of computing. Respective studies show that caching can
achieve the highest efficiency increase if there are many similar requests. The
SDC graph can be understood as a cache structure for Web service discovery.

Scalable Ontology Repositories. Works on scalable ontology reasoning
infrastructures minimize the reasoning effort at runtime, e.g. by materalization
and organization of the available knowledge at design time. However, such tech-
niques can not replace the SDC technique because it defines a specific knowledge
structure and algorithms for Web service discovery.

Publications (most relevant)

Stollberg, M. and Norton, B.: A Refined Goal Model for Semantic Web Services. In
Proc. of the 2nd International Conference on Internet and Web Applications and Ser-
vices (ICIW 2007), Mauritius, 2007.

Stollberg, M.; Keller, U.; Lausen, H. and Heymans, S.: Two-phase Web Service Dis-
covery based on Rich Functional Descriptions. In Proc. of the 4th European Semantic
Web Conference (ESWC 2007), Innsbruck, Austria, 2007.

Stollberg, M.; Hepp, M., Hoffmann, J.: Efficient and Scalable Web Service Discovery
with Caching. Submitted to 6th International Semantic Web Conference (ISWC 2007).

5


