
Digital Enterprise Research Institute

Survey on
Goal-driven Architectures

Michael Stollberg and Florian Rhomberg

DERI Austria

Technical Report

DERI-TR-2006-06-04

June 4, 2006

DERI-TR-2006-06-04

DERI Galway
University Road
Galway
Ireland
www.deri.ie

DERI Innsbruck
Technikerstrasse 21a
A-6020 Innsbruck
Austria
www.deri.at

DERI Seoul
Yeonggun-Dong, Chongno-Gu
Seoul
Korea
www.deri.org

DERI Stanford
Serra Mall
Stanford, CA
USA
www.deri.org

DERI-TR-2006-06-04

Survey on Goal-driven Architectures

Michael Stollberg and Florian Rhomberg

DERI – Digital Enterprise Research Institute

University of Innsbruck, Austria

Abstract: The ultimate aim of advanced IT technology is to provide infrastructures for
automated problem solving. Based on machine-readable descriptions, intelligent mechanisms
shall enable dynamic usage and combination of available computational resources for solving
problems. Therefore, different branches of Artificial Intelligence (AI) research develop
frameworks for describing problems and resources along with technologies for automated
problem resolution and resource usage. Most commonly, such frameworks center around the
service-side that is concerned with how to describe computational resources in order to allow
automated usage, and the client-side that is concerned with how to describe the problems to be
solved and their resolution process. In order to provide IT technology that reflects real world
problem solving in a sophisticated manner, the service- and the client-side should be decoup-
led to the highest possible extent. Appropriate models for the client-side should allow
specifying objectives to be solved from the client’s perspective without regard to their techni-
cal resolution, thereby providing sophisticated support for the client-side that is decoupled
from technical service usage requests; on the other hand, client-side description elements
should encompass all information required for automated problem resolution by intelligent
mechanisms for automated resource detection, combination, and usage. Such sophisticated cli-
ent-side models is what we refer to as goal-driven architectures. Therein a user only specifies
the objective or problem to be solved while intelligent mechanisms handle the resolution proc-
ess automatically. This paper surveys approaches for goal-driven architectures, deriving the
state of the art on description models for the client-side that is intended to serve as a basis for
developing a goal-driven architecture for Semantic Web Services.

Keywords: Goals, Automated Problem Solving, Cognitive Architectures, BDI
Agents, AI Planning, UPML, Goal Types, Goal Resolution Techniques

Survey on Goal-driven Architectures - i -

TABLE OF CONTENTS

1 Introduction... 1

2 What are Goal-driven Architectures?.. 3

2.1 Motivation for Goal-driven Architectures 3

2.2 Requirements on Goal-driven Architectures 5

2.3 Goals versus Service Usage Requests...................................... 7

2.4 Surveying Goal-driven Approaches .. 8

3 The Soar Technology...10

3.1 The Basic Architecture ... 10
3.1.1 Knowledge Items and Representation 10
3.1.2 Memory Types and Problem Solving Mechanisms 12
3.1.3 Impasse Handling and Learning... 14

3.2 Conclusions ... 16

4 Agent Technology...18

4.1 The Belief-Desire-Intention (BDI) Model and Formalization 19
4.1.1 The notions of Belief, Desire, and Intention 20
4.1.2 Formalization in BDI Logics ... 21
4.1.3 Collaboration of Multiple BDI-Agents .. 28

4.2 System Architectures and Implementation for BDI Agents 30
4.2.1 Introduction ... 30
4.2.2 Overview ... 30

4.3 Conclusions ... 33

5 AI Planning ...35

5.1 Overview.. 35
5.1.1 The Planning Problem.. 35
5.1.2 Planning Techniques ... 36

5.2 Goal and Action Description in Planning................................. 37
5.2.1 STRIPS .. 37
5.2.2 EAGLE... 39

5.3 Conclusions ... 40

Survey on Goal-driven Architectures - ii -

6 The UPML Framework ...42

6.1 Introduction .. 42

6.2 Structure of UPML ... 42

6.3 UPML Element Descriptions .. 44
6.3.1 Ontologies and Domain Models ... 44
6.3.2 Task ... 45
6.3.3 Problem-Solving Methods.. 46
6.3.4 Refiners and Bridges ... 47

6.4 Conclusion .. 47

7 Summary, Findings, Conclusions ..49

7.1 Summary .. 49

7.2 Findings ... 51
7.2.1 Goal Types and Descriptions .. 51
7.2.2 Goal Resolution Techniques... 52

7.3 Conclusions ... 54

References..55

Survey on Goal-driven Architectures - iii -

INDEX OF FIGURES
Figure 1: Abstract Model of Goal Driven Architectures.................................... 5
Figure 2: Illustration of a sub-goal stack .. 15
Figure 3: Example of B-G-I accessible worlds... 26
Figure 4: Example of an Intention Graph .. 32
Figure 5: The Interpreter Loop .. 33
Figure 6: UPML Elements and their Relation .. 43

INDEX OF TABLES
Table 1: Atomic Modalities in Cohen and Levesque’s Intention Logic 23
Table 2: Propositions on Mental Attitudes in Intention Logic 23
Table 3: Desired Properties of Rational Agents in BDI logic 27
Table 4: Goal Operators .. 31
Table 5: Elements of Eagle .. 40
Table 6: UPML Ontology Description Model ... 44
Table 7: UPML Domain Model Description ... 45
Table 8: UPML Task Description Model... 45
Table 9: UPML Problem Solving Method Description Model 46
Table 10: UPML Adapter Description Model ... 47
Table 11: Goal-driven Architectures – Commonalities and Differences................. 53

Survey on Goal-driven Architectures - 1 -

1 Introduction

Research on Artificial Intelligence (AI) is concerned with the creation of intelli-
gent computer systems that perform tasks automatically. Aiming at sophisticated
support for automated problem solving, we observe two elementary methodologies
that are collectively followed throughout the various sub-disciplines of AI research:
first, logics and formal methods are applied in order to enable advanced processing of
complex information, and secondly that system and technology design is founded on
models for problem solving in the real world [McCarthy, 1989]. This has lead to-
wards several foundational paradigms for computer technology design, whereof the
following have significantly influenced IT technology development (in chronological
order): the relational algebra providing the foundation for the broadly used relational
database technology [Codd, 1972], the object-oriented paradigm as a programming
technique that overcomes the deficiencies of procedural programming languages by
means of data abstraction, polymorphism, encapsulation, and inheritance [Meyer,
1997], the agent-oriented paradigm that develops systems wherein agents reside as
autonomous computational elements and satisfy their particular objectives in an inter-
active manner [Shoham, 1993], and service-orientation as the most recent paradigm
that proclaims system architectures consisting of several service that encapsulate
some computational facility and are dynamically used and combined for solving a
specific problem [Erl, 2004].

The ultimate aim of AI research – contemporaneously its motivation and initiation
in the second half of the 20th century – is to create computer systems, or, more gener-
ally, machines that can solve problems in a similar way as human beings do [Turing,
1950]. Several works have been and still are concerned with defining appropriate
frameworks for advanced, intelligent, and automated problem solving by following
the above mentioned methodologies of studying problem solving in nature and apply-
ing logic-based techniques for simulating this. When analyzing the organization of
such frameworks, we can identify the following four common top level elements: (1)
the service-side that is concerned with how to describe computational resources in or-
der to allow automated usage; (2) the client-side that is concerned with how to
describe the problems to be solved and their resolution process. The elements of both
the service- and the client-side are formally described in order to enable automated
problem resolution by (3) intelligent mechanisms, which is supported by (4) auxiliary
elements.1 This paper concentrates on the client-side, investigating the requirements
and the state of the art of so-called goal-driven architectures. Therein, a user shall

1 This terminology has been chosen with respect to service-orientation as the most recent design

paradigm for next generation IT systems. An example of such a framework is the Web Service Model-
ing Framework WSMF [Fensel and Bussler, 2002] with the Web Service Modeling Ontology WSMO
as its successor [Lausen et al., 2005] that defines four top level elements: Web Service for the service-
side, Goals for the client-side, along with Ontologies and Mediators as auxiliary elements.

Survey on Goal-driven Architectures - 2 -

only specify the objective or problem to be solved and intelligent mechanisms auto-
matically handle the resolution process by appropriate computational facilities.

As the term ‘Goal-driven Architecture’ is rather vague and undefined in literature,
we briefly explicate our understanding as well as the arising research questions on ba-
sis of the following example. A user U wants to book a one week holiday by using an
advanced IT system S that provides computational facilities for automated travel and
tourism related booking. U has some further constraints on the holiday package to be
booked, for example: the destination should offer a beach and allow swimming in an
ocean, but preferably not be in an Islamic country with respect to current political
dangers; he also wants to book a scuba diving package, and the accommodation
should not be located in the center of a city or village. The system S should allow U
to specify his objective along with the constraints, while S should be able to auto-
matically detect, arrange, and utilize available computational facilities for solving the
objective – similar to the service offered by a real-world travel agency. The main
merit of such systems is that they bridge the gap between the human and the machine
level problem solving. While U only needs to specify an objective or goal to be
reached, a goal-driven system S is capable of achieving this objective by automati-
cally utilizing appropriate resources as if U was dealing with another human being.
Obviously, sophisticated models for the client-side that allow specifying user objec-
tives and carry all information needed for automated goal resolution are the central
requirement for realizing goal-driven technology. In conjunction with appropriate
definitions for the other three top level elements mentioned above, goal-driven archi-
tectures can realize the aim of “human level machine intelligence” [McCarthy, 1996].

Modeling of client-side elements as the core of goal-driven architectures raises
several questions, including: how to appropriately specify user objectives? What ele-
ments are needed in order to provide all information that is needed for automated
detection, combination, and usage of computational facilities by respective intelligent
mechanisms? What is the difference and benefit of goals in comparison to technical
usage requests? How can arbitrarily complex objectives be specified, and how can
their resolution process be effectively supported? Although a commonly accepted
framework for goal-driven architectures does not exist, related approaches have been
developed in respective sub-disciplines of AI – namely Knowledge Engineering, In-
telligent Agents, and AI Planning; also, the promise of Web Services seems to require
goal-driven technology [Fensel and Bussler, 2002], [Preist, 2004]. The aim of this
paper is to determine the requirements for goal-driven architectures and investigate
existing approaches from respective AI research as the basis for developing a goal-
driven architecture for Semantic Web Services.

The paper is structured as follows: Section 2 examines the motivation and aim of
goal-driven architectures and rationalizes the working approach followed in the pa-
per; Section 3 to 6 examine goal-driven approaches in respective AI disciplines
(namely: the Soar technology in Section 3, Agent technology in Section 4, AI Plan-
ning in Section 5, and Problem Solving Methods in Section 6); finally, Section 7
summarizes the findings and concludes the paper.

Survey on Goal-driven Architectures - 3 -

2 What are Goal-driven Architectures?

As a foundation for the subsequent investigations, the following exposes the moti-
vation for goal-driven architectures and determines the requirements for these.
Besides, in order to rationalize the approach followed throughout this survey, we dis-
cuss the differences between goal-driven and not-goal-driven architectures, and
finally outline the aspects of interest as well as the methodology for examining exist-
ing goal-driven approaches.

2.1 Motivation for Goal-driven Architectures

As stated introductory, the ultimate aim of modern research on Artificial Intelli-
gence is to develop technologies for human level machine intelligence in order to
enable advanced automated problem solving. While the well-known Turing Test de-
fines a benchmark for machine intelligence at a very early point in time – stating that
a machine is considered to be intelligent if its user can not distinguish whether he in-
teracts with a machine or a human [Turing, 1950] – approaches for achieving this aim
have been developed in the following decades. Thereof, we find the theoretical basis
and motivation for goal-driven architectures as the main research results of so-called
Cognitive Science, an interdisciplinary field of research that aims at understanding the
human mind and intelligence as the basis for creating intelligent systems [Nadel,
2003], [Wilson and Keil, 1999]. Cognitive Science follows the above mentioned gen-
eral AI methodology of studying structures and processes in nature as the basis for
simulating them by intelligent technology. Commencing in the 1970ies as basic AI
research, it has produced an impressive compilation of results that serve as the phi-
losophic-theoretical foundation of several AI technology developments.2

The relevant findings with respect to the motivation for goal-driven architectures
are allocated in the field of problem solving – which itself is one of the core aspects
of Cognitive Science as almost all cognitive activities can be regarded as problem
solving. Problem solving is understood as a part of human thinking concerned with
how to reach an objective from the current status of the world when the procedure
therefore is not known a priori. In order to provide a basis for simulating intelligent
behavior, the aim of research in Cognitive Science is to expose the generic mecha-
nisms that humans apply for problem solving, wherefore the fundamental theory has
been provided in [Newell and Simon, 1972]. Although rightly being criticized for re-
ducing the conceptual model of mind to be presentable as an information processing
system, human problem solving is defined as a goal-oriented activity for finding some

2 Exhaustive synopses on the various branches and research results of Cognitive Science are pro-

vided in [Nadel, 2003], [Wilson and Keil, 1999], and on the Internet (e.g.: in the Stanford
Encyclopedia of Philosophy http://plato.stanford.edu/entries/cognitive-science/). Most capacious work
is subsumed in the Soar project (a world-wide initiative developing a cognitive system architecture for
exhibiting intelligent behavior, based on [Newell, 1990], see homepage:
http://sitemaker.umich.edu/soar), as well as in awarded books like [Hofstadter, 1979].

Survey on Goal-driven Architectures - 4 -

possible sequence of operators that allows proceeding from the initial state of the
problem space to the goal state. A goal is understood as a desired state that is to be
reached from the current state wherefore an applicable sequence of operators is not
known; an operator is an activity or a process that performs the transition from one
state to another in the problem space; the problem space is a potentially infinite num-
ber of states that can be reached by operators. Humans apply specific psychological
techniques for problem solving [Anderson, 1999]: discovery, notification, or observa-
tion for becoming aware of operators that can be used in a specific state, and so-called
means-end analysis as the key mechanism for choosing the most appropriate operator
out of those available and applicable in a state. Roughly speaking, in means-end
analysis the current state is compared to the goal state, a difference is determined be-
tween them, and the operator that can reduce this difference to the maximum extent in
comparison to other available operators is chosen. This has been prototypically real-
ized in the General Problem Solver as pioneer work in intelligent system development
[Newell and Simon, 1963].

This model of problem solving – which, although being very basic, is still consid-
ered a valid theoretical basis of AI technology development – provides the following
aspects with regard to the motivation and design of goal-driven architectures. First,
the concept of goals as final states of the world that is to be reached in order to solve
a problem along with the concept of goal-orientation, stating that all activities are per-
formed rationally in order to solve a goal; secondly, the concept of operators that
allow changing the current status of the world (which can be performed automatically
or manually); and thirdly, that problem solving, or goal resolution, is realized by de-
termining a possible or optimal execution sequence of operators wherefore generic
strategies are applied. This complies with the understanding and aim of goal-driven
technology that we explore in this paper. While the user of a system should only need
to specify a goal as a desired final state to be achieved, the system should employ in-
telligent mechanisms for detecting and utilizing appropriate computational resources
as the operators for the goal resolution process, thereby simulating human problem
solving strategies. Hence, we retain that the idea of goal-driven architectures as pur-
sued in this paper can be seen as candidate approach for realizing human level
machine intelligence, following general AI methodologies.

Two other aspects are relevant for goal-driven architectures. First, they reside on
the so-called knowledge level as illustrated in [Newell, 1982].3 The knowledge level
is concerned with actions, effects, and behavior in the world (i.e. the environment that
operations take place in); beneath this, the ‘symbol level’ is concerned with mecha-
nisms and operations for actually executing actions. Goal-driven architectures are
mainly concerned with the Why and How of goal resolution behavior, neglecting
technical implementations on the symbol level – certainly, both levels are intercon-
nected and both need to be addressed in order to realize goal-driven technology.

3 We primarily refer to works of Allen Newell here. This does not result from inadequate research

but from the fact that he has been a leading pioneer of AI research and especially an originator of Cog-
nitive Science, see: http://stills.nap.edu/readingroom/books/biomems/anewell.html.

Survey on Goal-driven Architectures - 5 -

However, the main aspects of interest reside on the knowledge level. The second as-
pect is that goal-driven architectures shall allow bridging the gap between human-
level intelligence and automated information processing by machines. Goals allow
specifying objectives to be achieved on a higher level of abstraction; they are dy-
namically connected to appropriate operators for automated resolution by intelligent
mechanisms that realize psychological methods for problem solving. This establishes
the connection between the knowledge and the symbol level as a crucial task of IT
system design and usage. Because of this, goal-orientation is proposed to become a
new software engineering paradigm [Lamsweerde and Letier, 2002].

2.2 Requirements on Goal-driven Architectures

On basis of the preceding examinations, the following explicates the idea of goal-
driven architectures that underlies this work and depicts requirements on these.

Figure 1 shows a course model of a goal-driven architecture that serves as a work-
ing hypothesis in this paper. As outlined introductory, we distinguish four top level
elements for enabling automated goal-driven problem solving: (1) the client-side con-
tains elements for supporting automated goal resolution from the user perspective, (2)
the service-side contains the descriptions and implementations of operators for prob-
lem solving that typically are computational facilities,4 (3) intelligent mechanisms as
the facilities for enabling automated goal resolution by working on the formal de-
scriptions of the client- and the service-side, and (4) auxiliary elements needed for
automated goal resolution (e.g. machine-processable knowledge definitions).

Figure 1: Abstract Model of Goal Driven Architectures

4 As stated above, we use the term ‘service-side’ with respect to service-oriented architectures as

the most recent design paradigm for IT systems (see Introduction). We could also call it the ‘operator-
side’ with regard to the element classification in classical problem solving as discussed in Section 2.1;
however, we consider this course model to be generally applicable for goal-driven architectures inde-
pendent of particular technical environments.

Survey on Goal-driven Architectures - 6 -

The primary aspect of interest in goal-driven architectures is the client-side. This
needs to provide appropriate elements for supporting problem solving from the user
perspective on the knowledge level that shall be automated to the highest possible ex-
tent. The service-side needs to provide the formal descriptions of the operators
available for problem solving, which commonly consist of a functional description
(what the service does) and a behavioral description (how the service works, espe-
cially how to communicate with the service in order to consume its functionality). For
the client-side, the figure distinguishes two elements: Goals shall encompass the ob-
jective or problem specification by the user, input for using services as automated
operators for problem solving, and constraints and preferences the user defines for
goal resolution; the Goal Resolution Plan shall encompass the procedure for goal
resolution (called the goal resolution algorithm), potentially problem decomposition
with regard to available services, and facilities for automated service invocation and
usage (which is needed for automated goal resolution by execution of services by op-
erator usage on the symbol level). This distinction is made with regard to two
purposes: first, the user should only have to define those aspects summarized in
Goals – see the introductory example of booking a holiday – and secondly the ele-
ments contained in the Goal Resolution Plan should be determined automatically by
respective intelligent mechanisms with respect to available services and the problem
solving process during system runtime.

This abstract model of goal-oriented architectures is a working hypothesis that is
to be verified by the preceding examinations. Nevertheless, we can determine six re-
quirements for technologies as aspired here:

1) the concept of a Goal should allow specifying (client) objectives or problem
as the desired final state to be reached

2) goal definitions can be accompanied by additional constraints that are de-
fined on the knowledge level

3) goal resolution should be automated to the highest possible extent by en-
forcing clients to only provide the least possible amount of information
required

4) the Goal Resolution Plan should be determined automatically; therefore,
client-side elements (as all other elements) need to have an unambiguous
formal description

5) goal resolution techniques should be able to determine the optimal Goal
Resolution Plan for a given goal or problem

6) specification and handling of arbitrary complex goals should be supported
by means of problem decomposition.

Survey on Goal-driven Architectures - 7 -

2.3 Goals versus Service Usage Requests

The main element of goal-driven architectures is the concept of goals that shall al-
low specification of client objectives on the knowledge level without respect to their
technical resolution. In contrast, several technologies provide support for the client-
side by only mirroring or copying the structure of service-side elements. This is what
we call service usage requests that contradict the fundamental idea of goal-driven ar-
chitectures as we discuss in the following.

For clarifying what we mean by service usage requests in comparison to goals let’s
consider a simple example of retrieving address information of all customers that live
in Innsbruck. If the data repository is a conventional RDB, we would define a SQL
query like “SELECT * FROM customers WHERE address.city = ‘Innsbruck’”. Here, if
we understand the database as the service-side, SQL provides a query mechanism for
the client-side that mirrors the structure of the database for retrieving the desired in-
formation. In contrast, a goal-based technology would allow specifying the client
objective of retrieving the desired information in a more abstract, intuitive way that is
decoupled from the underlying technology. In fact, appropriate support for the client-
side that allows definition of goals and their automated resolution is missing here.

We observe that several broadly used software engineering technologies as well
lack of client-side support as aspired in goal-driven architectures. For example, the
Common Object Request Broker Architecture CORBA (see homepage:
http://www.corba.org/) as platform-independent infrastructure for distributed, object-
based computing allows access to implementations via so-called Object Request Bro-
kers (ORB) that handle the physical invocation of object implementations on basis of
the standardized Interface Description Language IDL. A client provides a proxy that
needs to contain all information required for invoking and using an implementation
(the IDL stub); the implementation is accessed via an IDL skeleton as a complemen-
tary description which is grounded to the respective implementation technology.
Here, as in the simply example above, the client-side in form of an IDL stub mirrors
the structure of the IDL skeleton as service-side but does not offer support for goals.
Similar architectures are applied within current Web Service technologies. Therein, in
order to use a WSDL described Web Service, we have to create a mirror of the ser-
vice-side WSDL description in order to be able to invoke and communicate with the
Web Service. This is supported by Web Service development environments like
Apache Axis (see homepage: http://ws.apache.org/axis/). These technologies provide
the technical basis for enabling component-based, distributed computing, also over
the Internet – but they do not encompass appropriate support for the client-side in or-
der to support system developers or (human) end users.

Several techniques have been developed in order to ease the development of soft-
ware systems. Formal methodologies like the Z specification language [Diller, 1994]
or Abstract State Machines [Börger and Staerk, 2003] provide supportive means for
large scale software development by interrelated formal descriptions from very ab-
stract levels down to executable code generation. Although used as the basis for goal-

Survey on Goal-driven Architectures - 8 -

oriented software engineering [Lamsweerde, 2003], these techniques do not support
goal-driven architectures for automated problem solving as pursued here. So-called
Software Reuse [Krueger, 1992] aims at supporting software creation out of existing
implementations rather then development from the scratch. Commencing in the
1970ies, several techniques have been developed for classifying and retrieving reus-
able software from component libraries and support for integrating them into other
systems. Formal methods are applied for describing and handling software compo-
nent libraries [Jeng and Cheng, 1993] along with formal retrieval techniques that
include early work on semantically enable specification matchmaking (e.g. [Chen and
Cheng, 2000]). Although these technologies provide a basis for ongoing research for
discovery in service-oriented architectures, they are mainly considered with formal
descriptions of the service-side but do not encompass appropriate notions or support
for the client-side as aspired in goal-driven architectures.

What we are interested in is how goals and related client-side elements are for-
mally described, and which mechanisms are applied for automated goal resolution.
The motivation for this is to provide a basis for developing a goal-driven technology
for Semantic Web Services in order to allow knowledge level problem solving over
the Web. When analyzing current architectural models for Web Services, we notice
that such technology is demanded for realizing the vision of the Semantic Web. The
W3C Web Service Architecture remarks the concept of goals to be relevant without
any further explanation [Booth at al., 2004]; OWL-S only provides a description on-
tology for the service-side, whereby client-requests are described as service profile
definitions from the client perspective [Paolucci et al., 2002]; although the Web Ser-
vice Modeling Ontology WSMO defines the notion of Goals as a top level notion,
these are described by requested capabilities and requested interfaces and thus as
well are service-side descriptions from the client perspective [Lausen et al., 2005].
Hence, as the support for the client-side in both OWL-S and WSMO as the most sig-
nificant approaches for Semantic Web Services are service usage requests as they
simply mirror and copy the structure of their respective service-side descriptions, they
can not be considered to be sophisticated goal-driven architectures.

2.4 Surveying Goal-driven Approaches

The preceding examinations reveal that we can omit works related to the above
mentioned technologies for investigating the state of the art in goal-driven architec-
tures. Instead, we concentrate on specific approaches from respective AI research
fields. The main aspects that we are interested in are:

1) How are goals and related client-side elements defined and described, and
what is there interrelation?

2) What techniques are applied for automated, goal-driven problem solving?

3) What kind of goals and problems can be handled by the technology?

4) Which aspects and solutions appear to be useful with respect to goal-driven ar-
chitectures as pursued in this paper?

Survey on Goal-driven Architectures - 9 -

Therefore, those sub-disciplines out of the numerous in AI research appear to be of
interest that are concerned with applying basic AI techniques for creating intelligent
system architectures. Investigation has revealed that works from the following work-
ing fields are relevant for this: Cognitive Architectures that aim at realizing intelligent
systems on basis of cognitive models of the human mind and intelligence [Anderson,
1991], Intelligent Agents that develop at intelligent systems wherein autonomous
agents reside that satisfy their particular objectives by interacting in a collaborative
manner [Russell and Norvig, 2003], and Knowledge Engineering that is concerned
with developed of techniques and systems for advanced, knowledge-based informa-
tion processing [Studer et al., 1998].

Out of these, we have chosen particular approaches and technologies that are con-
cerned with client-side element specification and techniques for automated, goal-
driven problem solving. At first, we investigate the Soar technology that develops a
cognitive architecture on basis of the results from Cognitive Science we have dis-
cussed as the motivation for goal-driven architectures. Then, we inspect goal-driven
techniques from Intelligent Agent research, focusing on so-called belief-desire-
intention (BDI) architectures and multi-agent collaboration theories as the core tech-
niques for goal-based agent behavior. As the third approach, we examine how
advanced notions of goals are defined and used in AI Planning in order to allow
automated construction of goal resolution plans for more complex problems, and fi-
nally we inspect the Unified Problem Solving Method Development Language
UMPL, a framework for describing the reasoning behavior of knowledge-based sys-
tems for automated problem solving.

For surveying each approach, we first outline the aim and origin, then explain the
main elements and techniques for automated goal-driven problem solving, and finally
conclude the usability and contributions for goal-driven architectures. Thereby, we
aim at gaining a general synopsis and understanding of goal-driven technologies;
hence, we concentrate on the principal approaches while referring to continuative re-
sources for details on specific technologies.

Survey on Goal-driven Architectures - 10 -

3 The Soar Technology

The Soar system provides a cognitive architecture by implementing the conceptual
model of human cognition presented in [Newell, 1990] –the final book and life’s
work of AI-pioneer Allen Newell towards a technical architecture for intelligent ma-
chine behavior based on an integrated theory of human cognition. When initiated in
the 1970ies, Soar was the acronym for State, Operator, And Result as the core ele-
ments of a cognitive architecture based on theoretical models for human mind and
intelligence, but it became a designation of its own in still ongoing research and de-
velopment work with numerous participants from all over the world (see Soar project
homepage for further information and software: http://sitemaker.umich.edu/soar.).

In essence, the Soar architecture is a production system that represents the struc-
ture of human cognition and problem solving that has been determined by Cognitive
Science research. The core elements of the architecture are problem spaces that repre-
sent tasks by states, operators, and goals; problem solving is performed by a decision
cycle that processes different memory types for reaching a goal that is defined as a fi-
nal state in some problem space. Two integrated components allow enhanced
intelligent problem solving: so-called impasse handling that realizes automated sub-
goaling for not-resolvable problems, and chunking that allows learning in order to
improve the system’s problem solving capabilities. The basic Soar architecture has
been extended by several associative technologies and has been applied as a basis for
several other AI working fields in order to test and demonstrate its applicability as a
generic architecture for intelligent behavior. While referring to [Rosenberg et al.,
1993] as a 2-Volume collection of collected research publications on Soar, the fol-
lowing explains the core architecture in more detail.

3.1 The Basic Architecture

As outlined above, the core of the Soar architecture is a production system wherein
the decision cycle realizes automated problem solving by working on problem spaces
with different memory types. The following explains the central components, their
specification and interplay in more detail.

3.1.1 Knowledge Items and Representation

A problem space contains the domain knowledge, states, available operators, and
goals of a task or problem that can be solved automatically. Domain knowledge de-
scribes the entities involved in the problem by object-attribute-value definitions,
while all other elements are described by production rules. A product rule has then
general form: IF (condition) THEN (action). In order to ensure uniform knowledge
representation, all knowledge in the Soar system is represented by production rules
whose structure differs for specifying the distinct conceptual elements. A state de-
notes a status in the problem space that can be reached by an operator; state
descriptions have an empty condition-part, while the action-part describes the status

Survey on Goal-driven Architectures - 11 -

of the world in the state by concrete values of attributes. Operators are applied to pro-
gress from one state to another, whereby the condition specifies conditions on the
current state that need to hold for applying the operator and the action denotes the
changes to the problem space that result from applying the operator. Goals are de-
fined as final states in the problem space, meaning that the condition part describes
the state of the problem space that is considered to be solving the goal while having
an empty action-part (i.e. no further progress can be made in the problem space).
Typically, a problem space consist of one goal, one or more initial states, and all op-
erators that can be used. For illustration purpose, Listing 1 gives a brief example of a
problem space for the well-known blocks-world problem.5 It is defined in the Soar
syntax, which itself is based on OPS5, an early production system language using
forward chaining as its main inference mechanism [Forgy, 1981].

Listing 1: Soar Problem Space Definition Example6

Initial State
blocks A, B, C on table; no block on top of another one
incl. knowledge definitions (blocks, table, on-top-relation)
sp {blocks-world*elaborate*initial-state
(state <s> ^superstate nil)
-->
(<s> ^problem-space blocks
^thing <block-A> <block-B> <block-C> <table>
^ontop <ontop-A> <ontop-B> <ontop-C>)
(<block-A> ^type block ^name A)
(<block-B> ^type block ^name B)
(<block-C> ^type block ^name C)
(<table> ^type table ^name TABLE)
(<ontop-A> ^top-block <block-A> ^bottom-block <table>)
(<ontop-B> ^top-block <block-B> ^bottom-block <table>)
(<ontop-C> ^top-block <block-C> ^bottom-block <table>)}

Goal
final state = tower: A on B, B on C, C on table
action ‘halt’ denotes exit, i.e. no further
sp {blocks-world*detect*goal
(state <s> ^problem-space blocks
^ontop <AB> { <> <AB> <BC>} { <> <AB> <> <BC> <CT> })
(<AB> ^top-block <A> ^bottom-block)
(<BC> ^top-block ^bottom-block <C>)
(<CT> ^top-block <C> ^bottom-block <T>)
(<A> ^type block ^name A)
(^type block ^name B)

5 Problem: three blocks A. B, and C are on a table T, not being on top of each other. The aim is to

build a tower with T on the bottom, C on top of T, B on top of C, and A on top of B (nothing on top of
A). Allowed actions (or available operators) move one block on top of another one. This is an artificial
problem commonly used to illustrate AI technology, see [Russell and Norvig, 2003].

6 taken from [Laird and Congdon, 2004]; see also for syntax and semantics of the Soar language.
Just to understand the example listing: sp means soar production, the part inside the curly brackets de-
notes the problem space name (here: blocks-world) and a natural language description, the condition is
before -->, the action after -->; ^name is an attribute followed by its value, <name> is a variable, <>
means not equal in prefix notation; x{y} denotes that y is a complex sub-structure of x.

Survey on Goal-driven Architectures - 12 -

(<C> ^type block ^name C)
(<T> ^type table ^name TABLE)
-->
(halt)}

Operator
condition: thing1, thing2 = blocks, thing1 not on-top of thing2,
no other on-top relation with thing1, thing2 as bottom-block
action: create accept preference for operator o (denoted ‘+’, s.b.),
o moves thing1 on top of thing2
sp {blocks-world*propose*move-block
(state <s> ^problem-space blocks
^thing <thing1> {<> <thing1> <thing2>}
^ontop <ontop>)
(<thing1> ^type block ^clear yes)
(<thing2> ^clear yes)
(<ontop> ^top-block <thing1> ^bottom-block <> <thing2>)
-->
(<s> ^operator <o> +)
(<o> ^name move-block
^moving-block <thing1>
^destination <thing2>)}

3.1.2 Memory Types and Problem Solving Mechanisms

While problem spaces encompass the knowledge items, three interrelated memory
types (long-term memory (LTM), working memory, and preference memory) hold
different information used in the central problem solving mechanism as explained be-
low in more detail. In addition, the so-called perception and motor behavior allows
Soar to interact with the external environment by retrieving additional input-
information (perception) or creating new output information (motor) for external sys-
tems. This is realized by special types of productions stored in the LTM. These are
processed independently of the central problem solving in the decision cycle, but can
influence it immediately when new knowledge is perceived.

The long-term memory (LTM) holds general domain knowledge in from of pro-
ductions as exemplified above. Although not explicitly specified, productions can
perform 4 functions for problem solving: operator proposal and operator comparison
by creating preferences for operators (see below), executing a state transition by op-
erator application, and state elaboration by performing the action specified in a
production. The productions in the LTM provide the information processing used for
automated problem solving.

The working memory holds the current situation of the problem solving procedure.
It consists of so-called WMEs (working memory elements) that represent the current
state of problem solving and operators available in this state. Each WME is a triple
of identifier-attribute-value: the identifier allows grouping of WMEs into objects
(e.g.: a block named “A” with the identifier B1 that is on top of the table in a state s is
an object represented by 3 WMEs: B1 ^type block; B1 ^name A; <ontop> ^top-
block B1 ^bottom-block TABLE), and ensures unique identification of WMEs, respec-
tively objects; attribute (denoted by ^attr-name) define the slot for concrete values

Survey on Goal-driven Architectures - 13 -

(e.g. attribute “name” has value “A” in the above example). All WMEs in a state must
be linked to each other, so that a state definition in the working memory is repre-
sented as a set of augmented identifier-attribute-value triples; WMEs that are not
connected to any other WME in a state are removed from the working memory.

The working memory is manipulated by the so-called decision cycle as the central
problem solving mechanism of the Soar architecture. The decision cycle consists of
three main phases and is repeated until the goal of the current tasks is solved (i.e. a fi-
nal state is reached in the problem space). Independent of this, the Soar system might
interact with its external environment by the perception and motor function (newly
received input data are incorporated in the decision cycle immediately, and output is
created orthogonally). Sequentially executed, the three phases are:

1. Elaboration: LTM productions fire whose condition is satisfied, meaning that
the new data are interpreted and the working memory is “elaborated” to the cur-
rent state of the problem solving procedure. The created WMEs are considered to
be I-supported, meaning that they have been created by instantiating productions
with concrete values. Also, those I-supported WMEs that are no longer inter-
linked with others are removed from the working memory (retraction). All
matching productions fire in parallel; the elaboration continues until quiescence
(i.e. no more matching productions can be executed, and no more WMEs can be
retracted).

2. Decision: then, a new operator is selected for application on the current state.
Operator selection is based on preferences (see below). If a clear decision of op-
erator usage can not be made, a so-called impasse is created (see next section for
more details on impasse handling).

3. Application: the chosen operator is executed by firing the respective LTM pro-
ductions for operator application. The WMEs created by operator application are
called O-supported (in contrast to I-supported WMEs, O-supported WMEs are
not removed from the working memory until the goal is reached as they define
the constituting elements of the problem solving progress). After the application
phase, a new state is created that is processed by repeating the cycle.

In essence, problem solving in Soar is realized as goal-directed application of most
adequate operators in order to reach the final goal state in a problem space. Thereby,
selection of the most appropriate operator is supported by preferences. A preference
denotes a suggestion on the applicability of an operator in a situation. The following
types of preferences are distinguished: acceptable (+) means the operator is suitable
candidate, reject (-) is the opposite; require (!) denotes that the operator must be se-
lected for reaching the goal, prohibit (~) is the opposite; best(>) means the operator is
the best choice, worst(<) is the opposite; better(> o1 o2) means o1 is more applicable
than o2, worse(< o1 o2)) is the opposite; indifferent(= o1 o2) denotes that none of the
operators is better; also, numeric-ordering(= number) can be defined fro expressing
preference relations on operators. Preferences are kept in the preference memory
which is linked via the identifier of a WME that stands for an operator; preferences
are removed when their corresponding production rules do not match the working
memory any longer. On this basis, a straight-forward operator preference resolution

Survey on Goal-driven Architectures - 14 -

process provides the mechanism for operator selection in the decision phase of prob-
lem solving decision cycle explained above (see [Laird and Congdon, 2004], App.
A.).

3.1.3 Impasse Handling and Learning

An important feature of the basic Soar mechanisms is that its building blocks are
strongly decoupled which might lead to inconsistencies. The productions in the LTM
are independent of each other and no consistency check is applied; hence, the creation
of preferences is “decoupled”, so that so-called impasses can arise during the decision
phase for determining the next operator to be applied. An impasse means that no clear
decision can be derived from the preferences defined for applicable operators in the
current state; this is handled by automatically creating and solving so-called sub-
goals as we explain in more detail.

Four types of impasses are distinguished that can arise: the tie-impasse denotes
that more than one operator is proposed to be applicable (i.e. several operators have
acceptable or require preference, and no further preferences allow to make a selec-
tion between them); the conflict-impasse denotes an irresolvable contraction of
preference definitions (i.e. A is better than B; B is better than A); the constraint-
failure-impasse denotes a contraction of require and prohibit preferences; and no-
change-impasses denote that no operator has been selected or that the selected opera-
tor is not capable of changing the state. Impasses arise due to incomplete or
inconsistent preference definitions, so because of a lack of knowledge that hampers
an unambiguous operator selection decision. Hence, so-called sub-goals are created in
order to attain the missing knowledge for resolving the impasse by determining the
missing knowledge.

Figure 2 (next page) shows an illustration of impasse handling by creation of sub-
goals. In some state S1 of the problem resolution procedure, the decision phase has
detected a tie-impasse as there are acceptable preferences for two operators O1 and
O2. S1 is the top-level state (denoted by superstate = nil) that occurs during the
resolution of the actual goal that is to be achieved. Hence, a sub-goal S2 that aims at
resolving the tie-impasse between O1 and O2 in S1 is created automatically. Sub-
goals are defined as states that carry structural information on the impasse occur-
rence. In the example, the sub-goal S2 would be defined as: (S2 ^type state
^superstate S1 ^impasse tie ^choices multiple ^attribute operator ^item O1

O2 ^quiescence t). This means: S2 is a state, its super-state is S1 wherein a tie-
impasse has arisen between multiple operators O1and O2 after reaching quiescence in
the decision cycle for S1. Although not explicitly specified, this is interpreted by the
system as a goal for solving the tie-impasse by determining sufficient knowledge on
preferences that allow to make an unambiguous selection decision between O1and O2
in S1. It is assumed that a production exists in the LTM that states (omitting the for-
mal representation): “If there is a goal for resolving a tie-impasse in problem space
PS1, then use the Problem Space PS2 with an initial state that contains the tied op-
erators”. Because of this, the standard problem solving procedure as described above
is initiated for resolving S2.

Survey on Goal-driven Architectures - 15 -

Impasses occurring during the resolution of S2 create a stack of further sub-goals
that are processed in the same way (e.g. S3 in the figure). The working memory for
the super-goal and its sub-goal stack is the same, so that the problem solving results
are available to all levels in the sub-goal stack. In each new cycle, the sub-goal stack
is processed in a top-down manner. As soon as there is sufficient preference knowl-
edge to resolve impasses on a level x in the sub-goal stack, the processing on all
levels > x is terminated and the respective WMEs are removed from the working
memory (the aim of resolving an impasse at level x has been achieved, so all sub-
goals of level x have become obsolete).

Figure 2: Illustration of a sub-goal stack7

7 taken from [Laird and Congdon, 2004].

Survey on Goal-driven Architectures - 16 -

This sub-goaling technique allows automated goal-decomposition in order to attain
knowledge for problem solving that is missing during run time. In order to improve
the problem solving capabilities of a Soar system during its life time, the impasse-
resolution by sub-goaling is extended by an automated learning technique referred to
as chunking [Rosenbloom and Newell, 1982]. As a form of explanation-based learn-
ing, the chunking mechanism produces a new LTM production that contains the
results of a solved sub-goal. The condition of this new production contains the super-
state wherein the impasse has occurred that was solved by the sub-goal, and the ac-
tions are the preference creations that result from the sub-goal resolution. In the above
example, if S2 has been successfully resolved by determining a new preference
PrefS2 that allows resolving the tie-impasse between O1and O2 in S1, then a new
production is created: IF (S1) THEN (PrefS2). This is called a chunk that is stored in
the LTM. The next time when the decision cycle comes to the state S1, this chuck can
be used instead of creating a sub-goal for impasse resolution. Thereby, chunking al-
lows simplifying the problem solving procedure by automated learning.

3.2 Conclusions

Soar provides a system for automated, goal-oriented problem solving based on
productions and an elementary problem-solving procedure, including automated goal-
decomposition and learning mechanisms. The inventors claim the Soar architecture to
be an adequate cognitive architecture, i.e. representing and simulating intelligent hu-
man problem solving behavior as it realizes the following aspects [Newell, 1990]:

• Soar realizes a hierarchical architecture that is claimed to represent the structure
of human cognition and problem solving, wherefore Newell distinguishes four
levels (called bands): the lowest is the biological band that enables fast informa-
tion processing by physiological neurons; this is represented in Soar by the LTM
as productions that allow efficient, decoupled information processing. Above, the
cognitive band is concerned with processing of symbols and low-level logical re-
lation; this is represented in Soar by the working memory and the decision cycle.
At the highest level, the rational band is concerning with problem solving strate-
gies and tasks-driven behavior, which corresponds to the Soar mechanisms for
impasse-handling and learning. Orthogonal to the previous levels, the social
band is concerned with cooperation and collaboration by interaction with other
individuals; this is represented by the perception and motor mechanisms of Soar.

• The concept of problem spaces specific segments of the world that are relevant
for solving a problem is claimed to represent human behavior in problem solving.
The underlying model says that human beings first select the domain that appears
to be relevant for solving a problem, and subsequently consider other segments
of the world if the goal can not be reached directly.

• Also, the goal-directed behavior and reflexive learning as realized in Soar is
claimed to represent cognitive theories. Humans are considered to act in a goal-
driven manner, having an objective to be reached wherefore the path from the
current status is not known, and then subsequently perform the most adequate ac-

Survey on Goal-driven Architectures - 17 -

tions in order to achieve the objective; this is represented in the design of the
Soar decision procedure. The Soar chunking mechanism is asserted to simulate
human learning on basis of experiences in earlier situations.

A detailed discussion or verification of these aspects exceeds the aim and the
scope of this paper. Nevertheless, inspecting Soar with respect to the six requirements
on goal-driven architectures defined in Section 2.2, we reveal that all of them are ful-
filled to a more or less satisfactory extent: the Soar elements are equivalent to the
elements required for goal-driven architectures; Soar goals allow specifying objec-
tives as desired final states with constraints on the known problem space; an optimal
goal resolution plan is determined in a highly automated manner; formal methods are
applied, and the resolution of arbitrary complex goals is (theoretically) support. Fur-
thermore, we gain the following insights on the realization of goal-driven technology
from the Soar architecture:

• goal-directed behavior can be represented in state-based models, wherein goals
are defined as final states and intelligent mechanisms dynamically determine the
resolution path by detecting and applying the most appropriate action in each
situation

• production systems can be used as an efficient, low level technology for informa-
tion processing in state-based systems

• functional operator descriptions (i.e. service-side functional descriptions) can
consist of conditions that need to hold before the operator can be applied, and
changes on the world that result from operator application

• the main mechanisms for are determination of operator applicability that can be
realized by matching the current state against the operator description, and opera-
tor selection that can be realized on basis of preferences

• efficient control and management techniques seem to be required in order to en-
sure that the correct elements needed for goal resolution are available; only the
minimal number of elements needs to be considered for expensive operations

• the Soar mechanisms for automated sub-goaling and learning appear to be ap-
pealing techniques for advanced, highly automated goal resolution.

The Soar knowledge representation can be considered as a shortcoming: all
knowledge needs to be defined as productions in the LTM; although productions can
fulfill different functions, their definition is implicit and thus hard to use; also,
knowledge representation is not semantically supported (although formal languages
are applied, and WME definitions realize a triple-structure). However, this does not
hamper Soar to be an interesting goal-driven architecture.8

8 An unrelated remark: the Soar technology seems to be very much related to the current efforts in

WSMO service interfaces. Production systems with if-then rules that are fired in parallel as the basis
might be a better / other / additional basis for the WSMO service interface model; also, the Soar deci-
sion cycle realization might be an interesting approach wrt WSMO service interface technology.

Survey on Goal-driven Architectures - 18 -

4 Agent Technology

The research field of intelligent agents is concerned with systems wherein agents
reside as autonomous computational elements and satisfies their particular objectives
in an interacting manner. Commencing in the early 1970ies, the aim has been to de-
velop a novel paradigm for system design along with respective technologies
following contemporary socio-psychological insights [Shoham, 1993], [Jennings and
Wooldridge, 2001]. Imitating human problem solving behavior, a software agent shall
act autonomously in its environment and collaborate with other agents in an effective
manner if this is helpful for achieving its individual objectives. Therefore, architec-
tural models and technologies have been development as general purpose facilities for
intra-agent management (i.e. the internal management of one agent) as well as for in-
ter-agent management (i.e. interaction and collaboration between several agents)
[Luck et al., 2003]. The following very briefly replicates the aims and fields of re-
search of agent technology in order to identify the aspects of interest for goal-driven
architectures, referring to various resources for detailed information.9

A software agent is supposed to be a sovereign software unit that performs some
kind of task in a (semi-)automated manner. Regarding the operation mode, the fol-
lowing generic properties for agents are defined that reflect theoretic models from
socio-psychology on human behavior [Wooldridge and Jennings, 1995]: an agent acts
self-directed and controls its own actions (autonomous), it interacts with humans or
other agents for collaborative problem solving by means of communication (social
ability), it observes its environment and reacts to changes therein (reactivity), and ex-
hibits a rational, goal-driven behavior in order to achieve its tasks (proactiveness).
Agent technology can be used for various application scenarios wherein agents fulfill
different functional capacities. Topologies like in [Nwana,, 1996] distinguishes five
functional agent types: collaborative, interface, mobile, information, reactive. How-
ever, the aim of agent technology is to provide general purpose infrastructures and
mechanisms for handling the behavior and interaction of software agents independent
of a concrete functionality or application scenario. Agent technology is commonly
differentiated into two main aspects: so-called agent architectures that are concerned
with the internal technical realization of a single software agent in order to realize the
agent properties mentioned above, and so-called multi-agent systems as general pur-
pose infrastructures that provide execution environments for agents along with man-
agement and multi-agent coordination facilities [Wooldridge, 2002].

9 Collective overviews on agent technology are provided in [Wooldridge and Jennings, 1995],

[Nwana,, 1996], [Wooldridge, 2002], [Russell and Norvig, 2003], [Luck et al., 2003] as well as on
several Internet portals like UMBC AgentWeb (http://agents.umbc.edu), Agent Portal
(http://aose.ift.ulaval.ca/), agents & multi agent technology, AgentLink Portal (www.agentlink.org),
and MultiAgent Sytems (www.multiagent.com); agent technology standardization efforts are under-
taken in FIPA (Foundation of Intelligent Agents, homepage: www.fipa.org) and MASIF (Mobile
Agent System Interoperability Facility, homepage: www.fokus.gmd.de/research/cc/ecco/masif/).

Survey on Goal-driven Architectures - 19 -

The notion of intelligence in agent technology refers to usage of respective AI
techniques in order to enhance the problem solving and collaborative capacities of
software agents. Within single agent architectures, the essential aim is to realize the
concept of rationality as a core principle for economic behavior by utilizing appropri-
ate ‘intelligent’ techniques. Rationale agency means that an agent is able to choose
the best possible action that is applicable in the current situation in order to achieve
its individual objective [Wooldridge and Rao, 1999]. Therefore, intelligent agent ar-
chitectures of incremental complexity have been developed that utilize AI techniques
for simulating human behavior in software agents. The simplest form a stimulus-
reflex agents that determine their behavior on basis of received information on the
environment; so-called model-based reflex agents in addition have knowledge about
how applicable actions will change the world. More complex models are goal-based
agents whose behavior is determined by goals as the desired final state to be reached,
knowledge about the effects of applicable actions, and information on the external
environment that are perceived continuously. As an extension of goal-based agents,
so-called leaning agents gain new knowledge about the applicability of actions during
acting in an environment [Russell and Norvig, 2003].

Obviously, the aspects of interest with respect to examining approaches for goal-
driven architectures as the aim of this paper are the concepts and techniques em-
ployed for goal-based agents. Out of several approaches have been developed
therefore, the most prominent and mature works are referred to as belief-desire-
intention (BDI) architectures that we hence will examine in detail. These consist of
formal models as well as system architectures for intra- as well as inter-agent man-
agement for cooperations of multiple goal-based agents for collaborative problem
solving that introduces an aspect of goal-driven architectures we have not addressed
so far. Following the methodology of the previous examinations, we concentrate on
the foundational principles of BDI agent technology while referring to respective re-
sources for further information.

4.1 The Belief-Desire-Intention (BDI) Model and Formalization

The model of beliefs, desires, and intentions is a philosophical theory on the moti-
vation and behavior of rationale action by humans presented in [Bratman, 1987].
Roughly speaking, beliefs denote information on the world that an agent (regardless
of being a human or a machine) considers to be true, desires are the eventual objec-
tives that the agent wants to achieve, and intentions are actions that the agent has
committed to achieve as sub-steps towards achieving a final desire.

These three notions denote mental attitudes whose interrelations is considered to
determine rationale action of agents. In contrast to other theoretical models, Bratman
defines intentions to be a first-class citizen that determine rationale agent behavior on
the level as beliefs and desires do. This model has been formalized in so-called BDI
logics, and has been implemented in several systems so that BDI architectures en-
compass a solid philosophical foundation, software architectures for intelligent agent
systems, and a sound logical formalization. Before addressing the latter issues, we
first clarify the core notions in an example.

Survey on Goal-driven Architectures - 20 -

4.1.1 The notions of Belief, Desire, and Intention

Let’s consider some agent named Michael that wants to write a book.10 This is his
ultimate aim and he is just about to get started with the book writing process. Here,
‘write a book’ denotes a desire of agent Michael that is considered to be achieved
when the book has been published. Michael has some knowledge about the world
gained from previous activities, for example that writing a book is time consuming
and usually is not compatible with enjoying an exhaustive social life. This knowledge
is individually considered to be true by an agent, called beliefs. This indicates that it
the facts known by the agent must not be true universally but they hold for the indi-
vidual understanding of the world from the single agent’s perspective – for example,
for somebody it might be true that writing a book in time and enjoy an exhaustive so-
cial life are not contradicting. Now, at midday time Michael receives an invitation for
joining some friends to watch a movie at 8 p.m. that day. Michael knows (i.e. his be-
liefs are) that watching a movie with his friends is a joyful, time consuming activity
that does not contribute to progress in book writing. Hence, Michael creates a plan for
that day that states to stay at home that night and work on the book instead of going
to the cinema. So, at midday time Michael has the intention of going home after the
office hours and continues working on the book.

While the notions of belief (knowledge on the world as individually observed by
an agent) and desire (final objectives to be achieved) are intuitively clear, we need to
closer investigate the notion of intentions and their role within determination of ra-
tionale agent behavior. [Bratman et al., 1988] define an intention as a partial plan of
future action that an agent is committed to execute to fulfill its desires. This means
that the agent creates a plan of actions for be performed for achieving its objectives.11
An intention denotes a plan fragment that an agent considers to be constructive for
achieving its overall desire and hence commits to. When the intention is achieved (i.e.
the partial plan has been executed), the agent is a new state. There might be changes
in the agent’s beliefs or desires resulting from continuative interaction with its exter-
nal environment. On basis of all knowledge available to the agent in some state, it
creates new intentions, commits to these and executes them; this process is repeated
until a desire has been achieved and then goes on for other desires. Referring to the
above example, three actions might be available to agent Michael: take the bus to the
cinema (a1), take the bus home (a2), go for a coffee after the office hours (a3). As a1
and a3 are less suitable than a2 for executing the intention of going home and continue
work on the book, Michael will choose a2 as an act of rationale action.

10 adopted and extended from [Wooldridge, 2000].
11 A plan denotes a possibly multi-step process of executing actions that results in a state of the

world wherein the agent’s desire is achieved; a partial plan refers to a fragment of a plan; plans are
executed by properly performing appropriate actions. An action in this terminology denotes manual ac-
tivities as well as computational resources that are applicable for problem solving. Given numerous
actions available for problem solving, a (partial) plans allow reducing the number of suitable actions as
well as determining an appropriate action execution sequence (see Section 5 for a more detailed ex-
amination of plans, their properties, and AI planning techniques).

Survey on Goal-driven Architectures - 21 -

The main merit of the belief-desire-intention model for rationale action is that an
agent does not determine a complete resolution plan for a goal starting from the initial
state when a desire is formulated and executes this, but follows a step-wise procedure
where in each step all knowledge available to the agent (gained by continuative inter-
change with its external environment) is taken into consideration for finding the most
appropriate next action for achieving its goals. For instance in our example, imagine
that agent Michael has worked on the book in the evening and has made good pro-
gress. In this new situation, he might determine that joining his friends for a drink
after the cinema will be advantageous for his final desire as he needs to relax and free
his mind, so he defines this as a new intention – which would not be included in a
complete goal resolution plan defined earlier that day.

BDI technologies, i.e. logical formalisms and respective system implementations
are technical realization of practical reasoning. In contrast to theoretical reasoning on
logical formulas, this is concerned with determining intentions for agents with respect
to their individual beliefs and desires in order to control and manage the behavior of
rationale software agents [Wooldridge, 2000]. While the definition of desires (re-
ferred to as deliberation) is commonly allocated in the interaction of an agent with its
owner or with other agents, the construction of intentions realizes means-ends reason-
ing as we have introduced introductory (how to achieve a goal by finding the best
possible resolution plan in a given problem domain). Before investigating BDI tech-
nologies below, it is to remark that the underlying philosophical model is hard to
validate with respect to correctness and sufficiency for explaining rationale behavior.
It complies with constructivist theories of individuals as sovereign and autonomously
acting entities in society as well as with modern socio-psychological models for hu-
man behavior in groups. However, while this discussion is out of the scope of this
paper, the BDI model provides a thorough conceptual foundation for goal-driven
technology of intelligent, rationale software agents which is our main concern in this
study.

4.1.2 Formalization in BDI Logics

BDI logics are specific logical formalisms developed for specifying BDI structures
of agents and serve as the basis for practical reasoning about them. The most signifi-
cant contributions with respect to formalization and dealing with beliefs, desires and
intentions are Cohen and Levesque's intention logic [Cohen and Levesque, 1990] and
Rao and Georgeff's BDI logics [Rao and Georgeff, 1991] that we hence examine here
in detail while referring to more extensive overviews like [Woodridge, 2000] for dis-
cussion of other approaches.

As most BDI logics, both approaches follow a common design of being modal lo-
gics with possible world semantics. Modal logics allow combination of different logic
types into one common logical framework [Blackburn et al., 2001]. Therein, so-called
modalities are used for specifying aspects that can not be expressed in first-order

Survey on Goal-driven Architectures - 22 -

logic; semantics of modalities are defined in Kripke structures.12 For example, the ex-
pression (Bel michael ◊hasPhD(michael)) says that Michael believes that he
eventually will hold a PhD degree. Therein, Bel is a modality denoting a belief of an
agent, and ◊ is a modality denoting a logical formula will be true sooner or later
(common symbol for ‘eventually’). Modal logics are very helpful to support reason-
ing on assimilated object structures. For instance, reasoning in an integrated manner
on objects that contain action and knowledge requires combining epistemic and dy-
namic logics, see [Moore, 1977] as an early work. Possible world semantics denote
that BDI logics are concerned with future actions; these are understood as sets of all
states an agent can achieve by performing actions currently known by it.

Following [Wooldridge, 2000], a BDI logic needs to consist of four components in
order to formally describe and reason about possible worlds. (1) a first-order logic
component for expressing epistemic aspects of objects, (2) modalities for beliefs, de-
sires, and intentions, (3) a temporal component for denoting dynamic aspects, and (4)
a component for describing actions performed by agents and their effects. While we
refer to the referenced papers for the formal definition of these components in the
BDI logics to be investigated, the following concentrates on how beliefs, desires, and
intentions are used therein for determining rational agent behavior.

Intention Logic of Cohen and Levesque
Chronologically the first approach towards a formalization of the BDI model, the

intention logic of Cohen and Levesque [Cohen and Levesque, 1990] has been broadly
recognized and serves as the basis for BDI-based models for multi-agent cooperation
and dialogue management.

Initially, the approach was intended so serve as a partial theory of rationale
agency. Therein, intentions are considered as the central mental attitude that deter-
mines goal resolution behavior that have the following properties. Adopted from
Bratman’s philosophical model: (1) intentions pose problems for agents, who need to
determine ways of achieving them; (2) intentions provide a “filter" for adopting other
intentions, which must not conflict; and (3) agents track the success of their inten-
tions, and are inclined to try again if their attempts fail. Cohen and Levesque denote
four additional properties of intentions: (4) agents believe their intentions are possi-
ble; (5) agents do not believe they will not bring about their intentions; (6) under
certain circumstances, agents believe they will bring about their intentions; and (7)
agents need not intend all the expected side effects of their intentions. Intentions are

12 A Kripke structure (named after its inventor Saul Kripke) is a non-deterministic finite state ma-

chine whose nodes represent the reachable states of the system and whose edges represent state
transitions. It is formally defined as a 4-tuple M = (S,I,R,L) consisting of a countable set of states (S), a
set of initial states (I ⊆ S), a transition relation (R ⊆ S × S) with ∀s ∈ S (∃ s‘ ∈ S ((s,s‘) ∈ R)),
and a labeling (or interpretation) function (L: S → 2AP). The condition associated with the transition
relation R states that every state must have a successor in R, which implies that it is always possible to
construct an infinite path through the Kripke structure. This is commonly used to define the formal
semantics of modal logics as well as other non-classical logics [Blackburn et al., 2001].

Survey on Goal-driven Architectures - 23 -

considered to be determined by the rational balance of an agent’s mental attitudes, i.e.
the interrelations of the beliefs and desires as well as existing intentions that an agents
has a certain point in time. The formalization is based on atomic modalities shown in
Table 1and on several propositions as explained below.

Table 1: Atomic Modalities in Cohen and Levesque’s Intention Logic13

The first-order logic component is denoted by commonly used symbols like δ, ψ,
etc. that can be arbitrarily complex epistemic formulas. BEL, GOAL (corresponds to
‘desires’ in Bratman’s model), and INTEND are the modalities for the BDI component.
The temporal modalities HAPPENS and DONE are augmented the standard future time
modalities ⁪ (“always”) and ◊ (“eventually”), and by some action component opera-
tors for expressing sequences of actions: sequence of action (α;β), non-deterministic
choice (α|β), concurrent occurrence (α||β); α? is a test operator: p?;α “when p is true,
action α occurs next”; α;p? “action α occurs, after which p holds”. On basis of this,
future directed expressions can be defined as LATER p = ¬p^◊p.

With respect to the above mentioned properties of intentions and the desired bal-
ance of the mental attitudes of agents, the propositions listed in Table 2 are defined.
These denote general relations that need to hold between all beliefs B and all Goals G
of an agent x at a given point in time.

Table 2: Propositions on Mental Attitudes in Intention Logic

 Definition Meaning

(KNOW x p) = p ^ (BEL x p)
(BEL x p) => ¬(BEL x ¬p)
(BEL x p) ^ (BEL x (p -> q))
 => (BEL x q)

Knowledge is ‘true beliefs’
beliefs are consistent
beliefs are consistent under implication

(GOAL x p) => ¬(GOAL x ¬p) Goals are consistent (an agent can have inconsis-
tent desires; goals are the subset of an agent’s
desires that are consistent)

(BEL x p) => ¬(GOAL x ¬p)
(GOAL x p) ^ (BEL x (p -> q))
 => (GOAL x q)

Goals and Beliefs are consistent
Goals and Beliefs are consistent under implication

◊(GOAL x (LATER p) all goals are eventually dropped
(BEL x (HAPPENS e))
 => (HAPPENS e))

if an agent believes that the event (an atomic ac-
tion) happens next, this is a goal

13 taken from [Hoek and Wooldridge, 2003].

Survey on Goal-driven Architectures - 24 -

On this basis, we get to the definition of the first major construct in Cohen and
Levesque’s logic that determines rational behavior of agents, so-called persistent
goals. Abbreviated as P-GOAL, a persistent goal denotes an agents desire that will be
kept until it is achieved or considered to be unachievable.
(P-GOAL x p) ≅
 (GOAL x (LATER p)) ^
 (BEL x ¬p) ^
 (BEFORE
 ((BEL x p) V (BEL x □¬p))
 ¬(GOAL x (LATER p))

an agent x has a persistent goal of p if:
it has a goal that p eventually becomes true and
believes that p is not currently true;
one of the following must hold before the goal is dropped:
(a) the agent believes the goal has been satisfied
(b) the agent believes the goal will never be satisfied

So, an agent will continue to search of best possible goal resolution plans for P-
GOALs as long as they are not dropped. Following Bratman’s model outlined above,
intentions are considered as the mental attitude that determines the actions an agent
commits to execute in order to achieve a P-GOALs. Hence, the definition of an inten-
tion INTEND is that an agent x intends to perform action α if it has a persistent goal to
have brought about a state where it had just believed it was about to perform α, and
then did α:

(INTEND x α) ≅ (P-GOAL x [DONE x (BEL x (HAPPENS α))?; α])

For clarification, consider the goal of chopping down a tree and an action chop(T)
that needs to be performed several times before a tree will finally be brought down.
For some agent x we model (BEL x T) ^ (BEL x ¬down(T)) ^ (GOAL x down(T)) whereby the
goal becomes a P-GOAL following the above definition. Furthermore, agent x has the
above knowledge about the action chop(T) that can be defined as follows: (BEL x
(chop(T)?; chop(T) => ◊ down(T))). So it knows that in the state where the tree has just
been chopped down it has just executed chop(T). This is the condition for attaining the
intention (INTEND x chop(T)) in some state wherein the tree is not yet chopped down and
hence the P-GOAL is not yet dropped. Hence, it will continue executing the action
chop(T) until the tree is finally brought down.

Although the example does not showcase how this formal model allows to model
and reason about mental attitudes for determining rational agent behavior, the dis-
posed reader can imagine how the approach works in more complex settings.
However, the definition of intentions within the approach of Cohen and Levesque is
criticized to not be compliant with the theoretical model of Bratman, or at least that
the formal definition is not sophisticated enougbh for representing the intended prop-
erties and relationships. Following [Hoek and Wooldridge, 2003], the main
deficiency is that intentions are reducible to beliefs and desires, and hence only de-
note temporal sequences of these. In contrast, Bratman’s model defines intentions to
be first-class mental attitudes that influence rational behavior in the same way as be-
liefs and desires do. The approach of Rao and Georgeff aims at overcoming this as
described below.

Survey on Goal-driven Architectures - 25 -

BDI Framework of Rao and Georgeff
The BDI framework of Rao and Georgeff has been presented in a series of papers,

starting with the formal model in [Rao and Georgeff, 1991] and resulting in a com-
prehensive BDI system definition in [Rao and Georgeff, 1998]. The principal
structure of the formalization is similar to the one of Cohen and Levesque – i.e. defin-
ing the modalities BEL, GOAL, and INTEND along with common temporal as well as
action component modalities. The main differences are that intentions are treated as
first-class construct, and that beliefs, desires (resp. goals as the subset of an agent’s
desires that are consistent), and intentions are understood as possible worlds. This ap-
proach is considered to better Bratman’s model [Hoek and Wooldridge, 2003].

All mental attitudes of agents are represented in so-called time trees, a temporal
structure that represent the current situation of an agent at a point in time to have a
single past as the known behavioral history of the agent, and a branching future.
Called accessible worlds, this denotes all possible situations the agent can access with
respect to its current knowledge, whereby the transition between accessible states are
denoted by events (i.e. atomic or non-atomic actions). So, in each state an agent has,
possibly several, belief-, goal-, and intention-accessible worlds. The interesting fea-
ture that provides the core for practical reasoning are ontological relationships that
hold between mental attitudes of an agent. So-called belief-goal-compatibility states
that if an agent adopts a goal on some δ it also believes δ (desiring something that is
not believed to become true anyway is inadequate); similar, goal-intention-
compatibility states that if an adopts an intention on α it also believes α. Referring to
the referenced papers for formal definitions, a sub-world relationship in possible
world semantics denotes that the sub-world only consists of a subset of the situations
and paths in the super-world and has no additional situations and paths. In conse-
quence, it holds that for each situation of an agent the goal-accessible worlds are a
sub-world of the belief-accessible worlds, and the intention-accessible worlds a sub-
set of goal-accessible worlds: '.''''.''''';'''.''' wwwwwwww IGGB w

t

w

t

w

t

w
t ⊆∈∃∈∀⊆∈∃∈∀

The example shown in Figure 3 refers to an agent that needs to get a tooth filled f,
i.e. (GOAL x f). The agent believes that it is inevitable (always true) that pain p ac-
companies having a tooth filled (f): (BEL x □(f->p)). The belief-accessible world b1
has three events: d1 and d2 result in p and f, b results in ¬p and ¬f. As event b will not
lead to a state where the goal is not satisfied, the goal-accessible world g1 has two
states reachable by d1, respectively d2; g1 is a sub-world of b1 according to the above
definition. The agent chooses event d1 to commit to for execution (INTEND x d1) – the
reason of choice between d1 and d2 is not depicted here – and hence has a intention-
accessible world i1 that is a sub-world of g1. The goal- and intention worlds g2 and i1
are not sub-worlds of b1 and hence not accessible to the agent with respect to the be-
lief-goal compatibility and goal-intention compatibility that always need to hold.

Survey on Goal-driven Architectures - 26 -

Figure 3: Example of B-G-I accessible worlds14

There are two main differences in comparison to Cohen and Levesque’s model.
First, the agent in this example does not need to adopt (GOAL x p) although it believes
that filling teeth will always lead to pain. After executing event d1 as the intention
picked to commit for execution, it will be in a state where f holds, so the goal is
solved, and it excepts p as a side effect without having to desire p. Secondly, the for-
mal definition of mental attitudes as possible worlds along with the relationships
between these allows specifying and reasoning on beliefs, desires, and intentions as
constructs of equal importance in a much more realistic fashion. In fact, this allows
formalizing the so-called desired properties of rational agents with respect to their
mental attitudes in conformance to the philosophical model. Table 3 shows these
properties which denote the final results of Rao and Georgeff on BDI formalisms.

14 taken from [Rao and Georgeff, 1991].

Survey on Goal-driven Architectures - 27 -

Table 3: Desired Properties of Rational Agents in BDI logic15

Three categories of desired properties of rational agents are distinguished, whereby
each denotes tenary relationships between beliefs, desires, and intentions for so-called
A-formals that denote inevitabilities (first-order formulas that are true in all states of
all goal- and intention accessible worlds of an agent – e.g. f in the above example)
and so-called E-formulas that denote options (first-order formulas that are true for at
least one path in the goal- and intention accessible worlds of an agent), and then gen-
eralize this. The first group (S-properties) allows inferring desires and believes when
an intention is given in a situation of an agent belief-goal compatibility and goal-
intention compatibility. For example, in some state an agent has (INTEND x α) but does
not yet belief α, we attain that it believes and desires α from now on. The second
group (R-properties) is used for verifying the correctness of belief-, goal-, and inten-
tion accessible worlds as depicted in the above example. For all intentions it has to
hold that these are desired, and for all desires it has to hold that they are believed. The
third group (W-properties) is concerned with weak realism, i.e. consistency of an
agent’s mental attitudes in a specific situation with respect to its rational balance. If
the agent believes something, it can not desire the opposite, and similar for desires to
intentions and beliefs to intentions.

The final aspect that is improved in Rao and Georgeff’s framework in comparison
to the model of Cohen and Levesque is the differentiation of so-called commitment
strategies. These formalize when and under which conditions an agent drops or re-
considers its intentions and hence determines the rational behavior of an agent. The
following three commitment strategies are distinguished (see the 1991 paper for for-

15 Source: [Rao and Georgeff, 1998, p. 321].

Survey on Goal-driven Architectures - 28 -

mal definitions): blind commitment denotes that an agent keeps its intentions until it
believes it actually has achieved them; single-minded commitment denotes an agent
keeps its intentions until they are achieved or not longer achievable, and open-minded
commitment denotes that the agent maintains its intentions as long as they are consid-
ered to be possible. Due to handling intentions as a construct of equal importance as
desires and beliefs, this refines the fanatical commitment implied in Cohen and
Levesque’s P-GOALs that is similar to blind commitment as the strongest, but not
necessarily most appropriate strategy.

Concluding investigating formalizations of the BDI model, we denote that modal
logic allows capturing the semantics of beliefs, desires, and intentions as the mental
attitudes that determine the rational behavior. While Cohen and Levesque have laid
the foundation by formalizing the basic properties of Bratman’s BDI model, the work
of Rao and Georgeff enhances this by future branching time trees and the formal
specification relationships between the mental attitudes that allow sophisticated prac-
tical reasoning on basis of beliefs, desires, and intentions.

4.1.3 Collaboration of Multiple BDI-Agents

So far, we have examined BDI techniques for intra-agent management as a realiza-
tion of intelligent goal-based agent technology. A main aspect of agent technology is
that individual agents interact and collaborate with other agents in order to achieve
their individual objectives. This means that agents do not only interchange informa-
tion needed for their internal computation, but they might cooperate in a collaborative
manner in order to achieve objects that require purposeful interaction of several
agents. Therefore, an agent needs to detect other agents as potential partners and de-
termine its collaborative behavior during the collaborative problem solving process.

In order to expound what we are interested in with regard to goal-driven architec-
tures, we first need to clarify aspects and terminology before investigating respective
approaches. First of all, interaction with its environment is an inherent characteristic
in models of agency denoted by the social ability property of agents (see above).
Therefore, an agent has sensors through which it perceives information from the envi-
ronment as input for its internal computation, and activators through which it submits
information to its environment; information interchange is performed constantly and
orthogonally to internal computations of an agent [Russell and Norvig, 2003]. Coor-
dination in agent technology is a general term concerned with techniques
establishment and management of agent interactions [Luck et al., 2003]. Some agent
architectures implement coordination mechanisms by defining a specific agent type
that coordinates the interaction of other agents by means of procedural control struc-
tures, occasionally enhanced by semantic techniques. For example, the RETSINA
system [Sycara et al. 2003] defines so-called middle agents that determine agents of
other types like interface, task, or information agents as appropriate interaction part-
ners can control the interaction between them; the Open Agent Architecture OOA
[Martin et al., 1999] defines so-called facilitators that fulfill the same purpose. How-
ever, these systems realize central control architectures for managing interaction of

Survey on Goal-driven Architectures - 29 -

agents on basis of functional categorizations wherein the agents do not necessarily
need to be goal-driven.

In contrast, we are interested in how to determine goal-based agents as partners for
collaborative problem solving. Here, we understand collaboration to be concerned
with interaction of individuals that want to achieve objectives wherein some entity
exhibits an object or a facility that another entity needs in order to achieve its individ-
ual objective; thus, these entities need to interact in a cooperative manner. While
[Stollberg et al., 2005] discusses the epistemology of collaboration in more detail, the
techniques for determining goal-based agents as potential collaboration partners and
successively control the interaction with respect to goal achievement are commonly
referred to as MAC-theories, short for Multi-Agent Collaboration [Wilsker, 1996].
The general idea is that several agents can successfully complete collaboration if they
have a common goal, agree on a sequence of actions to accomplish the common goal,
each agent is able to perform collaborative actions and intends to do so, and each
agent commits to the overall success of the collaboration [Grosz and Sidner, 1990].
Out of several existing approaches, we choose the Joint Intention theory that provides
seminal work on this field [Levesque et al., 1990] for explication of rational agent
collaboration; more recent approaches integrate several other aspects while following
the same idea [Wooldridge, 2000].

Based on the BDI logic of Cohen and Levesque examined above, the joint inten-
tion theory defines the concepts of mutuality that denotes mental attitudes of
cooperative BDI agents and joint persistent goals that denote the objective to be
reached by collaborative problem solving. The former notion deals with either beliefs
and desires on objects that are commonly shared by agents, or respectively with be-
liefs and desires that an individual agents has on some other agent. On basis of
mutual beliefs and desires, a joint persistent goal denotes a desire that is shared be-
tween two or more agents and that can only be achieved if each agent achieves its
respective part. In consequence, the agents autonomously determine and commit to
intentions for solving its individual goal; if each agent has achieved its individual
goal, then the joint goal is achieved as well.

The following shows the definition of a following the notation and definition of
persistent goals (that comply “desires” in the intention logic) explained above. It
states that two agents x and y have a joint persistent goal JP-GOAL on some predicate
p if (1) both x and y believe that p is not true, (2) both have the desire to eventually
achieve p, and (3) both x and y know that each one of them will behave rationale, i.e.
not dropping the goal to achieve p as long as it is not believed to be achieved or never
achievable. Because the beliefs and desires of each agent are dependent on the one of
the other, the behavior of x and y appears to be rational collaborative although each
agent individually and autonomously plans and commits to intentions for solving it
respective parts of the joint persistent goal.

(JP-GOAL x y p) ≅ (MBEL x y ¬p) ^ (MGOAL x y (LATER p)) ^
 (MKNOW x y (UNTIL [(BEL x p) V (BEL x □¬p)] (MGOAL x y p)))

(MGOAL x y p) ≅ (MBEL x y (GOAL x p) ^ (GOAL y p))

Survey on Goal-driven Architectures - 30 -

4.2 System Architectures and Implementation for BDI Agents

The Procedural Reasoning System (PRS) form SRI International implements the BDI
model in a very sophisticated way. That is why we decided to use this model for de-
tailed investigation. At the time when the paper was written this framework
represented the most developed approach to the theory of BDI logic. [Artificial Intelli-
gence Center, 2001].

4.2.1 Introduction

The Procedural Reasoning System (PRS) from SRI International is a framework
for constructing real-time reasoning systems for performing complex tasks in dy-
namic environment. The framework implements the BDI Logic in very exact and
detailed way. It works on the base of procedural knowledge which describes actions
to fulfill a goal. For example washing clothes: If we want o clean clothes we have to
take the dirty clothes put it into the washing machine, put some soap to it and then we
have to wait one hour or so to reach our goal: clean clothes. PRS provides an envi-
ronment in which this knowledge about action and goals are expressed and executed.

PRS can operate in highly dynamic environment as an embedded execution sys-
tem. The system can reach any goals which it already knows in its world meanwhile it
reacts to any new events and goals. In this way it can be easily integrated into goal
driven and event driven applications.

The system contains some powerful capabilities for real time applications such as
multiple copies of objects, work as an agent, or also the possibility to run action par-
allel. PRS also supports metalevel capabilities which can be used for complex control
and scheduling behaviors which are required for individual applications.

4.2.2 Overview

The PRS System bases on five main elements, a database in which includes the ac-
tual knowledge of the system, goals which describe the states that should be reached
finally, acts can be seen as a temporarily states during the resolution process, inten-
tions are tasks which response to posted goals or facts and finally the interpreter
which handles the complete goal resolution. In the following we will specify and de-
scribe the elements in a more exact way.

(1) Database:
The database contains the actual information about the world. The database sup-

ports dynamic information as well as static information about a domain. Static
information describes fixed properties about the application domain such as the struc-
ture of subsystems or physical laws that must be considered by mechanical
components. This information is saved in the database for life. Dynamic objects are
not the same all time and so they have to actualize from time to time. For example:
observation of the world may change from time to time.

Database facts can also describe the internal state of PRS e.g.: metalevel-facts.
Metalevel facts describe the current goals and actions of the system. They are very
important for the implementation of alternative control strategies for PRS.

Survey on Goal-driven Architectures - 31 -

(2) Goals:
Goals are normally expressed as conditions over a sequence of time that means

over a sequence of world states. They are specified as a combination of a goal opera-
tor and a logical formula. In the following the accepted goal operators:

Table 4: Goal Operators

Definition Meaning

Achieve C achieve the condition C

Achieve-by C (A1…An) achieve the condition C with restricted sets of acts
(a1...An)

TEST C test condition

USE-RESSOURCE R take the resource C

WAIT-UNTIL C wait as long as condition C is true

REQUIRE-UNTIL G C check that goal G stays true until condition C is
satisfied

CONCLUDE P add P to database

RETRACT P : remove P from database

As database facts can describe internal states of PRS goals can characterize inter-
nal behavior of the system. This is called metalevel-goals.

(3) Acts:
The way to reach a goal or to react to a certain situation is specified by a declara-

tive procedure specification which is called Acts. An Acts consists of a plot in which
the steps of the procedure are described. The environment specifies the preconditions
for which the Act can be used. Both components environment and plot specifies de-
claratively in which way an action can be used to respond to a goal or event in certain
situations.

The plot of an act can be viewed like a plan to reach a goal. A graph is represent-
ing the starting situation the way and also the goals and subgoals which have to be
done to reach the final state or goal. To fulfill the act ever goal and every subgoal
must be reached or be successful.

 Each PRS application contains two kinds of acts. On the one hand the act for-
malized by the user and on the other hand some predefined default acts that are built
into the system by itself. User-specified acts can contain both acts, predefined ones
that pertain to the application domain and also metalevel acts which manipulate the
beliefs, goals and intentions of PRS. Metalevel Acts can be used to encode actions
that influence the operation of the system.

Survey on Goal-driven Architectures - 32 -

Figure 4: Example of an Intention Graph16

(4) Intentions
An intention corresponds to a task to be performed by the system which response

to some posted goals or facts. It consists of some acts with all sub acts to satisfy the
subgoals of the original act.

The intention graph orders the intentions with possible multiple least elements.
The order must be either realized or dropped (disappears from the intention graph)
before it can be executed. This gives the system the possibility to prioritize execution
of intentions.

The example of an Intention Graph illustrates the fault diagnosis in the Reaction
Control System of the NASA Space Shuttle. In handling a malfunction, the system
might have in some instants four tasks to handle.

(5) The Interpreter
The PRS interpreter runs and handles the entire system. The following describes

the function of the interpreter by using an example:

Certain goals are established and certain events occur that the beliefs of the data-
base changes (1). These changes lead to various acts (2). The acts will then be chosen
and put into the intention graph (3). Then PRS selects an intention (task) from the in-
tention graph (4). Afterwards one step will be executed (5). This will return a result
either in doing an primitive action in the world (6) and establishing a new subgoal or
it will return a modification of the intention graph.

At this point the cycle of the Interpreter starts a new session until the actions are
finally executed and the goal is reached. Primitive actions can take place in two situa-
tions: As a part in the world or as an internal state of the system. The action may
operate directly on the beliefs of the system or indirectly in a growing knowledge of
the system. On the on hand some goals lead to a new Act, PRS will also try to fulfill
already saved actions or goals. That means acts can be expanded in a manner analo-
gous to the execution of subroutines in the programming system.

16 Taken from Procedural Reasoning System, User’s Guide, AI Center SRI International 333 Ra-
venswood Avenue Menlo Park, CA 94025

Survey on Goal-driven Architectures - 33 -

If some important facts or goals do become known, PRS will realize this and can
also decide to change its current intention to another one and starts searching in a
completely different way. In this way the intention graph can be changed after every
cycle. In this way the system can easily react on changes of the world or environment.

Figure 5: The Interpreter Loop17

4.3 Conclusions

The BDI agent is an approach to simulate the human behavior in problem resolution.
Every BDI Agent acts as a so said individual unit which has some knowledge about
the world, a knowledge which was influenced by the surrounding and also by the way
the unit was used. Like a human the agent can interact with other agents to enlarge its
knowledge. Every agent acts self-directed and controls its own actions, it communicate
with humans or other agents for collaborative problem solving by communication (so-
cial ability), it observes its environment and can autonomous react on changes and
exhibits a rational goal driven behavior in order to achieve its tasks.

The BDI agent system bases on the philosophical theory of beliefs, desires an inten-
tions. In this situation beliefs denote information on the world that an agent considers
to be true, desires are the eventual objectives that an agent wants to achieve and inten-
tions are actions which must be done to achieve a sub step on the way to the final

17 Taken from Procedural Reasoning System, User’s Guide

Survey on Goal-driven Architectures - 34 -

desire. Rational agents provide a realization of the means-end-analysis which is the
general problem solving strategy employed by humans. As it is described in Section
2.2 there are six requirements to AI technologies to provide Goal Driven Architecture.

- BDI Agents support the possibility to define a goal as the desired final state
which should be reached. In BDI Agents a goal is defined as a condition which
should be reached by finding a path through several sub-goals to a final desired
state. A BDI Agent also supports the possibility to build a not completed resolu-
tion plan that means it is not necessary to start with a complete plan to find the
final desired state it is also possible to change the plan after one step because of
new knowledge about the world.

- As in chapter 2.2 described goal definitions can be “accompanied by additional
constraints” which are depended on the knowledge level of the agent. In BDI im-
plementation the database fulfills this requirement. The database contains the
actual knowledge about the world of the agent and with every task this knowl-
edge will be expanded.

- BDI agents support an automated goal resolution on a high level with very low
information requirement on the goal. In this way the amount of information to be
needed to fulfill a certain task depends on the experience of the BDI agent which
is directly depended on the number of similar tasks which were already fulfilled
by the agent. Like a human a BDI agent which has already booked thousands of
flights for users needs less information than a BDI agent which has more experi-
ences with making insurances for cars.

- BDI agents are using two types of formalization: The “intention logic” from
Cohen and Levesque, 1990 and the “BDI logics” from Rao and Georgeff, 1991.
Both have an unambiguous formal description which leads to a high automated
goal resolution plan.

- The possibility of BDI agent not to build a complete resolution path to the final
desired state gives the agent the possibility to use new information which where
stored during the resolution path directly to find a more efficient way for goal
resolution.

- BDI agents are able to split a goal in multiple sub goals which leads to a better
resolution of complex problems.

BDI agents are a prominent approach in AI. Every BDI agent uses methods like
sensors to get information about the actual environment. An interpreter communicates
between the sensors and the agent. In order to other agent technologies BDI agents
have another data structure. It consists of three elements namely beliefs, desires and
intentions. Beliefs define the actual knowledge of the agent about the world. This
knowledge changes permanently. Desires are representing the main goals of the
agent, which influences the behavior of the agent in general. The intension is repre-
senting a goal which the agent wants to achieve. To achieve this goal the agent uses
hierarchical plans, stored in a database, to come closer to the final desired state (goal).
Every plan consists of several subplans called intentions.

Survey on Goal-driven Architectures - 35 -

5 AI Planning

AI planning in concerned with automated techniques for determining plans as
combinations of several operators for solving more complex problems. A plan is se-
quence of actions that leads form the initial state of a problem description to the final
desired state [Ghallab et al., 2004]. There are two main different types of planning:
Classical planning and Nonclassical planning. The former defines the basic tech-
niques within environments that are fully observable, deterministic, finite, static and
discrete; the latter is used in only partially observable or stochastic environments
[Russell and Norvig, 2003].

In the following chapter we will give an overview of what planning is about, fol-
lowed by the planning problem and planning techniques. Then we will have a closer
view on two widely used model and description languages for goals called STRIPS
and a further developed language from CTL called EAGLE [J. Allen, T. Austin and J.
Hendler, 1990].

5.1 Overview

On a regular basis, it occurs that applying a single operator might not be sufficient
for resolving a goal, but executable combinations of several operators might be. For
this reason it is important to have a so called plan for the resolution process. A plan is
a sequence of actions to reach a goal [Russel, Novig, 2003]. For example: If a person
wants to open a business he needs basically the following requirements: The knowl-
edge about how to manage a business, some money for the beginning, an office, some
employees, etc. Now he orders them that means, first the knowledge, second the
money, third the office and last but not least the employees. This order is called a
plan. In AI a plan describes the optimum order of continuing actions that are applied
to reach goals, subgoals and the final state.

5.1.1 The Planning Problem

The classical planning problem consists of the following task: given the initial
state of the world, several actions and their (deterministic) effects, and a sequence of
actions (viz. a plan) to achieve a certain goal state. The aim and purpose of planning
is to provide techniques for dynamically combining several operators that provide
smaller functionalities into an executable sequence for solving problems that require
more complex functionality for resolution.

Classical planning techniques apply forward- or backward-chaining as the underly-
ing inference mechanisms for planning algorithms. Informally, the idea of forward
chaining is to iteratively apply a possible operator O to a set of input parameters pro-
vided by the initial state of the goal formulation G (i.e., all inputs and preconditions
required by O have to be available). If applying O does not solve the problem (i.e., the
desired final goal state of G is not achieved), then a new query G’ can be computed
from G and O; the whole process is iterated. Backward chaining planers start from the

Survey on Goal-driven Architectures - 36 -

desired final goal state of G and at each step of the process we choose an operator O
that will provide at least one of the required parameters. Applying O might result in
new parameters being required which can be formalized as a new goal G’ ; again the
process is iterated until a solution is found.

Planning algorithms have a large computational complexity because, in each itera-
tion, all available operators need to be checked. Several techniques have been
developed to address this problem. The most important ones are heuristic functions
and problem decomposition. The former is used to split goal formulations in order
to reduce computational complexity. For instance, an agent shall buy more than one
book, for example 3 books. For finishing this action he would need if we have again
10 digit ISBN numbers 1030 actions (10 for each digit number and 30 for each book).
In this situation an agent acts differently to a human who would consider that it would
obvious to have one action for each of the remaining books. For an agent this is not
obvious because a goal can only result true or false. To solve this problem it is neces-
sary that an agent is able to split the goal into several subgoals in which each subgoal
is finished independently. That means the action Buy(object 1)^Buy(object
2)^Buy(object 3) would be split into three different actions Buy(object 1), Buy(object
2) and Buy(object 3). In this case the agent is able to use the right heuristic for each
action. Similar, problem decomposition is concerned with de-constructing a complex
goal into smaller subgoals than can be addressed independently for planning. For in-
stance, consider the scenario of packet delivery by UPS. The company has several
packets which should be transported to addresses all over the world. Normally it
would make sense to find the nearest airport for every destination. In this case it can
happen that it will take O(n!) time if the problem cannot be decomposed. But if it is
possible to split the problem into k equal parts it will only take O((n/k)!×k) times to
solve the problem. This helps the planner to work on the different subgoals independ-
ently but with the knowledge that perhaps he needs some additional work to combine
the subplans. Every agent bases on the assumption that nearly every problem can be
decomposed into several subplans.

5.1.2 Planning Techniques

As we already mentioned above there are different kinds of planning systems. For
every plan it is necessary to have a goal. Normally this is called final state or resolu-
tion of a problem. In this context we will mention two different kinds of goal
resolution processes, the basis or classical planning where the Hierarchical Task
Network Planning (HTN) is an extension and the nonclassical planning environ-
ments.

The basic of the classical planning have already been mentioned above (5.1.1);
hence we will concentrate on the extension of the classical planning HTN. The main
differences between the classical planning and the extension of HTN are the way how
a problem will be decomposed. In Classical Planning a problem is decomposed into a
large number of individual actions. This method can lead to high cost for finding the
resolution to a given problem. That means using such a method for large problem so-
lution would lead to high inefficiency. In HTN every problem is spitted into several

Survey on Goal-driven Architectures - 37 -

sub problems and sub problems can be again spitted into several sub problems. HTN
makes a top down hierarchy in which every branch illustrates one sub goal. This
method can result to linear- instead of exponential- time planning algorithms. In HTN
planning the description of a problem is viewed as a very high level description of
what should be done. Plans are refined by applying action decompositions. Each de-
composition reduces a high-level action to a number of lower actions. For example:
We want to public a website and so we will split this goal into the following sub-
goals: finding a provider and a domain name for the website, making a design for the
site, writing the content and uploading the final site. This process will be continued
until only primitive actions remain in the plan. Such primitive actions can be exe-
cuted by the agent without the help of humans.

In the real HTN planning, plans are generated only by action decomposition. HTN
sees planning as a process to simplify and concrete a given problem. However this
method is for some task helpful most planning agents are using some kind of hybrid,
means parts of HTN combined with other technologies.

5.2 Goal and Action Description in Planning

5.2.1 STRIPS

The main task of representing a planning problem is to split it into states, actions
and goals which should help to find the logical structure of a problem for the planning
algorithm. For this we need a language which is on the one hand complex enough to
describe a wide variety of problems and on the other hand restrictive enough to use
efficient algorithms. STRIPS [R. Fikes and N. Nilsson. STRIPS: A new approach to
the application of theorem proving to problem solving. Artifcial Intelligence, 2:189-
208, 1971] is representing one of the first languages of classical planning. The main
elements of the language are: Representation of states, representation of goals, and
representation of actions.

Representation of states. The world will be decomposed by the planner into logical
conditions and any state is represented as a conjunction of positive literals. Pro-
positional literals are used for describing the state of an agent, for example
Poor^Unknown represents a hapless agent. STRIPS is also using first order liter-
als for representing a state. In this context it is important to outline that any literal
in first- order logic must be ground and function- free. Conditions which cannot
be seen as a state are false and will be ignored. This property is called closed-
world assumption.

Representation of goals means that a goal is a partially specified state, represented
as a conjunction of positive literals. Let us consider we have a goal A which is
satisfied by a state f if this state contains all elements or more of the goal A. For
example Fast ^Expensive ^Rare is representing the goal Fast^Expensive.

A representation of actions is the effect after it was executed. Normally an action
cannot start until all preconditions for this action are fulfilled. For example our
packet delivery: we have the Action(Ship(packet s, from Shanghai, to Vienna).

Survey on Goal-driven Architectures - 38 -

To fulfill this action we need the following preconditions: At(packet s, from
Shanghai)^Ship(packet s)^Harbour(from Shanghai)^Harbour(to Amster-
dam)^At(packet s, from Amsterdam)^Train(from Amsterdam)^Train(to Vienna).
Such an illustrated schema is representing a so called action schema instead of
one single action. An action schema consists of three parts:

• Name of the action including a parameter list

• The Precondition which is a conjunction of function free literals which
must be fulfilled to execute the action

• The effect which is also a conjunction of function- free literals which de-
scribes how the state changes after the action is executed.

Some planning systems are using two types of lists to improve the readability, the
add list for positive literals and the delete list for negative ones.The best way to de-
scribe the syntax for planning problems is to declare in which way an actions effect
states. To do this we must say that an action is applicable if it satisfies the precondi-
tion. For exemplification, the following syntax specifies a precondition needed in the
car industry:

At (electric, Augsburg)^ At(motor, Steyr)^ train(electric)^
train(motor)^train(Augsburg)^ train(Steyr)

Now we formalize a state which satisfies the precondition:

At(electric,from)^train(electric)^train(from)^train(to)

The next step is a substitution: {electric/E1, from/Augsburg, to/Steyr}. This results
in an action which is applicable. In the easiest way the solution of a problem is just a
sequence of actions which results in a state which satisfies the goal.

Regarding knowledge, state, goal, and operator descriptions, STRIPS requires sev-
eral restrictions, among which the following are considered as most important
[Ghallab et al., 2004]:

• Only positive literals in states: Poor ^ Unknown

• Closed world assumption: unmentioned literals are false

• Effect P ^ ⌐Q means Add P an delete Q

• Only ground literals in goals: Rich ^ Famous, Modern ^ Dynamic

• Goal are conjunctions: Modern ^ Dynamic

• No support for equality

• No support for types.

When STRIPS was developed the core idea was to develop a language in which
planning algorithm are more simple and more efficient on the one hand and on the
other hand it should not be to complicated to describe real world problems. STRIPS

Survey on Goal-driven Architectures - 39 -

understands a goal as a final desired state which must be reached to solve the prob-
lem. For a lot of real world problems this approach is not satisfactorily.With this idea
one of the key elements was the fact that literals must be function free. But in the re-
cent year it became clear that STRIPS is inefficient for some real world domains. In
this way a lot of other languages or extensions were developed. Among these, we in-
spect EAGLE below which gives a solution to the weak points of STRIPS.

5.2.2 EAGLE

Several situations require applications in which planning needs extended goals.
Actions will lead to different outcomes which can’t be predicted at planning times,
and where goals are not only states to be reached but also conditions in the whole
plan execution paths. This is called extended goals. In such systems algorithms are
needed which include the possibility of different outcomes and the extension of the
search space.

CTL (Computation Tree Logic) is a well known language for expressing goals
[Emerson, 1990] that – in contrast to STRIPS – allows expressing temporal behaviors
of goals. This is described by an universal quantifier and an existential quantifier.
However CTL is not able to express different kind of goals which are relevant for
non-deterministic domains. In the real world there are situation in which a goal can-
not be satisfied. If such a situation would be formalized in CTL the whole process
would be finished with a failure. To avoid this problem it would be necessary that the
agent is able to recover from failure. This can be done by using a new formalization
which weak the goal. That means the agent tries to reach a new goal which nearly sat-
isfies the original goal. For example: We have a robot which should deliver things
from one room A to room B. Room A and room B are separated by an automatic door
which only opens after a certain time. Now our robot arrives the door at a time when
the door is closed. Now the robot cannot deliver the things to the certain room. If we
formalize this situation CTL the robot would end the process with a failure. If we can
weaken the goal we are extend the plan that if the door is closed the robot should wait
a certain time until he start a new approach to deliver the thing into room B. This ex-
tended language is called Eagle.

Eagle is based on CTL with the ability for extended goals in non deterministic
domains. It provides basic goals for expressing conditions which the system should
reach or maintain, and conditions that the system should try to reach or maintain. It is
possible to define basic goals which should be achieved in reaction to a failure and
goals that should be repeated until a failure occurs. Table 5 shows the new elements
introduced with Eagle.

Survey on Goal-driven Architectures - 40 -

Table 5: Elements of Eagle

Element Description

DoReach Specifies a property that should be reached

DoMaint Property that should be maintained true

TryReach Specifies a property that the agent should try to
reach but with the ability to weak this goal

TryMaint Property that the agent tries to be maintained true

Fail This property is used to recover from failure. It can
be used very flexible with a lot of other operators,
at planning time as well as at execution time

Repeat Repeat defines the possibility that in case of failure
the agent should repeat the action after a defined
cycle

These additional description elements allow specifying trial- and compensation
strategies for goals. If a given goal can’t be reached Eagle is able to analyze the origin
goal and formalize, by including the actual situation of the environment, a new goal
which is achievable. This is not the origin goal but still satisfies the original objective;
hence, we can understand this as a mechanism for weakening goals.

5.3 Conclusions

AI Planning uses a plan for automated problem resolution processes. While the
goal resolution techniques for SOAR and BDI agents use a sequence of actions which
can lead closer to the finals state AI Planning tries to construct a complete plan at the
beginning. This can be done by forward chaining, means the agent start at the front-
end (initial state) and continues until it reach the final state, or backward chaining,
where the agent start at the final state and works backward step by step until it
reaches the initial state. For both methods AI planning is using heuristic algorithm
which should help to find the best resolution path. It uses problem decomposition to
divide the problem into several sub problems. In AI planning all subgoals can work
independently from the others which can lead to some additional work to combine the
different result to one plan. Each step in a plan is called an action or operator descrip-
tion which consists of two elements a precondition and a postcondition. The
preconditions define the elements which are required to fulfill this action. The post-
condition represents the new situation after the action was performed.

An interesting aspect is HTN (Hierarchical Task Network Planning). It divides the
problem into a small number of actions an each of this action has the possibility to
continue dividing the sub problem into several sub problems. This allows to mini-
mizes the number of individual actions that need to be taken into consideration for
planning, thereby potentially leading to higher scalability of planning techniques.

Survey on Goal-driven Architectures - 41 -

However the pure HTN viewpoint is rather unnatural and so most planning systems
are using hybrid approaches. For goal driven architecture it would be interesting to
combine the HTN method on the backend and the natural aspect on the front end.

STRIPS is a well known approach, commonly understood as the basis of AI Plan-
ning. It introduces the basic concepts regarding the representation of states and goal
states and operator descriptions by preconditions and effects, and the basic techniques
for planning on basis of backward-chaining. A disadvantage of STRIPS as a goal-
driven architecture is that the input must be given in a special format consisting of
predefined commands. This can lead to communication problems with other agents
which do not “speak” the same language. STRIPS is using a closed world assumption
which makes it difficult to enlarge the knowledge with the help of other agents. The
fact that STRIPS only support positive literals makes it impossible to recover from
failure which is an important aspect for any kind of goal driven architecture.

This recovery from failure is supported by EAGLE, a specification language for
extended goals. Eagle supports with ontologisms like Fail or Repeat a recovery from
failure which is in an suitable extension in order to provide a higher expressivity for
goal formulation and success of goal resolution in real world settings. Another inter-
esting fact of Eagle is the possibility to weaken a goal. Especially in dynamic
environments it is not always possible to reach the predefined goal. In this case a
usual agent will give up after a certain time. In this case EAGLE would weak the goal
to reach a satisfied state.

Survey on Goal-driven Architectures - 42 -

6 The UPML Framework

Problem Solving Methods (PSMs) have been developed in the area of Knowledge
Engineering as a methodology for formally describing the reasoning process for re-
solving given problems in Knowledge-based Systems [Fensel, 2000]. The Unified
Problem Solving Method Development Language (UPML) provides a framework for
formally describing PSMs, consisting of the core element definitions, their formal de-
scription specification, and development guidelines in order to ensure consistency and
resolvability of a PSM definition [Fensel et al., 2003].

6.1 Introduction

UPML unifies and generalizes the conceptual models for describing knowledge-
based systems that have been developed by several approaches in knowledge engi-
neering. Problem Solving Methods (PSMs) have been developed in the area of
Knowledge Engineering as a methodology for formally describing the reasoning
process for resolving given problems in Knowledge-based Systems [Fensel, 2000].
The Unified Problem Solving Method Development Language (UPML) provides a
framework for formally describing PSMs, consisting of the core element definitions,
their formal description specification, and development guidelines in order to ensure
consistency and resolvability of a PSM definition [Fensel et al., 2003].

Knowledge based systems are roughly spoken computer system which are using
knowledge systems to solve problems. This knowledge is represented declaratively,
meaning that the functionality of computational facilities is described extensively in-
stead of realizing it in procedural algorithms. The purpose of UPML is to provide a
general framework for extensively describe the reasoning steps of knowledge based
systems in a declarative manner. UMPL does not aim at describing different software
components, but to develop a generalized used knowledge-based system which can be
used for different tasks.

In fact, UPML can be understood as an extensive and expressive framework for
formally describing the core elements of systems for automated problem solving. The
following analyzes the UPML framework with respect to its characteristics as a goal-
driven architecture and investigates the model and languages used for the declarative
element descriptions.

6.2 Structure of UPML

UMPL identifies six elements that are considered to be relevant for describing the
reasoning behaviour of knowledge based systems by applying Problem Solving
Methods (PSM). These elements are: (1) ontologies provide the formalized general
terminology and knowledge of a domain; for specific applications, (2) domain models
extend ontologies with specific domain knowledge these are extended; a (3) a task
specifies the problem to be solved, and (4) a PSM is a generic methodology for prob-

Survey on Goal-driven Architectures - 43 -

lem solving; (5) refiners allow weakening or strengthening of PSMs to make them
applicable to concrete tasks, and (6) bridges that allow resolving terminological and
teleological mismatches between ontologies, domain models, tasks, and PSMs. Figure
6 shows the interrelation of the six UMPL elements.

Figure 6: UPML Elements and their Relation18

Comparison this with the general structure of goal-driven architectures identified
in Section 2.2 reveals the following correlation. UPML tasks denote the client-side
element for formal specification of user objectives, and PSMs denote the service-side
as general purpose strategies for problem solving; ontologies, domain models, refin-
ers, and bridges denote the auxiliary elements. Hence, UPML can be understood as a
description model for goal-driven architectures. Below, we investigate the description
models for the different elements and their interrelation in detail.

18 source: [Fensel et. al., 2003].

Survey on Goal-driven Architectures - 44 -

6.3 UPML Element Descriptions

The following investigates the distinct UPML elements with respect to their usage
purpose and their declarative description models. In particular, we analyze the seman-
tics of the element descriptions. We group the elements in accordance to their
allocation within the model for goal-driven architectures.

6.3.1 Ontologies and Domain Models

Ontologies and domain models provide the formal domain terminology and
knowledge definitions that are used within all other UPML elements. While ontolo-
gies are used as generic, re-usable domain knowledge conceptualizations, domain
models refine and extend ontologies for a specific application scenario.

An ontology provides “an explicit specification of a conceptualization” [Gruber,
1993], which can be shared by reasoning components which are communicating dur-
ing problem resolution process. As in the other AI technologies ontologies are used to
define the terminology task for problem resolution. In contrast to the other surveyed
approaches UPML does not have a specific language for defining ontologies but
rather supports different languages. These are KARL [Fensel, Angele, Studer, 1998],
a frame-based language for specifying epistemological aspects close to F-Logic
[Kifer et al., 1995], and the Modal Change Logic MCL [Fensel, Groenboom,
Lavalette, 1998] for the dynamic aspects; these languages have been combined into
the OIL language [Fensel et al., 2001]. Table 6 summarizes the description elements
of ontologies in UPML.

Table 6: UPML Ontology Description Model

Descriptor Explanation

pragmatics non-functional aspects (e.g. creator, date, natural
language description, references)

signature defines the data schema of an ontology in terms of
sorts, constants, and predicates.

axioms domain knowledge specification in form of logical
expressions on basis of the signature

A domain model uses one or more ontologies and extends the knowledge defini-
tions with application specific knowledge specifications. In essence, this means that a
domain model provides an ontology that is refined and extended for a specific appli-
cation purpose. For specification, a domain model imports a general purpose ontology
and defines extended knowledge in for of new predicates, axioms, and facts. These
are distinguished into properties and assumptions: while the former can be derived
from the domain knowledge, the latter denotes aspects that cannot not be derived but
are needed to be assumed to be true. Table 7 summarizes the description structure of
domains models.

Survey on Goal-driven Architectures - 45 -

Table 7: UPML Domain Model Description

Descriptor Explanation

pragmatics non-functional aspects (e.g. creator, date, natural
language description, references)

ontology imported ontology (one or more)

properties schema of additional domain knowledge that can
be derived

assumptions schema additional domain knowledge that is as-
sumed

domain knowledge concrete facts of domain

6.3.2 Task

The purpose of tasks is to specify problems that a knowledge-based system shall
solve. In contrast to goal definitions in the previously surveyed approaches, a task is a
generic problem description that can be re-used, i.e. for solving several requests that
have the same semantic structure. Therefore, a task represents a schematic problem
description that can be initiated for several specific requests.

A task description consists of two aspects: at first it defines a goal to be achieved,
and secondly it has information about the in-and output roles as well as preconditions
that need to hold before the task can be initiated. Therewith, the problem definition is
kept independent from specific applications which give the possibility of reuse for
other applications. Another aspect is the explication of assumptions as conditions on
the world that need to hold in order to achieve the task. Assumption can be checked
during the whole problem solving method while preconditions can not. In this way
assumptions can ensure that the given task can be solved for premissable input. Table
8 shows the description model of tasks in UPML.

Table 8: UPML Task Description Model

Descriptor Explanation

pragmatics non-functional aspects (e.g. creator, date, natu-
ral language description, references)

ontology imported ontology / domain model (one or more)

specification

- roles

- goal

- precondition

- assumptions

specifies the task by:

- in- & output constraints

- state of the world to be achieved

- conditions that need to hold before execution

- explicated assumptions and conditions that
need to hold during the task resolution

Survey on Goal-driven Architectures - 46 -

6.3.3 Problem-Solving Methods

PSMs denote the service-side element in the UPML framework. It is to note that a
PSM is a procedure or methodology for problem solving and hence is not comparable
to operators, i.e. computational facilities available for automated usage and execution.
Rather then describing the functionality of an operator as an implemented, executable
program, a PSM provides a goal resolution strategy that defines the reasoning proce-
dure to be undertaken. However, under the assumption that an implementation for a
PSM exists, this can be understood as an operator for automated problem solving on a
higher level of abstraction.

UPML distinguishes between two different types of problem solving methods:
complex problem solving method which divides a task into several subtasks and
primitive problem-solving methods that makes assumptions about the knowledge of
the domain to perform a reasoning step. The central aspects for PSM descriptions in
UPML are the competence that specifies what the PSM does and the operational de-
scription that specifies how the PSM achieves it’s competence. Table 9 summarizes
the PSM description model in UPML.

Table 9: UPML Problem Solving Method Description Model

Descriptor Explanation

pragmatics non-functional aspects (e.g. creator, date, natu-
ral language description, references)

ontology imported ontology / domain model (one or more)

competence

- roles

- precondition

- postcondition

- assumptions

- sub-tasks

specifies WHAT the PSM does by:

- in- & output constraints

- conditions that need to hold before execution

- conditions that hold after execution with de-
pendence to the precondition

- explicated assumptions and conditions that
need to hold during the task resolution

- lists of tasks the PSM consists of

operational specification

- intermediate roles

- procedures

- control

specifies HOW the PSM works by:

- in- & outputs needed for PSM execution

- programs / procedures used

- control & data flow between sub-tasks and pro-
cedures

Survey on Goal-driven Architectures - 47 -

6.3.4 Refiners and Bridges

As a novel element not existing in the other investigated approaches, so-called
adapters in UPML connect other elements in order to make them interoperable if this
is not given a priori. Conceptually, this follows the idea of mediators proposed by
[Wiederhold, 1992].

A Refiner adopts tasks and PSMs by refining their specification, respectively com-
petence such that either a PSM is usable for a task if this has not been given a priori,
or such that a tasks or a PSM occurs to be a functional refinement of another one.
This is achieved by defining additional conditions and assumptions that constrain the
respective functionality descriptions. A Bridge adopts two elements and resolves on-
tological mismatches between them that hamper interoperability. The source and
target can be any UPML element. Table 10 summarizes the description model of both
refiners and adapters.

Table 10: UPML Adapter Description Model

Descriptor Explanation

pragmatics non-functional aspects (e.g. creator, date, natural
language description, references)

ontology imported ontology (one or more)

auxiliary terminology additional domain terminology & knowledge
needed for adapter specification

source element UPML element that the adaptation starts from

target element UPML element that the adaptation results in

SPECIFIC FOR REFINERS

refined x additional axioms / rules that specify the refine-
ments, whereby “x” can be any sub-element of a
task specification or a PSM competence

SPECIFIC FOR BRIDGES

rename terminology renaming

mapping axioms mappings between heterogeneous knowledge
definitions

6.4 Conclusion

UPML represents a description model for reasoning procedure of knowledge based
systems. In this case UPML is not representing in order to BDI Agent an imple-
mented framework problem resolution. It is using different problem solving methods
without the ability of goal resolution techniques, these have been addressed in related
system implementations, with IRS II as the most prominent one [Motta et al., 2003].

Survey on Goal-driven Architectures - 48 -

The central aspects of UPML with respect to exhaustive declarative description of
goals and related aspects are:

1) usage of ontologies as the knowledge representation formalisms, which is more
expressive than first-order predicate logic and more suitable for concisely de-
scribing domain knowledge

2) the description model for tasks, the client-side description element of UPML,
represents a more general way for formally specifying client objectives to be
achieved. They are described by in- and output roles for computational execu-
tion, and the desired final goal state; in contrast to the previously examined
approaches, preconditions and assumptions that constrain possible initial state
of the world for solving a problem.

3) PSMs represent the service-side element in UPML. Rather than denoting an
operator than can be used and executed for automated problem solving, a PSM
specifies a specific reasoning behaviour for problem solving; it is described by
a competence as a black box description and optionally by an operational speci-
fication that consists of sub-tasks and the control flow between them. We can
understand this concept as a means for explicitly specifying the goal resolution
procedure in a declarative manner.

4) As a novel aspect, UPML introduces the concept of adapters as intermediate
elements for connecting and re-use of resources for automated problem solving.
Therefore, two types of adapters are distinguished: refiners that tries to render
the problem more precisely, and bridges which can be variable that matches
different elements from tasks to each other.

Survey on Goal-driven Architectures - 49 -

7 Summary, Findings, Conclusions

After detailed analysis of the four approaches for goal-driven architectures, this
section summarizes and depicts the central findings of this survey. With respect to the
research interest identified introductory, we explicate the commonalities and differ-
ences of the approaches with respect to the notion of goals, their formal description,
and techniques for goal-driven automated problem solving.

7.1 Summary

Pursuing the grand aim of Artificial Intelligence of creating intelligent systems that
perform tasks automatically in a similar way that humans do, the aim of goal-driven
architectures is to lift IT-system usage for clients to the knowledge level. Instead of
formulating technical requests for available computational resources clients shall be
enabled to formulate their objectives as goals that abstract from technical details and -
at the same time - carry all information that is needed for detecting and executing the
appropriate resources for achieving the objective.

As the central element of such architectures, a goal is a formal, machine-process
able knowledge level specification of a client objective that needs to satisfy the fol-
lowing requirements: (1) abstracting from technical details to the highest possible
extent, (2) support all possible kind of objectives that clients may have, (3) carry all
information needed for automated goal resolution. For determining the state of the art
in goal-driven architectures, we have identified the AI disciplines of cognitive archi-
tectures, intelligent software agents, planning, and knowledge engineering as
relevant. Out of field, we have examined respectively one approach with respect to
how goals are formally described, which types of objectives are supported, and which
techniques are applied for automated goal resolution.

 The first technique investigated in Section 3 is SOAR, a cognitive architecture
based on a conceptual model of human cognition. SOAR is using production rules in-
stead of a database for the representation of the knowledge. Goal resolution
techniques are implemented by a decision cycle. This cycle consists of 3 main ele-
ments: elaboration (represents a condition which is satisfied to attain the current
state), decision (determines the operator to be applied next along with preferences for
them) and application which is the execution of the defined task. This decision cycle
is extended with subgoaling called impasse handling and learning (chunking) which
increases the efficiency of a problem resolution process.

The second approach investigated in Section 4 is the belief-desire-intention (BDI)
model developed as a philosophical theory for rationale behavior along with a logical
formalization for goal-driven intelligent software agents. The approach consists of
three main aspects: Belief, desires and intentions. Belief describes the actual knowl-
edge about the world which is considered to be true by the agent. This information is
stored in a database. Desires are describing the final desired state the agent wants to
achieve. The last element, intentions are representing one or multiple actions that the

Survey on Goal-driven Architectures - 50 -

agents has committed to achieve a substep towards the final desired state. At the be-
ginning of a resolution process the agent has knowledge about the world. Starting
from the knowledge about the world the agent gets the desires by using the knowl-
edge as well as the given input and problem description. Using these two elements the
agent tries to find a way through multiple actions to the final desired state by choos-
ing and executing intentions. In this context an intention is representing a fragment of
plan which is created by the agent at the beginning and during the resolution process.
This so called plan can also be changed during the resolution by getting new facts
about the world. This process continues until the agent reaches the final desired state.

As the third approach, Section 5 has investigated AI Planning as a technique for
automated construction of plans as a valid sequence of actions for reaching a goal
state from an initial state. The purpose of planning is to provide automated support
for combing several applicable operators for possibly more complex problems that
can not be solved by applying just a single operator. In classical planning, objective
descriptions in classical planning techniques a restricted to an initial state and a goal
state to be achieved; operators are described in terms of preconditions and effects, and
plans are determined on basis of forward- or backward chaining. Extensions of the
basic planning techniques include conditions on for plan determination (conditional
planning), as well as descriptions languages like EAGLE that allow trial- and com-
pensation specifications for goals. In contrast to the BDI approach of interleaved
action and planning, the result of successful planning is a suitable sequence of opera-
tors for achieving a goal that is determined a priori, i.e. the complete control and data
flow between used operators is determined before any of the operators is executed.
Although this might cause failures in plan execution because of changes in the world
that timely occur between the planning and its execution, AI Planning currently re-
ceives a renaissance as the basis for functional Web service composition.

The fourth and final approach investigated in Section 6 is the Unified Problem
Solving Method Development Language UPML, an exhaustive framework for explic-
itly describing the reasoning behavior of knowledge-based systems that utilize
problem solving methods (PSM). PSMs are a generic problem solving methodologies
that are formally described in order to allow their application for different specific
problems via refinement. UPML identifies six elements: ontologies and domain mod-
els that specify the domain terminology and knowledge, tasks for specifying
objectives to be achieved, problem solving methods as generic methodologies for
problem solving, and adapters for connecting tasks and problem solving methods by
refinement (refiners) and solving terminology mismatches between them (bridges);
UPML defines a description meta-model analyzed above in detail. In contrast to the
other approaches surveyed above, UPML is merely a description framework but does
not encompass any goal resolution techniques. However, it provides valuable insight
for advanced declarative descriptions of goal-driven systems: using ontologies as the
data model allows more expressive knowledge definitions, and the concept of tasks
denotes a generic way for specifying problems or client objectives; furthermore, when
understanding PSMs rather as a way to generically specify goal resolution strategies
than as operators for automated execution, their UPML specification provides a way
for describing more complex client objectives including resolution plan constraints.

Survey on Goal-driven Architectures - 51 -

As already mentioned UMPL is mainly a description language without a technique
for automated goal resolution. However several approaches has been done to imple-
ment this description language into a functional framework including automated goal
resolution techniques. The most famous framework is called IRS2 (Internet Reason-
ing Services) form KMI.

7.2 Findings

After summarizing the investigations, we can now examine the commonalities and
differences of the examined approaches. Recalling from the introductory examina-
tions in Section 2.4, the aspects of interest for determining the state of the art in goal-
driven architectures are how are goals and related client-side elements defined and
described, what kind of objectives and problems can be handled by the technology,
and which techniques are applied for automated, goal-driven problem solving. In or-
der to attain a concise overview of the state of the art in goal-driven architectures, the
following summarizes the central findings with respect to the types and definition of
goals as well as the techniques used for automated goal resolution.

7.2.1 Goal Types and Descriptions

Regarding the first two aspects of interest, we observe that three types of problems
or objectives can be supported by the examined techniques. We refer to these as Goal
Types. In addition, we can differentiate two types of constraints that are supported by
advanced models for goal description. We refer to them as Constraint Types.

The three Goal Types are:

G-I. Desired State of the World
This denotes client objectives for creating a new object or state in the world.
Examples are to buy a travel ticket by providing an origin, destination, and
date as input, or the goal state of the blocks world example (i.e. the state where
there is a tower of 3 blocks on the table); commonly, such goals are specified
by the desired final state with respect to an initial state. Typically, we find goals
of this goal type within classical planning as well as in the SOAR technology.

G-II. Functions to be Performed
This refers to objectives for performing a certain function, e.g. multiply(a,b) or
withdrawFromAccount(x). While the client desire is to change the state of the
world by executing a specific operation, the formal description of such goals is
commonly given as a \emph{state transition}, i.e. a pre-state constraints and
post-state constraints that denote the epistemic change between them. We can
find this goal type in all of the surveyed approaches.

G-III. Temporal Abiding Goals
This group denotes client objectives that remain over a longer period of time,
and typically require several steps for resolution as well as adoption and goal
refinement during the resolution process. Examples are to write a book or attain
a PhD degree, which we typically find as desires delegated to intelligent agents.

Survey on Goal-driven Architectures - 52 -

The two Constraint Types are:

C-I. Goal Resolution Invariants
This denotes additional constraints that need to hold during all states of the
world traversed when a goal is solved. For instance that the account shall never
become negative while a series of purchases is performed. We find such con-
straints implicitly hidden with the domain knowledge in the SOAR technology,
as well as in BDI Agents and AI Planning.

C-II. Goal Resolution Procedure Constraints
This refers to constraints on the process for resolving a goal. Instead of merely
a black-box description for goal from an initial state to the desired goal state,
requirements and constraints on intermediate steps and their order are defined
in a goal formulation. We find this in form of constraints in conditional AI
planning languages, as trial- and compensation specifications in the EaGLe
language, and as goal decompositions in terms of collections of sub-goals with
control- and data flow between them in UPML for complex PSMs.

Regarding the formal specification of goals, we observe that all investigated ap-
proaches apply a state-based model as the underlying logical framework for formally
describing goals and operators. For all three goal types, the desired goal states are de-
fined in terms of logical expressions in some static knowledge representation
language (propositional logic or some ontology language). The state of the world that
holds before the goal resolution procedure is started is either considered to be given
as the initial state in terms of facts and rules (SOAR, BDI agents, and planning) or
specified as a respective pre-state constraint (UPML).

Both constraint types represent extensions of the respective goal type description.
For type C-I, the constraints are commonly modelled as logical conditions in the re-
spective framework with the meaning that these conditions need to hold during all
intermediate states traversed during the goal resolution. For constraint type C-II, the
constraints are either modeled as logical conditions on particular states that are re-
quired to be traversed during the goal resolution procedure (condition AI planning
and EaGLe), or as declarative descriptions of goal decompositions in terms of collec-
tions of subgoals along with control- and data flow between them (operational
specification of complex PSMs in UPML).

Summarizing, defining goals in terms of preconditions, effects, and additional con-
straints appears to be the least common characteristic of the surveyed approaches.

7.2.2 Goal Resolution Techniques

Regarding the third aspect of interest, we have determined three approaches for
automated goal resolution techniques. The decision cycle of SOAR along with sub-
goaling applies forward-chaining in order to subsequently choose the operators for
reaching the goal state from the initial state. The central characteristic of automated
goal resolution within the BDI framework is interleaved action and planning, mean-
ing that the agent observes the world, then determines intentions and executes, and

Survey on Goal-driven Architectures - 53 -

repeats this process until the final desire is solved. As the third one, AI Planning
techniques automatically create the goal resolution plan by matchmaking and for-
ward- or backward-chaining.

Each of these techniques allows to resolve the specific type of goals, whereby the
AI Planning as well as the SOAR technique appear to be most suitable for goal types
I and II while the BDI technique in principle supports resolution for all goal types but
is mainly designed and applicable for type III. As the commonalities of the goal reso-
lution techniques, we observe that each one encompasses facilities for planning and
for operator detection. The former is concerned with determining the goal resolution
plan as the steps to be performed for reaching the final state from the initial state of
goal formulation, and the latter is concerned with . Therefore, AI planning techniques
provide the technical core as automated plan determination by finding and combing
available operators. This is extended towards interleaved action and planning by sub-
goaling and means-to-end analysis for operator detection in SOAR, and further into
interleaved observation, planning, and action within the BDI framework.

Concluding, Table 11 summarizes the commonalities and differences of the inves-
tigated approaches with respect to the goal and constraint types identified, the formal
languages used for goal specification, and the applied goal resolution techniques.

Table 11: Goal-driven Architectures – Commonalities and Differences

 SOAR BDI Agent AI Planning UPML

supported Goal &
Constraint Types

G-I,G-II
C-I

mainly G-III
C-I

G-I, G-II
C-I, C-II

G-I, G-II
C-I, C-II

Goal Description
Model

initial state &
goal state in
problem space

beliefs, desires,
intentions

initial & goal
state +

constraints

tasks
in- & output
precondition
goal state

assumptions

Specification
Language

production
rules +

propositional
logic

BDI logics
modalities

FOL
temporal logic

possible worlds

propositional
logic +

plan description
(operators, con-
trol- & data-flow)

ontologies
+

MCL for
dynamics

Goal Resolution
Technique

forward chain-
ing with

sub-goaling

interleaved
observation /

planning / action

a priori plan de-
termination

not in the
scope

Survey on Goal-driven Architectures - 54 -

7.3 Conclusions

Above, we have summarized the survey and explicated the central findings on goal
types, their description, and goal resolution techniques developed in existing ap-
proaches. In order to avoid duplication and referring to the summarizes for the
investigated approaches within the respective sections, the following merely summa-
rizes the central aspects of this survey.

• pursuing the grand aim of AI research, goal-driven architectures provide so-
phisticated client-side support for automated IT-system usage on the
knowledge level with its philosophical origins in Cognitive Science

• the general structure of goal-driven architecture consists of 3 elements:
goals as the client-side element for objective formulation, service-side ele-
ments as available computational facilities with declarative descriptions, and
auxiliary elements for enhancing the goal resolution quality

• goals are formal, machine-processable knowledge level specification of cli-
ent objectives that (1) abstracts from technical details to the highest possible
, extent, (2) support all possible kind of objectives that clients may have, and
(3) carry all information needed for automated goal resolution

• we have determined 3 goal types: (1) desired states of the world, (2) func-
tions to be performed, and (3) temporal abiding goals; the common
underlying model for formal descriptions of goals and related aspects are
state-based so that the commonly goal descriptions consist of preconditions
and effects as state constraints on the initial and final state of the world

• goal descriptions can be extended with constraints, wherefore we have dis-
tinguished (1) invariants that are requested to hold during each state
traversed during the goal resolution, and (2) procedural constraints that need
to hold on particular states that are required to be traversed for goal resolu-
tion; the former is described as additional constraints on the requested
functionality, and the latter by control- and data flow of goal decomposi-
tions

• the common core of goal resolution techniques are facilities for planning
and operator detection; specific techniques extend this with sub-goaling and
means-to-end analysis for operator selection, respectively interleaved obser-
vation, planning, and action for temporal abiding goals.

Survey on Goal-driven Architectures - 55 -

References

Allen, J, Austin, T., Hendler, J. Readings in Planning. Morgan Kaufmann. Publishers, 1990.

Anderson, J. R.: Cognitive Architectures in a rational analysis. In K. van Lehn (ed.), Architectures
for Intelligence, pp. 1-24, Lawrence Erlbaum Associates, Hillsdale, N.J, 1991.

Anderson, J. R.: Cognitive Psychology and Its Implications. 5th Edition. New York, USA: Worth
Publishers and W. H. Freeman, 1999.

Blackburn, P; de Rijke, M.; Venema, Y: Modal Logic. Cambridge University Press, 2001.

Boerger, E. and Staerk, R.F: Abstract State Machines. A Method for High-Level System Design and
Analysis. Berlin, Heidelberg: Springer 2003.

Booth, D. et al.: Web Service Architecture. W3C Working Group Note 11 February 2004. available at:
http://www.w3.org/TR/ws-arch/.

Bratman, M. E. ; Israel, D. J.; Pollack, M. E.. Plans and resource-bounded practical reasoning.
Computational Intelligence 4 (4), pp. 349 – 355 1988.

Bratman, M. E.: Intention, Plans and Practical Reason. Harvard University Press, Cambridge, Mas-
sachusetts, 1987.

Chen, Y. and Cheng, B. H.C.: A Semantic Foundation for Specification Matching. In G. T Leavens
and M. Sitaraman: Foundations of Component-based Systems, Cambridge University Press, 2000.

Codd, E. F.: Relational Completeness of Data Base Sublanguages. In R. Rustin (ed.): Database Sys-
tems: 65-98, Prentice Hall and IBM Research Report RJ 987, San Jose, California, 1972.

Cohen, P. R. and Levesque, H. J.: Intention is choice with commitment. In Artificial Intelligence 42,
pp. 213 - 261, 1990.

Diller, A.: Z: An Introduction to Formal Methods. 2nd edition. Wiley, 1994.

E.A. Emerson. Temporal and modal logic. In. J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. Elsevier Science Publishers,1990

Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services. Prentice
Hall PTR, 2004.

Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic Commerce
Research and Applications, 1(2), 2002.

Fensel, D. et al.: The Unified Problem Solving Method Development Language UPML. In Knowl-
edge and Information Systems Journal (KAIS) 5(1), 2003.

Fensel, D.: Problem Solving Methods: Understanding, Description, Development and Reuse. Berlin,
Heidelberg: Springer 2000.

Fensel, D.; Angele, J.; Studer, R.: The Knowledge Acquisition and Representation Language KARL,
In IEEE Transactions on Knowledge and Data Engineering, 1998.

Fensel, D.; Groenboom, R.; Renardel de Lavalette, G. R.: Modal Change Logic (MCL): Specifying
the Reasoning of Knowledge-based Systems. In Data and Knowledge Engineering (DKE), 26(3):243-
269, 1998.

Fensel, D.; van Harmelen, F.; Horrocks I.; McGuinness, D. L.; Patel-Schneider, P.: OIL: An Ontol-

Survey on Goal-driven Architectures - 56 -

ogy Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2), 2001.

Forgy, C.: OPS5 User's Manual. Technical Report CMU-CS-81-135, Carnegie Mellon University,
1981.

Ghallab, M.; Nau, D., and Traverso. P. Automated Planning. Theory & Practice. Morgan Kaufmann
Publishers, 2004.

Grosz, B. and C. Sidner.: Plans for Discourse. In P. Cohen, J. Morgan, M. Pollack (Eds.): Intentions
in Communication, Bradford Books, MIT Press, 1990.

Hoek, W. v. d. and Wooldridge, M.: Towards a Logic of Rationale Agency. Logic Journal of the
IGPL 11(2): 135-159, 2003.

Hofstadter, D. R.: Goedel, Escher, Bach: an Eternal Golden Braid, New York, USA: Basic Books,
1979.

Jeng, J.-J. and Cheng, B. H. C.: Using Formal Methods to Construct a Software Component Library.
In Proc. of the 4th European Software Engineering Conference on Software Engineering, LNCS
(717), p. 397-417, 1993.

Jennings, N.R.; Wooldridge, M.: Agent-oriented Software Engineering. In J. Bradshaw (Ed.): Hand-
book of Agent Technology, AAAI Press / MIT Press, 2001.

Kifer, M.; Lausen, G.; Wu, J.: Logical Foundations of Object-Oriented and Frame-Based Lan-
guages. Journal of the ACM, 42(4):741–843, 1995.

Krueger, C. W.: Software Reuse. In ACM Computing Surveys (CSUR), vol.24(2), p.131-183, 1992.

Laird, J. E.; Congdon, C. B.: The Soar User’s Manual, Version 8.5, Edition 1. University of Michi-
gan, June 3, 2004; http://www.eecs.umich.edu/~soar/sitemaker/docs/manuals/Soar8Manual.pdf.

Lamsweerde, A. van: From System Goals to Software Architecture. In SFM 2003, pp. 25-43.

Lamsweerde, A. van; Letier, E.: From Object Orientation to Goal Orientation: A Paradigm Shift for
Requirements Engineering. In Proc. of the 9th International Workshop on Radical Innovations of
Software and Systems Engineering (RISSEF 2002), Venice, Italy, 2002.

Lausen, H.; Polleres, A.; Roman, D. (Eds.): The Web Service Modeling Ontology (WSMO). W3C
member submission 3 June 2005; http://www.w3.org/Submission/WSMO/.

Levesque, H. J.; Cohen, P.R.; Nunes, J. H. T.: On Acting Together. In Proceedings of the 8th National
Conference on Artificial Intelligence (AAAI-90), pp 94-99, Boston 1990.

Luck, M.; McBurney, P.; Preist, C.: Agent Technology: Enabling Next Generation Computing - A
Roadmap for Agent-Based Computing. Version 1.0, AgentLink II, 2003.

Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, D. Shaparau, Paolo Traverso: Planning Monitoring
Web Service Composition. AIMSA 2004: 106-115

Martin, D. L.; Cheyer, A. J.; Moran, D. B.: The open agent architecture: a framework for building
distributed software systems, Applied Artificial Intelligence 13 (1-2), 1999.

McCarthy, J.: Artificial intelligence, Logic and Formalizing Common Sense. In R. Thomason (Ed.):
Philosophical Logic and Artificial Intelligence, pp 161--190. Kluwer Academic Press, Dordrecht,
Holland, 1989.

McCarthy, J.: From Here to Human Level AI. Stanford CS Department Technical Report, 1996;
available at: http://www-formal.stanford.edu/jmc/human/.

Survey on Goal-driven Architectures - 57 -

Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Englewood Cliffs, 2nd edition,
1997.

Moore, R. C.: Reasoning about knowledge and action. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence (IJCAI-77), Cambridge, MA, 1977.

Motta, E., Domingue, J., Cabral, L. and Gaspari, M. (2003) IRS-II: A Framework and Infrastructure
for Semantic Web Services. 2nd International Semantic Web Conference (ISWC2003) 20-23 Octo-
ber 2003, Sundial Resort, Sanibel Island, Florida, USA.

Nadel, L. (Ed.): Encyclopedia of Cognitive Science. London, UK: Nature Publishing Group, 2003.

Newell, A. and Simon, H. A.: GPS, a program that simulates human thought. In E. A. Feigenbaum
and J. Feldman: Computers and Thought. New York: McGraw-Hill, pp. 279 – 293, 1963.

Newell, A. and Simon, H. A.: Human Problem Solving. Englewood Cliffs, New Jersey: Prentice-
Hall, 1972.

Newell, A. The Knowledge Level. In Artificial Intelligence (18), pp. 87-122, 1982.

Newell, A.: Unified Theories of Cognition. Cambridge, Massachusetts, USA: Harvard University
Press, 1990.

Nwana, H. S.: Software Agents: An Overview, Knowledge Engineering Review 11(3), 1996; pp 1-40.

Paolucci, M.; Kawamura, T.; Payne, T.; Sycara, K.: Semantic Matching of Web Services Capabilities. In Pro-
ceedings of the First International Semantic Web Conference, Springer-Verlag, 2002; pp 333-347.

Preist, C.: A Conceptual Architecture for Semantic Web Services. In Proceedings of the 3rd Interna-
tional Semantic Web Conference (ISWC 2004), 2004, pp. 395 - 409.

Rao, A. S. and Georgeff, M. P.: Modeling rational agents within a BDI-architecture. In Proceedings
of Knowledge Representation and Reasoning (KR&R-91), pages 473 – 484, San Mateo, CA, 1991.

Rao, A. S. and Georgeff, M: Decision procedures for BDI logics. Journal of Logic and Computation
8(3), pp. 293- 344, 1998.

Rosenbloom, P. S., and Newell, A.: Learning by chunking: Summary of a task and a model. In Pro-
ceedings of AAAI-82 National Conference on Artificial Intelligence. AAAI, Menlo Park, CA, 1982.

Rosenbloom, P. S., Laird, J. E.; and Newell, A.. The Soar Papers: Readings on Integrated Intelli-
gence. Cambridge, MA: MIT Press, 1993.

Russell, S. and Norvig, P.: Artificial Intelligence. A Modern Approach. 2nd edition. Prentice Hall,
2003.

Shoham, Y.: Agent-oriented Programming. In Artificial Intelligence (60), pp. 51-92, 1993.

SRI: Procedural Reasoning System, User’s Guide, Artificial Intelligence Center SRI International
333 Ravenswood Avenue Menlo Park, CA 94025

Stollberg, M.; Strang, T.; Fensel, D.: Automated Collaboration on the Semantic Web. In GESTS In-
ternational Transactions on Computer Science and Engineering 17(1), September 2005.

Studer, R.; Benjamins, V.R.; Fensel, D.: Knowledge Engineering. Principles and Methods. In Data
and Knowledge Engineering 25 (1-2) 1998.

Sycara, K.; Paolucci, M.; van Velsen, M.; Giampapa, J. A.: The RETSINA MAS Infrastructure. In
Special Joint Issue of Autonomous Agents and MAS, Volume 7 (1,2), July 2003.

Survey on Goal-driven Architectures - 58 -

Turing , A. M.: Computing Machinery and Intelligence. In Mind (49), pp. 433-460, 1950.

Wiederhold, G.: Mediators in the Architecture of Future Information Systems. In IEEE Computer,
25(3):38.49, 1992.

Wilsker, B.: A Study of Multi-Agent Collaboration Theories. ISI Research Report, ISI/RR-96-449,
November, 1996.

Wilson, R. A., & Keil, F. C. (Eds.): The MIT Encyclopedia of the Cognitive Sciences. Cambridge,
MA: MIT Press, 1999.

Wooldridge, M. and Jennings, N.: Intelligent Agents: Theory and Practice, Knowledge Engineering
Review 10(2), 1995; pp 115-152.

Wooldridge, M. and Rao, A. (eds.): Foundations of Rational Agency. Kluwer Academic Publishers,
1999.

Wooldridge, M. J.: Reasoning about Rationale Agents. Cambridge MA: The MIT Press, 2000.

Wooldridge, M.: An Introduction to Multi Agent Systems. Wiley and Sons, 2002.

