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Abstract: The ultimate aim of advanced IT technology is to provide infrastructures for 
automated problem solving. Based on machine-readable descriptions, intelligent mechanisms 
shall enable dynamic usage and combination of available computational resources for solving 
problems. Therefore, different branches of Artificial Intelligence (AI) research develop 
frameworks for describing problems and resources along with technologies for automated 
problem resolution and resource usage. Most commonly, such frameworks center around the 
service-side that is concerned with how to describe computational resources in order to allow 
automated usage, and the client-side that is concerned with how to describe the problems to be 
solved and their resolution process. In order to provide IT technology that reflects real world 
problem solving in a sophisticated manner, the service- and the client-side should be decoup-
led to the highest possible extent. Appropriate models for the client-side should allow 
specifying objectives to be solved from the client’s perspective without regard to their techni-
cal resolution, thereby providing sophisticated support for the client-side that is decoupled 
from technical service usage requests; on the other hand, client-side description elements 
should encompass all information required for automated problem resolution by intelligent 
mechanisms for automated resource detection, combination, and usage. Such sophisticated cli-
ent-side models is what we refer to as goal-driven architectures. Therein a user only specifies 
the objective or problem to be solved while intelligent mechanisms handle the resolution proc-
ess automatically. This paper surveys approaches for goal-driven architectures, deriving the 
state of the art on description models for the client-side that is intended to serve as a basis for 
developing a goal-driven architecture for Semantic Web Services. 
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1 Introduction   

Research on Artificial Intelligence (AI) is concerned with the creation of intelli-
gent computer systems that perform tasks automatically. Aiming at sophisticated 
support for automated problem solving, we observe two elementary methodologies 
that are collectively followed throughout the various sub-disciplines of AI research: 
first, logics and formal methods are applied in order to enable advanced processing of 
complex information, and secondly that system and technology design is founded on 
models for problem solving in the real world [McCarthy, 1989]. This has lead to-
wards several foundational paradigms for computer technology design, whereof the 
following have significantly influenced IT technology development (in chronological 
order): the relational algebra providing the foundation for the broadly used relational 
database technology [Codd, 1972], the object-oriented paradigm as a programming 
technique that overcomes the deficiencies of procedural programming languages by 
means of data abstraction, polymorphism, encapsulation, and inheritance [Meyer, 
1997], the agent-oriented paradigm that develops systems wherein agents reside as 
autonomous computational elements and satisfy their particular objectives in an inter-
active manner [Shoham, 1993], and service-orientation as the most recent paradigm 
that proclaims system architectures consisting of several service that encapsulate 
some computational facility and are dynamically used and combined for solving a 
specific problem [Erl, 2004]. 

The ultimate aim of AI research – contemporaneously its motivation and initiation 
in the second half of the 20th century – is to create computer systems, or, more gener-
ally, machines that can solve problems in a similar way as human beings do [Turing, 
1950]. Several works have been and still are concerned with defining appropriate 
frameworks for advanced, intelligent, and automated problem solving by following 
the above mentioned methodologies of studying problem solving in nature and apply-
ing logic-based techniques for simulating this. When analyzing the organization of 
such frameworks, we can identify the following four common top level elements: (1) 
the service-side that is concerned with how to describe computational resources in or-
der to allow automated usage; (2) the client-side that is concerned with how to 
describe the problems to be solved and their resolution process. The elements of both 
the service- and the client-side are formally described in order to enable automated 
problem resolution by (3) intelligent mechanisms, which is supported by (4) auxiliary 
elements.1 This paper concentrates on the client-side, investigating the requirements 
and the state of the art of so-called goal-driven architectures. Therein, a user shall 

                                                 
1 This terminology has been chosen with respect to service-orientation as the most recent design 

paradigm for next generation IT systems. An example of such a framework is the Web Service Model-
ing Framework WSMF [Fensel and Bussler, 2002] with the Web Service Modeling Ontology WSMO 
as its successor [Lausen et al., 2005] that defines four top level elements: Web Service for the service-
side, Goals for the client-side, along with Ontologies and Mediators as auxiliary elements.   
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only specify the objective or problem to be solved and intelligent mechanisms auto-
matically handle the resolution process by appropriate computational facilities.  

As the term ‘Goal-driven Architecture’ is rather vague and undefined in literature, 
we briefly explicate our understanding as well as the arising research questions on ba-
sis of the following example. A user U wants to book a one week holiday by using an 
advanced IT system S that provides computational facilities for automated travel and 
tourism related booking. U has some further constraints on the holiday package to be 
booked, for example: the destination should offer a beach and allow swimming in an 
ocean, but preferably not be in an Islamic country with respect to current political 
dangers; he also wants to book a scuba diving package, and the accommodation 
should not be located in the center of a city or village. The system S should allow U 
to specify his objective along with the constraints, while S should be able to auto-
matically detect, arrange, and utilize available computational facilities for solving the 
objective – similar to the service offered by a real-world travel agency. The main 
merit of such systems is that they bridge the gap between the human and the machine 
level problem solving. While U only needs to specify an objective or goal to be 
reached, a goal-driven system S is capable of achieving this objective by automati-
cally utilizing appropriate resources as if U was dealing with another human being. 
Obviously, sophisticated models for the client-side that allow specifying user objec-
tives and carry all information needed for automated goal resolution are the central 
requirement for realizing goal-driven technology. In conjunction with appropriate 
definitions for the other three top level elements mentioned above, goal-driven archi-
tectures can realize the aim of “human level machine intelligence” [McCarthy, 1996].  

Modeling of client-side elements as the core of goal-driven architectures raises 
several questions, including: how to appropriately specify user objectives? What ele-
ments are needed in order to provide all information that is needed for automated 
detection, combination, and usage of computational facilities by respective intelligent 
mechanisms? What is the difference and benefit of goals in comparison to technical 
usage requests? How can arbitrarily complex objectives be specified, and how can 
their resolution process be effectively supported? Although a commonly accepted 
framework for goal-driven architectures does not exist, related approaches have been 
developed in respective sub-disciplines of AI – namely Knowledge Engineering, In-
telligent Agents, and AI Planning; also, the promise of Web Services seems to require 
goal-driven technology [Fensel and Bussler, 2002], [Preist, 2004]. The aim of this 
paper is to determine the requirements for goal-driven architectures and investigate 
existing approaches from respective AI research as the basis for developing a goal-
driven architecture for Semantic Web Services.  

The paper is structured as follows: Section 2 examines the motivation and aim of 
goal-driven architectures and rationalizes the working approach followed in the pa-
per; Section 3 to 6 examine goal-driven approaches in respective AI disciplines 
(namely: the Soar technology in Section 3, Agent technology in Section 4, AI Plan-
ning in Section 5, and Problem Solving Methods in Section 6); finally, Section 7 
summarizes the findings and concludes the paper.  
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2 What are Goal-driven Architectures?  

As a foundation for the subsequent investigations, the following exposes the moti-
vation for goal-driven architectures and determines the requirements for these. 
Besides, in order to rationalize the approach followed throughout this survey, we dis-
cuss the differences between goal-driven and not-goal-driven architectures, and 
finally outline the aspects of interest as well as the methodology for examining exist-
ing goal-driven approaches.  

2.1 Motivation for Goal-driven Architectures  

As stated introductory, the ultimate aim of modern research on Artificial Intelli-
gence is to develop technologies for human level machine intelligence in order to 
enable advanced automated problem solving. While the well-known Turing Test de-
fines a benchmark for machine intelligence at a very early point in time – stating that 
a machine is considered to be intelligent if its user can not distinguish whether he in-
teracts with a machine or a human [Turing, 1950] – approaches for achieving this aim 
have been developed in the following decades. Thereof, we find the theoretical basis 
and motivation for goal-driven architectures as the main research results of so-called 
Cognitive Science, an interdisciplinary field of research that aims at understanding the 
human mind and intelligence as the basis for creating intelligent systems [Nadel, 
2003], [Wilson and Keil, 1999]. Cognitive Science follows the above mentioned gen-
eral AI methodology of studying structures and processes in nature as the basis for 
simulating them by intelligent technology. Commencing in the 1970ies as basic AI 
research, it has produced an impressive compilation of results that serve as the phi-
losophic-theoretical foundation of several AI technology developments.2  

The relevant findings with respect to the motivation for goal-driven architectures 
are allocated in the field of problem solving – which itself is one of the core aspects 
of Cognitive Science as almost all cognitive activities can be regarded as problem 
solving. Problem solving is understood as a part of human thinking concerned with 
how to reach an objective from the current status of the world when the procedure 
therefore is not known a priori. In order to provide a basis for simulating intelligent 
behavior, the aim of research in Cognitive Science is to expose the generic mecha-
nisms that humans apply for problem solving, wherefore the fundamental theory has 
been provided in [Newell and Simon, 1972]. Although rightly being criticized for re-
ducing the conceptual model of mind to be presentable as an information processing 
system, human problem solving is defined as a goal-oriented activity for finding some 

                                                 
2 Exhaustive synopses on the various branches and research results of Cognitive Science are pro-

vided in [Nadel, 2003], [Wilson and Keil, 1999], and on the Internet (e.g.: in the Stanford 
Encyclopedia of Philosophy http://plato.stanford.edu/entries/cognitive-science/). Most capacious work 
is subsumed in the Soar project (a world-wide initiative developing a cognitive system architecture for 
exhibiting intelligent behavior, based on [Newell, 1990], see homepage: 
http://sitemaker.umich.edu/soar), as well as in awarded books like [Hofstadter, 1979].     
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possible sequence of operators that allows proceeding from the initial state of the 
problem space to the goal state. A goal is understood as a desired state that is to be 
reached from the current state wherefore an applicable sequence of operators is not 
known; an operator is an activity or a process that performs the transition from one 
state to another in the problem space; the problem space is a potentially infinite num-
ber of states that can be reached by operators. Humans apply specific psychological 
techniques for problem solving [Anderson, 1999]: discovery, notification, or observa-
tion for becoming aware of operators that can be used in a specific state, and so-called 
means-end analysis as the key mechanism for choosing the most appropriate operator 
out of those available and applicable in a state. Roughly speaking, in means-end 
analysis the current state is compared to the goal state, a difference is determined be-
tween them, and the operator that can reduce this difference to the maximum extent in 
comparison to other available operators is chosen. This has been prototypically real-
ized in the General Problem Solver as pioneer work in intelligent system development 
[Newell and Simon, 1963].  

This model of problem solving – which, although being very basic, is still consid-
ered a valid theoretical basis of AI technology development – provides the following 
aspects with regard to the motivation and design of goal-driven architectures. First, 
the concept of goals as final states of the world that is to be reached in order to solve 
a problem along with the concept of goal-orientation, stating that all activities are per-
formed rationally in order to solve a goal; secondly, the concept of operators that 
allow changing the current status of the world (which can be performed automatically 
or manually); and thirdly, that problem solving, or goal resolution, is realized by de-
termining a possible or optimal execution sequence of operators wherefore generic 
strategies are applied. This complies with the understanding and aim of goal-driven 
technology that we explore in this paper. While the user of a system should only need 
to specify a goal as a desired final state to be achieved, the system should employ in-
telligent mechanisms for detecting and utilizing appropriate computational resources 
as the operators for the goal resolution process, thereby simulating human problem 
solving strategies. Hence, we retain that the idea of goal-driven architectures as pur-
sued in this paper can be seen as candidate approach for realizing human level 
machine intelligence, following general AI methodologies.  

Two other aspects are relevant for goal-driven architectures. First, they reside on 
the so-called knowledge level as illustrated in [Newell, 1982].3 The knowledge level 
is concerned with actions, effects, and behavior in the world (i.e. the environment that 
operations take place in); beneath this, the ‘symbol level’ is concerned with mecha-
nisms and operations for actually executing actions. Goal-driven architectures are 
mainly concerned with the Why and How of goal resolution behavior, neglecting 
technical implementations on the symbol level – certainly, both levels are intercon-
nected and both need to be addressed in order to realize goal-driven technology. 

                                                 
3 We primarily refer to works of Allen Newell here. This does not result from inadequate research 

but from the fact that he has been a leading pioneer of AI research and especially an originator of Cog-
nitive Science, see: http://stills.nap.edu/readingroom/books/biomems/anewell.html.   
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However, the main aspects of interest reside on the knowledge level. The second as-
pect is that goal-driven architectures shall allow bridging the gap between human-
level intelligence and automated information processing by machines. Goals allow 
specifying objectives to be achieved on a higher level of abstraction; they are dy-
namically connected to appropriate operators for automated resolution by intelligent 
mechanisms that realize psychological methods for problem solving. This establishes 
the connection between the knowledge and the symbol level as a crucial task of IT 
system design and usage. Because of this, goal-orientation is proposed to become a 
new software engineering paradigm [Lamsweerde and Letier, 2002].       

2.2 Requirements on Goal-driven Architectures 

On basis of the preceding examinations, the following explicates the idea of goal-
driven architectures that underlies this work and depicts requirements on these.  

Figure 1 shows a course model of a goal-driven architecture that serves as a work-
ing hypothesis in this paper. As outlined introductory, we distinguish four top level 
elements for enabling automated goal-driven problem solving: (1) the client-side con-
tains elements for supporting automated goal resolution from the user perspective, (2) 
the service-side contains the descriptions and implementations of operators for prob-
lem solving that typically are computational facilities,4 (3) intelligent mechanisms as 
the facilities for enabling automated goal resolution by working on the formal de-
scriptions of the client- and the service-side, and (4) auxiliary elements needed for 
automated goal resolution (e.g. machine-processable knowledge definitions).  

 

Figure 1: Abstract Model of Goal Driven Architectures 

                                                 
4 As stated above, we use the term ‘service-side’ with respect to service-oriented architectures as 

the most recent design paradigm for IT systems (see Introduction). We could also call it the ‘operator-
side’ with regard to the element classification in classical problem solving as discussed in Section 2.1; 
however, we consider this course model to be generally applicable for goal-driven architectures inde-
pendent of particular technical environments.   
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The primary aspect of interest in goal-driven architectures is the client-side. This 
needs to provide appropriate elements for supporting problem solving from the user 
perspective on the knowledge level that shall be automated to the highest possible ex-
tent. The service-side needs to provide the formal descriptions of the operators 
available for problem solving, which commonly consist of a functional description 
(what the service does) and a behavioral description (how the service works, espe-
cially how to communicate with the service in order to consume its functionality). For 
the client-side, the figure distinguishes two elements: Goals shall encompass the ob-
jective or problem specification by the user, input for using services as automated 
operators for problem solving, and constraints and preferences the user defines for 
goal resolution; the Goal Resolution Plan shall encompass the procedure for goal 
resolution (called the goal resolution algorithm), potentially problem decomposition 
with regard to available services, and facilities for automated service invocation and 
usage (which is needed for automated goal resolution by execution of services by op-
erator usage on the symbol level). This distinction is made with regard to two 
purposes: first, the user should only have to define those aspects summarized in 
Goals – see the introductory example of booking a holiday – and secondly the ele-
ments contained in the Goal Resolution Plan should be determined automatically by 
respective intelligent mechanisms with respect to available services and the problem 
solving process during system runtime.  

This abstract model of goal-oriented architectures is a working hypothesis that is 
to be verified by the preceding examinations. Nevertheless, we can determine six re-
quirements for technologies as aspired here:  

1) the concept of a Goal should allow specifying (client) objectives or problem 
as the desired final state to be reached  

2) goal definitions can be accompanied by additional constraints that are de-
fined on the knowledge level  

3) goal resolution should be automated to the highest possible extent by en-
forcing clients to only provide the least possible amount of information 
required  

4) the Goal Resolution Plan should be determined automatically; therefore, 
client-side elements (as all other elements) need to have an unambiguous 
formal description     

5) goal resolution techniques should be able to determine the optimal Goal 
Resolution Plan for a given goal or problem    

6) specification and handling of arbitrary complex goals should be supported 
by means of problem decomposition.   
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2.3 Goals versus Service Usage Requests  

The main element of goal-driven architectures is the concept of goals that shall al-
low specification of client objectives on the knowledge level without respect to their 
technical resolution. In contrast, several technologies provide support for the client-
side by only mirroring or copying the structure of service-side elements. This is what 
we call service usage requests that contradict the fundamental idea of goal-driven ar-
chitectures as we discuss in the following.  

For clarifying what we mean by service usage requests in comparison to goals let’s 
consider a simple example of retrieving address information of all customers that live 
in Innsbruck. If the data repository is a conventional RDB, we would define a SQL 
query like “SELECT * FROM customers WHERE address.city = ‘Innsbruck’”. Here, if 
we understand the database as the service-side, SQL provides a query mechanism for 
the client-side that mirrors the structure of the database for retrieving the desired in-
formation. In contrast, a goal-based technology would allow specifying the client 
objective of retrieving the desired information in a more abstract, intuitive way that is 
decoupled from the underlying technology. In fact, appropriate support for the client-
side that allows definition of goals and their automated resolution is missing here.   

We observe that several broadly used software engineering technologies as well 
lack of client-side support as aspired in goal-driven architectures. For example, the 
Common Object Request Broker Architecture CORBA (see homepage: 
http://www.corba.org/)  as platform-independent infrastructure for distributed, object-
based computing allows access to implementations via so-called Object Request Bro-
kers (ORB) that handle the physical invocation of object implementations on basis of 
the standardized Interface Description Language IDL. A client provides a proxy that 
needs to contain all information required for invoking and using an implementation 
(the IDL stub); the implementation is accessed via an IDL skeleton as a complemen-
tary description which is grounded to the respective implementation technology. 
Here, as in the simply example above, the client-side in form of an IDL stub mirrors 
the structure of the IDL skeleton as service-side but does not offer support for goals. 
Similar architectures are applied within current Web Service technologies. Therein, in 
order to use a WSDL described Web Service, we have to create a mirror of the ser-
vice-side WSDL description in order to be able to invoke and communicate with the 
Web Service. This is supported by Web Service development environments like 
Apache Axis (see homepage: http://ws.apache.org/axis/). These technologies provide 
the technical basis for enabling component-based, distributed computing, also over 
the Internet – but they do not encompass appropriate support for the client-side in or-
der to support system developers or (human) end users. 

Several techniques have been developed in order to ease the development of soft-
ware systems. Formal methodologies like the Z specification language [Diller, 1994] 
or Abstract State Machines [Börger and Staerk, 2003] provide supportive means for 
large scale software development by interrelated formal descriptions from very ab-
stract levels down to executable code generation. Although used as the basis for goal-
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oriented software engineering [Lamsweerde, 2003], these techniques do not support 
goal-driven architectures for automated problem solving as pursued here. So-called 
Software Reuse [Krueger, 1992] aims at supporting software creation out of existing 
implementations rather then development from the scratch. Commencing in the 
1970ies, several techniques have been developed for classifying and retrieving reus-
able software from component libraries and support for integrating them into other 
systems. Formal methods are applied for describing and handling software compo-
nent libraries [Jeng and Cheng, 1993] along with formal retrieval techniques that 
include early work on semantically enable specification matchmaking (e.g. [Chen and 
Cheng, 2000]). Although these technologies provide a basis for ongoing research for 
discovery in service-oriented architectures, they are mainly considered with formal 
descriptions of the service-side but do not encompass appropriate notions or support 
for the client-side as aspired in goal-driven architectures.  

What we are interested in is how goals and related client-side elements are for-
mally described, and which mechanisms are applied for automated goal resolution. 
The motivation for this is to provide a basis for developing a goal-driven technology 
for Semantic Web Services in order to allow knowledge level problem solving over 
the Web. When analyzing current architectural models for Web Services, we notice 
that such technology is demanded for realizing the vision of the Semantic Web. The 
W3C Web Service Architecture remarks the concept of goals to be relevant without 
any further explanation [Booth at al., 2004]; OWL-S only provides a description on-
tology for the service-side, whereby client-requests are described as service profile 
definitions from the client perspective [Paolucci et al., 2002]; although the Web Ser-
vice Modeling Ontology WSMO defines the notion of Goals as a top level notion, 
these are described by requested capabilities and requested interfaces and thus as 
well are service-side descriptions from the client perspective [Lausen et al., 2005]. 
Hence, as the support for the client-side in both OWL-S and WSMO as the most sig-
nificant approaches for Semantic Web Services are service usage requests as they 
simply mirror and copy the structure of their respective service-side descriptions, they 
can not be considered to be sophisticated goal-driven architectures.  

2.4 Surveying Goal-driven Approaches 

The preceding examinations reveal that we can omit works related to the above 
mentioned technologies for investigating the state of the art in goal-driven architec-
tures. Instead, we concentrate on specific approaches from respective AI research 
fields. The main aspects that we are interested in are:  

1) How are goals and related client-side elements defined and described, and 
what is there interrelation?  

2) What techniques are applied for automated, goal-driven problem solving?  

3) What kind of goals and problems can be handled by the technology?  

4) Which aspects and solutions appear to be useful with respect to goal-driven ar-
chitectures as pursued in this paper?  
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Therefore, those sub-disciplines out of the numerous in AI research appear to be of 
interest that are concerned with applying basic AI techniques for creating intelligent 
system architectures. Investigation has revealed that works from the following work-
ing fields are relevant for this: Cognitive Architectures that aim at realizing intelligent 
systems on basis of cognitive models of the human mind and intelligence [Anderson, 
1991], Intelligent Agents that develop at intelligent systems wherein autonomous 
agents reside that satisfy their particular objectives by interacting in a collaborative 
manner [Russell and Norvig, 2003], and Knowledge Engineering that is concerned 
with developed of techniques and systems for advanced, knowledge-based informa-
tion processing [Studer et al., 1998].  

Out of these, we have chosen particular approaches and technologies that are con-
cerned with client-side element specification and techniques for automated, goal-
driven problem solving. At first, we investigate the Soar technology that develops a 
cognitive architecture on basis of the results from Cognitive Science we have dis-
cussed as the motivation for goal-driven architectures. Then, we inspect goal-driven 
techniques from Intelligent Agent research, focusing on so-called belief-desire-
intention (BDI) architectures and multi-agent collaboration theories as the core tech-
niques for goal-based agent behavior. As the third approach, we examine how 
advanced notions of goals are defined and used in AI Planning in order to allow 
automated construction of goal resolution plans for more complex problems, and fi-
nally we inspect the Unified Problem Solving Method Development Language 
UMPL, a framework for describing the reasoning behavior of knowledge-based sys-
tems for automated problem solving.  

For surveying each approach, we first outline the aim and origin, then explain the 
main elements and techniques for automated goal-driven problem solving, and finally 
conclude the usability and contributions for goal-driven architectures. Thereby, we 
aim at gaining a general synopsis and understanding of goal-driven technologies; 
hence, we concentrate on the principal approaches while referring to continuative re-
sources for details on specific technologies.  
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3 The Soar Technology  

The Soar system provides a cognitive architecture by implementing the conceptual 
model of human cognition presented in [Newell, 1990] –the final book and life’s 
work of AI-pioneer Allen Newell towards a technical architecture for intelligent ma-
chine behavior based on an integrated theory of human cognition. When initiated in 
the 1970ies, Soar was the acronym for State, Operator, And Result as the core ele-
ments of a cognitive architecture based on theoretical models for human mind and 
intelligence, but it became a designation of its own in still ongoing research and de-
velopment work with numerous participants from all over the world (see Soar project 
homepage for further information and software: http://sitemaker.umich.edu/soar.).  

In essence, the Soar architecture is a production system that represents the struc-
ture of human cognition and problem solving that has been determined by Cognitive 
Science research. The core elements of the architecture are problem spaces that repre-
sent tasks by states, operators, and goals; problem solving is performed by a decision 
cycle that processes different memory types for reaching a goal that is defined as a fi-
nal state in some problem space. Two integrated components allow enhanced 
intelligent problem solving: so-called impasse handling that realizes automated sub-
goaling for not-resolvable problems, and chunking that allows learning in order to 
improve the system’s problem solving capabilities. The basic Soar architecture has 
been extended by several associative technologies and has been applied as a basis for 
several other AI working fields in order to test and demonstrate its applicability as a 
generic architecture for intelligent behavior. While referring to [Rosenberg et al., 
1993] as a 2-Volume collection of collected research publications on Soar, the fol-
lowing explains the core architecture in more detail. 

3.1 The Basic Architecture  

As outlined above, the core of the Soar architecture is a production system wherein 
the decision cycle realizes automated problem solving by working on problem spaces 
with different memory types. The following explains the central components, their 
specification and interplay in more detail. 

3.1.1 Knowledge Items and Representation 

A problem space contains the domain knowledge, states, available operators, and 
goals of a task or problem that can be solved automatically. Domain knowledge de-
scribes the entities involved in the problem by object-attribute-value definitions, 
while all other elements are described by production rules. A product rule has then 
general form: IF (condition) THEN (action). In order to ensure uniform knowledge 
representation, all knowledge in the Soar system is represented by production rules 
whose structure differs for specifying the distinct conceptual elements. A state de-
notes a status in the problem space that can be reached by an operator; state 
descriptions have an empty condition-part, while the action-part describes the status 
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of the world in the state by concrete values of attributes. Operators are applied to pro-
gress from one state to another, whereby the condition specifies conditions on the 
current state that need to hold for applying the operator and the action denotes the 
changes to the problem space that result from applying the operator. Goals are de-
fined as final states in the problem space, meaning that the condition part describes 
the state of the problem space that is considered to be solving the goal while having 
an empty action-part (i.e. no further progress can be made in the problem space). 
Typically, a problem space consist of one goal, one or more initial states, and all op-
erators that can be used. For illustration purpose, Listing 1 gives a brief example of a 
problem space for the well-known blocks-world problem.5 It is defined in the Soar 
syntax, which itself is based on OPS5, an early production system language using 
forward chaining as its main inference mechanism [Forgy, 1981].    

Listing 1: Soar Problem Space Definition Example6 

Initial State  
# blocks A, B, C on table; no block on top of another one 
# incl. knowledge definitions (blocks, table, on-top-relation)   
sp {blocks-world*elaborate*initial-state 
(state <s> ^superstate nil) 
--> 
(<s> ^problem-space blocks 
^thing <block-A> <block-B> <block-C> <table> 
^ontop <ontop-A> <ontop-B> <ontop-C>) 
(<block-A> ^type block ^name A) 
(<block-B> ^type block ^name B) 
(<block-C> ^type block ^name C) 
(<table> ^type table ^name TABLE) 
(<ontop-A> ^top-block <block-A> ^bottom-block <table>) 
(<ontop-B> ^top-block <block-B> ^bottom-block <table>) 
(<ontop-C> ^top-block <block-C> ^bottom-block <table>)} 
 
Goal  
# final state = tower: A on B, B on C, C on table  
# action ‘halt’ denotes exit, i.e. no further  
sp {blocks-world*detect*goal 
(state <s> ^problem-space blocks  
^ontop <AB> { <> <AB> <BC>} { <> <AB> <> <BC> <CT> } ) 
(<AB> ^top-block <A> ^bottom-block <B>) 
(<BC> ^top-block <B> ^bottom-block <C>) 
(<CT> ^top-block <C> ^bottom-block <T>) 
(<A> ^type block ^name A) 
(<B> ^type block ^name B) 

                                                 
5 Problem: three blocks A. B, and C are on a table T, not being on top of each other. The aim is to 

build a tower with T on the bottom, C on top of T, B on top of C, and A on top of B (nothing on top of 
A). Allowed actions (or available operators) move one block on top of another one. This is an artificial 
problem commonly used to illustrate AI technology, see [Russell and Norvig, 2003].  

6 taken from [Laird and Congdon, 2004]; see also for syntax and semantics of the Soar language. 
Just to understand the example listing: sp means soar production, the part inside the curly brackets de-
notes the problem space name (here: blocks-world) and a natural language description, the condition is 
before -->, the action after -->; ^name is an attribute followed by its value, <name> is a variable, <> 
means not equal in prefix notation; x{y} denotes that y is a complex sub-structure of x.  
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(<C> ^type block ^name C) 
(<T> ^type table ^name TABLE) 
--> 
(halt)} 
 
Operator 
# condition: thing1, thing2 = blocks, thing1 not on-top of thing2,  
#  no other on-top relation with thing1, thing2 as bottom-block  
# action: create accept preference for operator o (denoted ‘+’, s.b.),  
#  o moves thing1 on top of thing2   
sp {blocks-world*propose*move-block 
(state <s> ^problem-space blocks 
^thing <thing1> {<> <thing1> <thing2>} 
^ontop <ontop>) 
(<thing1> ^type block ^clear yes) 
(<thing2> ^clear yes) 
(<ontop> ^top-block <thing1> ^bottom-block <> <thing2>) 
--> 
(<s> ^operator <o> +) 
(<o> ^name move-block 
^moving-block <thing1> 
^destination <thing2>)} 

 

3.1.2 Memory Types and Problem Solving Mechanisms  

While problem spaces encompass the knowledge items, three interrelated memory 
types (long-term memory (LTM), working memory, and preference memory) hold 
different information used in the central problem solving mechanism as explained be-
low in more detail. In addition, the so-called perception and motor behavior allows 
Soar to interact with the external environment by retrieving additional input-
information (perception) or creating new output information (motor) for external sys-
tems. This is realized by special types of productions stored in the LTM. These are 
processed independently of the central problem solving in the decision cycle, but can 
influence it immediately when new knowledge is perceived.   

The long-term memory (LTM) holds general domain knowledge in from of pro-
ductions as exemplified above. Although not explicitly specified, productions can 
perform 4 functions for problem solving: operator proposal and operator comparison 
by creating preferences for operators (see below), executing a state transition by op-
erator application, and state elaboration by performing the action specified in a 
production. The productions in the LTM provide the information processing used for 
automated problem solving.  

The working memory holds the current situation of the problem solving procedure. 
It consists of so-called WMEs (working memory elements) that represent the current 
state of problem solving and operators available in this state. Each WME is a  triple 
of identifier-attribute-value: the identifier allows grouping of WMEs into objects 
(e.g.: a block named “A” with the identifier B1 that is on top of the table in a state s is 
an object represented by 3 WMEs: B1 ^type block; B1 ^name A; <ontop> ^top-
block B1 ^bottom-block TABLE), and ensures unique identification of WMEs, respec-
tively objects; attribute (denoted by ^attr-name) define the slot for concrete values 
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(e.g. attribute “name” has value “A” in the above example). All WMEs in a state must 
be linked to each other, so that a state definition in the working memory is repre-
sented as a set of augmented identifier-attribute-value triples; WMEs that are not 
connected to any other WME in a state are removed from the working memory.   

The working memory is manipulated by the so-called decision cycle as the central 
problem solving mechanism of the Soar architecture. The decision cycle consists of 
three main phases and is repeated until the goal of the current tasks is solved (i.e. a fi-
nal state is reached in the problem space). Independent of this, the Soar system might 
interact with its external environment by the perception and motor function (newly 
received input data are incorporated in the decision cycle immediately, and output is 
created orthogonally). Sequentially executed, the three phases are:  

1. Elaboration: LTM productions fire whose condition is satisfied, meaning that 
the new data are interpreted and the working memory is “elaborated” to the cur-
rent state of the problem solving procedure. The created WMEs are considered to 
be I-supported, meaning that they have been created by instantiating productions 
with concrete values. Also, those I-supported WMEs that are no longer inter-
linked with others are removed from the working memory (retraction). All 
matching productions fire in parallel; the elaboration continues until quiescence 
(i.e. no more matching productions can be executed, and no more WMEs can be 
retracted). 

2. Decision: then, a new operator is selected for application on the current state. 
Operator selection is based on preferences (see below). If a clear decision of op-
erator usage can not be made, a so-called impasse is created (see next section for 
more details on impasse handling).  

3. Application: the chosen operator is executed by firing the respective LTM pro-
ductions for operator application. The WMEs created by operator application are 
called O-supported (in contrast to I-supported WMEs, O-supported WMEs are 
not removed from the working memory until the goal is reached as they define 
the constituting elements of the problem solving progress). After the application 
phase, a new state is created that is processed by repeating the cycle.  

In essence, problem solving in Soar is realized as goal-directed application of most 
adequate operators in order to reach the final goal state in a problem space. Thereby, 
selection of the most appropriate operator is supported by preferences. A preference 
denotes a suggestion on the applicability of an operator in a situation. The following 
types of preferences are distinguished: acceptable (+) means the operator is suitable 
candidate, reject (-) is the opposite; require (!) denotes that the operator must be se-
lected for reaching the goal, prohibit (~) is the opposite; best(>) means the operator is 
the best choice, worst(<) is the opposite; better(> o1 o2) means o1 is more applicable 
than o2, worse(< o1 o2)) is the opposite; indifferent(= o1 o2) denotes that none of the 
operators is better; also, numeric-ordering(= number) can be defined fro expressing 
preference relations on operators. Preferences are kept in the preference memory 
which is linked via the identifier of a WME that stands for an operator; preferences 
are removed when their corresponding production rules do not match the working 
memory any longer. On this basis, a straight-forward operator preference resolution 
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process provides the mechanism for operator selection in the decision phase of prob-
lem solving decision cycle explained above (see [Laird and Congdon, 2004], App. 
A.).  

3.1.3 Impasse Handling and Learning  

An important feature of the basic Soar mechanisms is that its building blocks are 
strongly decoupled which might lead to inconsistencies. The productions in the LTM 
are independent of each other and no consistency check is applied; hence, the creation 
of preferences is “decoupled”, so that so-called impasses can arise during the decision 
phase for determining the next operator to be applied. An impasse means that no clear 
decision can be derived from the preferences defined for applicable operators in the 
current state; this is handled by automatically creating and solving so-called sub-
goals as we explain in more detail.  

Four types of impasses are distinguished that can arise: the tie-impasse denotes 
that more than one operator is proposed to be applicable (i.e. several operators have 
acceptable or require preference, and no further preferences allow to make a selec-
tion between them);  the conflict-impasse denotes an irresolvable contraction of 
preference definitions (i.e. A is better than B; B is better than A); the constraint-
failure-impasse denotes a contraction of require and prohibit preferences; and no-
change-impasses denote that no operator has been selected or that the selected opera-
tor is not capable of changing the state. Impasses arise due to incomplete or 
inconsistent preference definitions, so because of a lack of knowledge that hampers 
an unambiguous operator selection decision. Hence, so-called sub-goals are created in 
order to attain the missing knowledge for resolving the impasse by determining the 
missing knowledge.  

Figure 2 (next page) shows an illustration of impasse handling by creation of sub-
goals. In some state S1 of the problem resolution procedure, the decision phase has 
detected a tie-impasse as there are acceptable preferences for two operators O1 and 
O2. S1 is the top-level state (denoted by superstate = nil) that occurs during the 
resolution of the actual goal that is to be achieved. Hence, a sub-goal S2 that aims at 
resolving the tie-impasse between O1 and O2 in S1 is created automatically. Sub-
goals are defined as states that carry structural information on the impasse occur-
rence. In the example, the sub-goal S2 would be defined as: (S2 ^type state 
^superstate S1 ^impasse tie ^choices multiple ^attribute operator ^item O1 

O2 ^quiescence t). This means: S2 is a state, its super-state is S1 wherein a tie-
impasse has arisen between multiple operators O1and O2 after reaching quiescence in 
the decision cycle for S1. Although not explicitly specified, this is interpreted by the 
system as a goal for solving the tie-impasse by determining sufficient knowledge on 
preferences that allow to make an unambiguous selection decision between O1and O2 
in S1. It is assumed that a production exists in the LTM that states (omitting the for-
mal representation): “If there is a goal for resolving a tie-impasse in problem space 
PS1, then use the Problem Space PS2 with an initial state that contains the tied op-
erators”. Because of this, the standard problem solving procedure as described above 
is initiated for resolving S2.  
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Impasses occurring during the resolution of S2 create a stack of further sub-goals 
that are processed in the same way (e.g. S3 in the figure). The working memory for 
the super-goal and its sub-goal stack is the same, so that the problem solving results 
are available to all levels in the sub-goal stack. In each new cycle, the sub-goal stack 
is processed in a top-down manner. As soon as there is sufficient preference knowl-
edge to resolve impasses on a level x in the sub-goal stack, the processing on all 
levels > x is terminated and the respective WMEs are removed from the working 
memory (the aim of resolving an impasse at level x has been achieved, so all sub-
goals of level x have become obsolete).  

 

Figure 2: Illustration of a sub-goal stack7  

                                                 
7 taken from [Laird and Congdon, 2004]. 
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This sub-goaling technique allows automated goal-decomposition in order to attain 
knowledge for problem solving that is missing during run time. In order to improve 
the problem solving capabilities of a Soar system during its life time, the impasse-
resolution by sub-goaling is extended by an automated learning technique referred to 
as chunking [Rosenbloom and Newell, 1982]. As a form of explanation-based learn-
ing, the chunking mechanism produces a new LTM production that contains the 
results of a solved sub-goal. The condition of this new production contains the super-
state wherein the impasse has occurred that was solved by the sub-goal, and the ac-
tions are the preference creations that result from the sub-goal resolution. In the above 
example, if S2 has been successfully resolved by determining a new preference 
PrefS2 that allows resolving the tie-impasse between O1and O2 in S1, then a new 
production is created: IF (S1) THEN  (PrefS2). This is called a chunk that is stored in 
the LTM. The next time when the decision cycle comes to the state S1, this chuck can 
be used instead of creating a sub-goal for impasse resolution. Thereby, chunking al-
lows simplifying the problem solving procedure by automated learning.  

3.2 Conclusions  

Soar provides a system for automated, goal-oriented problem solving based on 
productions and an elementary problem-solving procedure, including automated goal-
decomposition and learning mechanisms. The inventors claim the Soar architecture to 
be an adequate cognitive architecture, i.e. representing and simulating intelligent hu-
man problem solving behavior as it realizes the following aspects [Newell, 1990]: 

• Soar realizes a hierarchical architecture that is claimed to represent the structure 
of human cognition and problem solving, wherefore Newell distinguishes four 
levels (called bands): the lowest is the biological band that enables fast informa-
tion processing by physiological neurons; this is represented in Soar by the LTM 
as productions that allow efficient, decoupled information processing. Above, the 
cognitive band is concerned with processing of symbols and low-level logical re-
lation; this is represented in Soar by the working memory and the decision cycle. 
At the highest level, the rational band is concerning with problem solving strate-
gies and tasks-driven behavior, which corresponds to the Soar mechanisms for 
impasse-handling and learning. Orthogonal to the previous levels, the social 
band is concerned with cooperation and collaboration by interaction with other 
individuals; this is represented by the perception and motor mechanisms of Soar.     

• The concept of problem spaces specific segments of the world that are relevant 
for solving a problem is claimed to represent human behavior in problem solving. 
The underlying model says that human beings first select the domain that appears 
to be relevant for solving a problem, and subsequently consider other segments 
of the world if the goal can not be reached directly.  

• Also, the goal-directed behavior and reflexive learning as realized in Soar is 
claimed to represent cognitive theories. Humans are considered to act in a goal-
driven manner, having an objective to be reached wherefore the path from the 
current status is not known, and then subsequently perform the most adequate ac-
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tions in order to achieve the objective; this is represented in the design of the 
Soar decision procedure. The Soar chunking mechanism is asserted to simulate 
human learning on basis of experiences in earlier situations.   

A detailed discussion or verification of these aspects exceeds the aim and the 
scope of this paper. Nevertheless, inspecting Soar with respect to the six requirements 
on goal-driven architectures defined in Section 2.2, we reveal that all of them are ful-
filled to a more or less satisfactory extent: the Soar elements are equivalent to the 
elements required for goal-driven architectures; Soar goals allow specifying objec-
tives as desired final states with constraints on the known problem space; an optimal 
goal resolution plan is determined in a highly automated manner; formal methods are 
applied, and the resolution of arbitrary complex goals is (theoretically) support. Fur-
thermore, we gain the following insights on the realization of goal-driven technology 
from the Soar architecture:  

• goal-directed behavior can be represented in state-based models, wherein goals 
are defined as final states and intelligent mechanisms dynamically determine the 
resolution path by detecting and applying the most appropriate action in each 
situation   

• production systems can be used as an efficient, low level technology for informa-
tion processing in state-based systems  

• functional operator descriptions (i.e. service-side functional descriptions) can 
consist of conditions that need to hold before the operator can be applied, and 
changes on the world that result from operator application  

• the main mechanisms for are determination of operator applicability that can be 
realized by matching the current state against the operator description, and opera-
tor selection that can be realized on basis of preferences  

• efficient control and management techniques seem to be required in order to en-
sure that the correct elements needed for goal resolution are available; only the 
minimal number of elements needs to be considered for expensive operations  

• the Soar mechanisms for automated sub-goaling and learning appear to be ap-
pealing techniques for advanced, highly automated goal resolution.  

The Soar knowledge representation can be considered as a shortcoming: all 
knowledge needs to be defined as productions in the LTM; although productions can 
fulfill different functions, their definition is implicit and thus hard to use; also, 
knowledge representation is not semantically supported (although formal languages 
are applied, and WME definitions realize a triple-structure). However, this does not 
hamper Soar to be an interesting goal-driven architecture.8  

                                                 
8 An unrelated remark: the Soar technology seems to be very much related to the current efforts in 

WSMO service interfaces. Production systems with if-then rules that are fired in parallel as the basis 
might be a better / other / additional basis for the WSMO service interface model; also, the Soar deci-
sion cycle realization might be an interesting approach wrt WSMO service interface technology.      
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4 Agent Technology  

The research field of intelligent agents is concerned with systems wherein agents 
reside as autonomous computational elements and satisfies their particular objectives 
in an interacting manner. Commencing in the early 1970ies, the aim has been to de-
velop a novel paradigm for system design along with respective technologies 
following contemporary socio-psychological insights [Shoham, 1993], [Jennings and 
Wooldridge, 2001]. Imitating human problem solving behavior, a software agent shall 
act autonomously in its environment and collaborate with other agents in an effective 
manner if this is helpful for achieving its individual objectives. Therefore, architec-
tural models and technologies have been development as general purpose facilities for 
intra-agent management (i.e. the internal management of one agent) as well as for in-
ter-agent management (i.e. interaction and collaboration between several agents) 
[Luck et al., 2003]. The following very briefly replicates the aims and fields of re-
search of agent technology in order to identify the aspects of interest for goal-driven 
architectures, referring to various resources for detailed information.9   

A software agent is supposed to be a sovereign software unit that performs some 
kind of task in a (semi-)automated manner. Regarding the operation mode, the fol-
lowing generic properties for agents are defined that reflect theoretic models from 
socio-psychology on human behavior [Wooldridge and Jennings, 1995]: an agent acts 
self-directed and controls its own actions (autonomous), it interacts with humans or 
other agents for collaborative problem solving by means of communication (social 
ability), it observes its environment and reacts to changes therein (reactivity), and ex-
hibits a rational, goal-driven behavior in order to achieve its tasks (proactiveness). 
Agent technology can be used for various application scenarios wherein agents fulfill 
different functional capacities. Topologies like in [Nwana,, 1996] distinguishes five 
functional agent types: collaborative, interface, mobile, information, reactive. How-
ever, the aim of agent technology is to provide general purpose infrastructures and 
mechanisms for handling the behavior and interaction of software agents independent 
of a concrete functionality or application scenario. Agent technology is commonly 
differentiated into two main aspects: so-called agent architectures that are concerned 
with the internal technical realization of a single software agent in order to realize the 
agent properties mentioned above, and so-called multi-agent systems as general pur-
pose infrastructures that provide execution environments for agents along with man-
agement and multi-agent coordination facilities [Wooldridge, 2002].  

                                                                                                                                           
  
9 Collective overviews on agent technology are provided in [Wooldridge and Jennings, 1995], 

[Nwana,, 1996], [Wooldridge, 2002], [Russell and Norvig, 2003], [Luck et al., 2003] as well as on 
several Internet portals like UMBC AgentWeb (http://agents.umbc.edu), Agent Portal 
(http://aose.ift.ulaval.ca/), agents & multi agent technology, AgentLink Portal (www.agentlink.org), 
and MultiAgent Sytems (www.multiagent.com); agent technology standardization efforts are under-
taken in FIPA (Foundation of Intelligent Agents, homepage: www.fipa.org) and  MASIF (Mobile 
Agent System Interoperability Facility, homepage: www.fokus.gmd.de/research/cc/ecco/masif/).  
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The notion of intelligence in agent technology refers to usage of respective AI 
techniques in order to enhance the problem solving and collaborative capacities of 
software agents. Within single agent architectures, the essential aim is to realize the 
concept of rationality as a core principle for economic behavior by utilizing appropri-
ate ‘intelligent’ techniques. Rationale agency means that an agent is able to choose 
the best possible action that is applicable in the current situation in order to achieve 
its individual objective [Wooldridge and Rao, 1999]. Therefore, intelligent agent ar-
chitectures of incremental complexity have been developed that utilize AI techniques 
for simulating human behavior in software agents. The simplest form a stimulus-
reflex agents that determine their behavior on basis of received information on the 
environment; so-called model-based reflex agents in addition have knowledge about 
how applicable actions will change the world. More complex models are goal-based 
agents whose behavior is determined by goals as the desired final state to be reached, 
knowledge about the effects of applicable actions, and information on the external 
environment that are perceived continuously. As an extension of goal-based agents, 
so-called leaning agents gain new knowledge about the applicability of actions during 
acting in an environment [Russell and Norvig, 2003].  

Obviously, the aspects of interest with respect to examining approaches for goal-
driven architectures as the aim of this paper are the concepts and techniques em-
ployed for goal-based agents. Out of several approaches have been developed 
therefore, the most prominent and mature works are referred to as belief-desire-
intention (BDI) architectures that we hence will examine in detail. These consist of 
formal models as well as system architectures for intra- as well as inter-agent man-
agement for cooperations of multiple goal-based agents for collaborative problem 
solving that introduces an aspect of goal-driven architectures we have not addressed 
so far. Following the methodology of the previous examinations, we concentrate on 
the foundational principles of BDI agent technology while referring to respective re-
sources for further information.    

4.1 The Belief-Desire-Intention (BDI) Model and Formalization  

The model of beliefs, desires, and intentions is a philosophical theory on the moti-
vation and behavior of rationale action by humans presented in [Bratman, 1987]. 
Roughly speaking, beliefs denote information on the world that an agent (regardless 
of being a human or a machine) considers to be true, desires are the eventual objec-
tives that the agent wants to achieve, and intentions are actions that the agent has 
committed to achieve as sub-steps towards achieving a final desire.  

These three notions denote mental attitudes whose interrelations is considered to 
determine rationale action of agents. In contrast to other theoretical models, Bratman 
defines intentions to be a first-class citizen that determine rationale agent behavior on 
the level as beliefs and desires do. This model has been formalized in so-called BDI 
logics, and has been implemented in several systems so that BDI architectures en-
compass a solid philosophical foundation, software architectures for intelligent agent 
systems, and a sound logical formalization. Before addressing the latter issues, we 
first clarify the core notions in an example.  
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4.1.1 The notions of Belief, Desire, and Intention  

Let’s consider some agent named Michael that wants to write a book.10 This is his 
ultimate aim and he is just about to get started with the book writing process. Here, 
‘write a book’ denotes a desire of agent Michael that is considered to be achieved 
when the book has been published. Michael has some knowledge about the world 
gained from previous activities, for example that writing a book is time consuming 
and usually is not compatible with enjoying an exhaustive social life. This knowledge 
is individually considered to be true by an agent, called beliefs. This indicates that it 
the facts known by the agent must not be true universally but they hold for the indi-
vidual understanding of the world from the single agent’s perspective – for example, 
for somebody it might be true that writing a book in time and enjoy an exhaustive so-
cial life are not contradicting. Now, at midday time Michael receives an invitation for 
joining some friends to watch a movie at 8 p.m. that day. Michael knows (i.e. his be-
liefs are) that watching a movie with his friends is a joyful, time consuming activity 
that does not contribute to progress in book writing. Hence, Michael creates a plan for 
that day that states to stay at home that night and work on the book instead of going 
to the cinema. So, at midday time Michael has the intention of going home after the 
office hours and continues working on the book.  

While the notions of belief (knowledge on the world as individually observed by 
an agent) and desire (final objectives to be achieved) are intuitively clear, we need to 
closer investigate the notion of intentions and their role within determination of ra-
tionale agent behavior. [Bratman et al., 1988] define an intention as a partial plan of 
future action that an agent is committed to execute to fulfill its desires. This means 
that the agent creates a plan of actions for be performed for achieving its objectives.11 
An intention denotes a plan fragment that an agent considers to be constructive for 
achieving its overall desire and hence commits to. When the intention is achieved (i.e. 
the partial plan has been executed), the agent is a new state. There might be changes 
in the agent’s beliefs or desires resulting from continuative interaction with its exter-
nal environment. On basis of all knowledge available to the agent in some state, it 
creates new intentions, commits to these and executes them; this process is repeated 
until a desire has been achieved and then goes on for other desires. Referring to the 
above example, three actions might be available to agent Michael: take the bus to the 
cinema (a1), take the bus home (a2), go for a coffee after the office hours (a3). As a1 
and a3 are less suitable than a2 for executing the intention of going home and continue 
work on the book, Michael will choose a2 as an act of rationale action.  

                                                 
10 adopted and extended from [Wooldridge, 2000].  
11 A plan denotes a possibly multi-step process of executing actions that results in a state of the 

world wherein the agent’s desire is achieved; a partial plan refers to a fragment of a plan; plans are 
executed by properly performing appropriate actions. An action in this terminology denotes manual ac-
tivities as well as computational resources that are applicable for problem solving. Given numerous 
actions available for problem solving, a (partial) plans allow reducing the number of suitable actions as 
well as determining an appropriate action execution sequence (see Section 5 for a more detailed ex-
amination of plans, their properties, and AI planning techniques). 
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The main merit of the belief-desire-intention model for rationale action is that an 
agent does not determine a complete resolution plan for a goal starting from the initial 
state when a desire is formulated and executes this, but follows a step-wise procedure 
where in each step all knowledge available to the agent (gained by continuative inter-
change with its external environment) is taken into consideration for finding the most 
appropriate next action for achieving its goals. For instance in our example, imagine 
that agent Michael has worked on the book in the evening and has made good pro-
gress. In this new situation, he might determine that joining his friends for a drink 
after the cinema will be advantageous for his final desire as he needs to relax and free 
his mind, so he defines this as a new intention – which would not be included in a 
complete goal resolution plan defined earlier that day.  

BDI technologies, i.e. logical formalisms and respective system implementations 
are technical realization of practical reasoning. In contrast to theoretical reasoning on 
logical formulas, this is concerned with determining intentions for agents with respect 
to their individual beliefs and desires in order to control and manage the behavior of 
rationale software agents [Wooldridge, 2000]. While the definition of desires (re-
ferred to as deliberation) is commonly allocated in the interaction of an agent with its 
owner or with other agents, the construction of intentions realizes means-ends reason-
ing as we have introduced introductory (how to achieve a goal by finding the best 
possible resolution plan in a given problem domain). Before investigating BDI tech-
nologies below, it is to remark that the underlying philosophical model is hard to 
validate with respect to correctness and sufficiency for explaining rationale behavior. 
It complies with constructivist theories of individuals as sovereign and autonomously 
acting entities in society as well as with modern socio-psychological models for hu-
man behavior in groups. However, while this discussion is out of the scope of this 
paper, the BDI model provides a thorough conceptual foundation for goal-driven 
technology of intelligent, rationale software agents which is our main concern in this 
study.  

4.1.2 Formalization in BDI Logics  

BDI logics are specific logical formalisms developed for specifying BDI structures 
of agents and serve as the basis for practical reasoning about them. The most signifi-
cant contributions with respect to formalization and dealing with beliefs, desires and 
intentions are Cohen and Levesque's intention logic [Cohen and Levesque, 1990] and 
Rao and Georgeff's BDI logics [Rao and Georgeff, 1991] that we hence examine here 
in detail while referring to more extensive overviews like [Woodridge, 2000] for dis-
cussion of other approaches.  

As most BDI logics, both approaches follow a common design of being modal lo-
gics with possible world semantics. Modal logics allow combination of different logic 
types into one common logical framework [Blackburn et al., 2001]. Therein, so-called 
modalities are used for specifying aspects that can not be expressed in first-order 
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logic; semantics of modalities are defined in Kripke structures.12 For example, the ex-
pression (Bel michael ◊hasPhD(michael)) says that Michael believes that he 
eventually will hold a PhD degree. Therein, Bel is a modality denoting a belief of an 
agent, and ◊ is a modality denoting a logical formula will be true sooner or later 
(common symbol for ‘eventually’). Modal logics are very helpful to support reason-
ing on assimilated object structures. For instance, reasoning in an integrated manner 
on objects that contain action and knowledge requires combining epistemic and dy-
namic logics, see [Moore, 1977] as an early work. Possible world semantics denote 
that BDI logics are concerned with future actions; these are understood as sets of all 
states an agent can achieve by performing actions currently known by it.  

Following [Wooldridge, 2000], a BDI logic needs to consist of four components in 
order to formally describe and reason about possible worlds. (1) a first-order logic 
component for expressing epistemic aspects of objects, (2) modalities for beliefs, de-
sires, and intentions, (3) a temporal component for denoting dynamic aspects, and (4) 
a component for describing actions performed by agents and their effects. While we 
refer to the referenced papers for the formal definition of these components in the 
BDI logics to be investigated, the following concentrates on how beliefs, desires, and 
intentions are used therein for determining rational agent behavior.  

Intention Logic of Cohen and Levesque 
Chronologically the first approach towards a formalization of the BDI model, the 

intention logic of Cohen and Levesque [Cohen and Levesque, 1990] has been broadly 
recognized and serves as the basis for BDI-based models for multi-agent cooperation 
and dialogue management.  

Initially, the approach was intended so serve as a partial theory of rationale 
agency. Therein, intentions are considered as the central mental attitude that deter-
mines goal resolution behavior that have the following properties. Adopted from 
Bratman’s philosophical model: (1) intentions pose problems for agents, who need to 
determine ways of achieving them; (2) intentions provide a “filter" for adopting other 
intentions, which must not conflict; and (3) agents track the success of their inten-
tions, and are inclined to try again if their attempts fail. Cohen and Levesque denote 
four additional properties of intentions: (4) agents believe their intentions are possi-
ble; (5) agents do not believe they will not bring about their intentions; (6) under 
certain circumstances, agents believe they will bring about their intentions; and (7) 
agents need not intend all the expected side effects of their intentions. Intentions are 

                                                 
12 A Kripke structure (named after its inventor Saul Kripke) is a non-deterministic finite state ma-

chine whose nodes represent the reachable states of the system and whose edges represent state 
transitions. It is formally defined as a 4-tuple M = (S,I,R,L) consisting of a countable set of states (S), a 
set of initial states (I ⊆ S), a transition relation (R ⊆ S × S) with ∀s ∈ S (∃ s‘ ∈ S ((s,s‘) ∈ R)), 
and a labeling (or interpretation) function (L: S → 2AP). The condition associated with the transition 
relation R states that every state must have a successor in R, which implies that it is always possible to 
construct an infinite path through the Kripke structure. This is commonly used to define the formal 
semantics of modal logics as well as other non-classical logics [Blackburn et al., 2001].  
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considered to be determined by the rational balance of an agent’s mental attitudes, i.e. 
the interrelations of the beliefs and desires as well as existing intentions that an agents 
has a certain point in time. The formalization is based on atomic modalities shown in 
Table 1and on several propositions as explained below.  

Table 1: Atomic Modalities in Cohen and Levesque’s Intention Logic13  

 

The first-order logic component is denoted by commonly used symbols like δ, ψ, 
etc. that can be arbitrarily complex epistemic formulas. BEL, GOAL (corresponds to 
‘desires’ in Bratman’s model), and INTEND are the modalities for the BDI component. 
The temporal modalities HAPPENS and DONE are augmented the standard future time 
modalities ⁪ (“always”) and ◊ (“eventually”), and by some action component opera-
tors for expressing sequences of actions: sequence of action (α;β), non-deterministic 
choice (α|β), concurrent occurrence (α||β); α? is a test operator: p?;α “when p is true, 
action α occurs next”; α;p? “action α occurs, after which p holds”. On basis of this, 
future directed expressions can be defined as LATER p = ¬p^◊p.  

With respect to the above mentioned properties of intentions and the desired bal-
ance of the mental attitudes of agents, the propositions listed in Table 2 are defined. 
These denote general relations that need to hold between all beliefs B and all Goals G 
of an agent x at a given point in time.    

Table 2: Propositions on Mental Attitudes in Intention Logic 

  Definition Meaning 

(KNOW x p) = p ^ (BEL x p) 
(BEL x p) => ¬(BEL x ¬p) 
(BEL x p) ^ (BEL x (p -> q))  
  => (BEL x q) 

Knowledge is ‘true beliefs’ 
beliefs are consistent   
beliefs are consistent under implication  

(GOAL x p) => ¬(GOAL x ¬p) Goals are consistent (an agent can have inconsis-
tent desires; goals are the subset of an agent’s 
desires that are consistent)  

(BEL x p) => ¬(GOAL x ¬p) 
(GOAL x p) ^ (BEL x (p -> q))  
  => (GOAL x q) 

Goals and Beliefs are consistent  
Goals and Beliefs are consistent under implication 
 

◊(GOAL x (LATER p)  all goals are eventually dropped  
(BEL x (HAPPENS e))  
  => (HAPPENS e)) 

if an agent believes that the event (an atomic ac-
tion) happens next, this is a goal  

                                                 
13 taken from [Hoek and Wooldridge, 2003].  
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On this basis, we get to the definition of the first major construct in Cohen and 
Levesque’s logic that determines rational behavior of agents, so-called persistent 
goals. Abbreviated as P-GOAL, a persistent goal denotes an agents desire that will be 
kept until it is achieved or considered to be unachievable.   
(P-GOAL x p) ≅   
  (GOAL x (LATER p))   ^ 
  (BEL x ¬p)                 ^  
  (BEFORE  
     ((BEL x p) V (BEL x □¬p)) 
       ¬(GOAL x (LATER p)) 

an agent x has a persistent goal of p if: 
it has a goal that p eventually becomes true and  
believes that p is not currently true;  
one of the following must hold before the goal is dropped: 
(a) the agent believes the goal has been satisfied 
(b) the agent believes the goal will never be satisfied 

 

So, an agent will continue to search of best possible goal resolution plans for P-
GOALs as long as they are not dropped. Following Bratman’s model outlined above, 
intentions are considered as the mental attitude that determines the actions an agent 
commits to execute in order to achieve a P-GOALs. Hence, the definition of an inten-
tion INTEND is that an agent x intends to perform action α if it has a persistent goal to 
have brought about a state where it had just believed it was about to perform α, and 
then did α:   

(INTEND x α) ≅  (P-GOAL x [DONE x (BEL x (HAPPENS α))?; α] ) 

For clarification, consider the goal of chopping down a tree and an action chop(T) 
that needs to be performed several times before a tree will finally be brought down. 
For some agent x we model (BEL x T) ^ (BEL x ¬down(T)) ^ (GOAL x down(T)) whereby the 
goal becomes a P-GOAL following the above definition. Furthermore, agent x has the 
above knowledge about the action chop(T) that can be defined as follows: (BEL x 
(chop(T)?; chop(T) => ◊ down(T))). So it knows that in the state where the tree has just 
been chopped down it has just executed chop(T). This is the condition for attaining the 
intention (INTEND x chop(T)) in some state wherein the tree is not yet chopped down and 
hence the P-GOAL is not yet dropped. Hence, it will continue executing the action 
chop(T) until the tree is finally brought down.  

Although the example does not showcase how this formal model allows to model 
and reason about mental attitudes for determining rational agent behavior, the dis-
posed reader can imagine how the approach works in more complex settings. 
However, the definition of intentions within the approach of Cohen and Levesque is 
criticized to not be compliant with the theoretical model of Bratman, or at least that 
the formal definition is not sophisticated enougbh for representing the intended prop-
erties and relationships. Following [Hoek and Wooldridge, 2003], the main 
deficiency is that intentions are reducible to beliefs and desires, and hence only de-
note temporal sequences of these. In contrast, Bratman’s model defines intentions to 
be first-class mental attitudes that influence rational behavior in the same way as be-
liefs and desires do. The approach of Rao and Georgeff aims at overcoming this as 
described below.  
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BDI Framework of Rao and Georgeff 
The BDI framework of Rao and Georgeff has been presented in a series of papers, 

starting with the formal model in [Rao and Georgeff, 1991] and resulting in a com-
prehensive BDI system definition in [Rao and Georgeff, 1998]. The principal 
structure of the formalization is similar to the one of Cohen and Levesque – i.e. defin-
ing the modalities BEL, GOAL, and INTEND along with common temporal as well as 
action component modalities. The main differences are that intentions are treated as 
first-class construct, and that beliefs, desires (resp. goals as the subset of an agent’s 
desires that are consistent), and intentions are understood as possible worlds. This ap-
proach is considered to better Bratman’s model [Hoek and Wooldridge, 2003]. 

All mental attitudes of agents are represented in so-called time trees, a temporal 
structure that represent the current situation of an agent at a point in time to have a 
single past as the known behavioral history of the agent, and a branching future. 
Called accessible worlds, this denotes all possible situations the agent can access with 
respect to its current knowledge, whereby the transition between accessible states are 
denoted by events (i.e. atomic or non-atomic actions). So, in each state an agent has, 
possibly several, belief-, goal-, and intention-accessible worlds. The interesting fea-
ture that provides the core for practical reasoning are ontological relationships that 
hold between mental attitudes of an agent. So-called belief-goal-compatibility states 
that if an agent adopts a goal on some δ it also believes δ (desiring something that is 
not believed to become true anyway is inadequate); similar, goal-intention-
compatibility states that if an adopts an intention on α it also believes α. Referring to 
the referenced papers for formal definitions, a sub-world relationship in possible 
world semantics denotes that the sub-world only consists of a subset of the situations 
and paths in the super-world and has no additional situations and paths. In conse-
quence, it holds that for each situation of an agent the goal-accessible worlds are a 
sub-world of the belief-accessible worlds, and the intention-accessible worlds a sub-
set of goal-accessible worlds: '.''''.''''';'''.''' wwwwwwww IGGB w

t

w

t

w

t

w
t ⊆∈∃∈∀⊆∈∃∈∀   

The example shown in Figure 3 refers to an agent that needs to get a tooth filled f, 
i.e. (GOAL x f). The agent believes that it is inevitable (always true) that pain p ac-
companies having a tooth filled (f): (BEL x □(f->p)). The belief-accessible world b1 
has three events: d1 and d2 result in p and f, b results in ¬p and ¬f. As event b will not 
lead to a state where the goal is not satisfied, the goal-accessible world g1 has two 
states reachable by d1, respectively d2; g1 is a sub-world of b1 according to the above 
definition. The agent chooses event d1 to commit to for execution (INTEND x d1) – the 
reason of choice between d1 and d2 is not depicted here – and hence has a intention-
accessible world i1 that is a sub-world of g1. The goal- and intention worlds g2 and i1 
are not sub-worlds of b1 and hence not accessible to the agent with respect to the be-
lief-goal compatibility and goal-intention compatibility that always need to hold.  
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Figure 3: Example of B-G-I accessible worlds14 

 

There are two main differences in comparison to Cohen and Levesque’s model. 
First, the agent in this example does not need to adopt (GOAL x p) although it believes 
that filling teeth will always lead to pain. After executing event d1 as the intention 
picked to commit for execution, it will be in a state where f holds, so the goal is 
solved, and it excepts p as a side effect without having to desire p. Secondly, the for-
mal definition of mental attitudes as possible worlds along with the relationships 
between these allows specifying and reasoning on beliefs, desires, and intentions as 
constructs of equal importance in a much more realistic fashion. In fact, this allows 
formalizing the so-called desired properties of rational agents with respect to their 
mental attitudes in conformance to the philosophical model. Table 3 shows these 
properties which denote the final results of Rao and Georgeff on BDI formalisms.  

                                                 
14 taken from [Rao and Georgeff, 1991].  
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Table 3: Desired Properties of Rational Agents in BDI logic15 

 
 

Three categories of desired properties of rational agents are distinguished, whereby 
each denotes tenary relationships between beliefs, desires, and intentions for so-called 
A-formals that denote inevitabilities (first-order formulas that are true in all states of 
all goal- and intention accessible worlds of an agent – e.g. f in the above example) 
and so-called E-formulas that denote options (first-order formulas that are true for at 
least one path in the goal- and intention accessible worlds of an agent), and then gen-
eralize this. The first group (S-properties) allows inferring desires and believes when 
an intention is given in a situation of an agent belief-goal compatibility and goal-
intention compatibility. For example, in some state an agent has (INTEND x α) but does 
not yet belief α, we attain that it believes and desires α from now on. The second 
group (R-properties) is used for verifying the correctness of belief-, goal-, and inten-
tion accessible worlds as depicted in the above example. For all intentions it has to 
hold that these are desired, and for all desires it has to hold that they are believed. The 
third group (W-properties) is concerned with weak realism, i.e. consistency of an 
agent’s mental attitudes in a specific situation with respect to its rational balance. If 
the agent believes something, it can not desire the opposite, and similar for desires to 
intentions and beliefs to intentions.   

The final aspect that is improved in Rao and Georgeff’s framework in comparison 
to the model of Cohen and Levesque is the differentiation of so-called commitment 
strategies. These formalize when and under which conditions an agent drops or re-
considers its intentions and hence determines the rational behavior of an agent. The 
following three commitment strategies are distinguished (see the 1991 paper for for-

                                                 
15 Source: [Rao and Georgeff, 1998, p. 321].  
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mal definitions): blind commitment denotes that an agent keeps its intentions until it 
believes it actually has achieved them; single-minded commitment denotes an agent 
keeps its intentions until they are achieved or not longer achievable, and open-minded 
commitment denotes that the agent maintains its intentions as long as they are consid-
ered to be possible. Due to handling intentions as a construct of equal importance as 
desires and beliefs, this refines the fanatical commitment implied in Cohen and 
Levesque’s P-GOALs that is similar to blind commitment as the strongest, but not 
necessarily most appropriate strategy.  

Concluding investigating formalizations of the BDI model, we denote that modal 
logic allows capturing the semantics of beliefs, desires, and intentions as the mental 
attitudes that determine the rational behavior. While Cohen and Levesque have laid 
the foundation by formalizing the basic properties of Bratman’s BDI model, the work 
of Rao and Georgeff enhances this by future branching time trees and the formal 
specification relationships between the mental attitudes that allow sophisticated prac-
tical reasoning on basis of beliefs, desires, and intentions.  

4.1.3 Collaboration of Multiple BDI-Agents 

So far, we have examined BDI techniques for intra-agent management as a realiza-
tion of intelligent goal-based agent technology. A main aspect of agent technology is 
that individual agents interact and collaborate with other agents in order to achieve 
their individual objectives. This means that agents do not only interchange informa-
tion needed for their internal computation, but they might cooperate in a collaborative 
manner in order to achieve objects that require purposeful interaction of several 
agents. Therefore, an agent needs to detect other agents as potential partners and de-
termine its collaborative behavior during the collaborative problem solving process.  

In order to expound what we are interested in with regard to goal-driven architec-
tures, we first need to clarify aspects and terminology before investigating respective 
approaches. First of all, interaction with its environment is an inherent characteristic 
in models of agency denoted by the social ability property of agents (see above). 
Therefore, an agent has sensors through which it perceives information from the envi-
ronment as input for its internal computation, and activators through which it submits 
information to its environment; information interchange is performed constantly and 
orthogonally to internal computations of an agent [Russell and Norvig, 2003]. Coor-
dination in agent technology is a general term concerned with techniques 
establishment and management of agent interactions [Luck et al., 2003]. Some agent 
architectures implement coordination mechanisms by defining a specific agent type 
that coordinates the interaction of other agents by means of procedural control struc-
tures, occasionally enhanced by semantic techniques. For example, the RETSINA 
system [Sycara et al. 2003] defines so-called middle agents that determine agents of 
other types like interface, task, or information agents as appropriate interaction part-
ners can control the interaction between them; the Open Agent Architecture OOA 
[Martin et al., 1999] defines so-called facilitators that fulfill the same purpose. How-
ever, these systems realize central control architectures for managing interaction of 
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agents on basis of functional categorizations wherein the agents do not necessarily 
need to be goal-driven.  

In contrast, we are interested in how to determine goal-based agents as partners for 
collaborative problem solving. Here, we understand collaboration to be concerned 
with interaction of individuals that want to achieve objectives wherein some entity 
exhibits an object or a facility that another entity needs in order to achieve its individ-
ual objective; thus, these entities need to interact in a cooperative manner. While 
[Stollberg et al., 2005] discusses the epistemology of collaboration in more detail, the 
techniques for determining goal-based agents as potential collaboration partners and 
successively control the interaction with respect to goal achievement are commonly 
referred to as MAC-theories, short for Multi-Agent Collaboration [Wilsker, 1996]. 
The general idea is that several agents can successfully complete collaboration if they 
have a common goal, agree on a sequence of actions to accomplish the common goal, 
each agent is able to perform collaborative actions and intends to do so, and each 
agent commits to the overall success of the collaboration [Grosz and Sidner, 1990]. 
Out of several existing approaches, we choose the Joint Intention theory that provides 
seminal work on this field [Levesque et al., 1990] for explication of rational agent 
collaboration; more recent approaches integrate several other aspects while following 
the same idea [Wooldridge, 2000].  

Based on the BDI logic of Cohen and Levesque examined above, the joint inten-
tion theory defines the concepts of mutuality that denotes mental attitudes of 
cooperative BDI agents and joint persistent goals that denote the objective to be 
reached by collaborative problem solving. The former notion deals with either beliefs 
and desires on objects that are commonly shared by agents, or respectively with be-
liefs and desires that an individual agents has on some other agent. On basis of 
mutual beliefs and desires, a joint persistent goal denotes a desire that is shared be-
tween two or more agents and that can only be achieved if each agent achieves its 
respective part. In consequence, the agents autonomously determine and commit to 
intentions for solving its individual goal; if each agent has achieved its individual 
goal, then the joint goal is achieved as well.  

The following shows the definition of a following the notation and definition of 
persistent goals (that comply “desires” in the intention logic) explained above. It 
states that two agents x and y have a joint persistent goal JP-GOAL on some predicate 
p if (1) both x and y believe that p is not true, (2) both have the desire to eventually 
achieve p, and (3) both x and y know that each one of them will behave rationale, i.e. 
not dropping the goal to achieve p as long as it is not believed to be achieved or never 
achievable. Because the beliefs and desires of each agent are dependent on the one of 
the other, the behavior of  x and y appears to be rational collaborative although each 
agent individually and autonomously plans and commits to intentions for solving it 
respective parts of the joint persistent goal.  

(JP-GOAL x y p) ≅   (MBEL x y ¬p)  ^ (MGOAL x y (LATER p)) ^  
   (MKNOW x y (UNTIL [(BEL x p) V (BEL x □¬p)] (MGOAL x y p)))  

(MGOAL x y p) ≅   (MBEL x y (GOAL x p) ^ (GOAL y p)) 
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4.2 System Architectures and Implementation for BDI Agents  

The Procedural Reasoning System (PRS) form SRI International implements the BDI 
model in a very sophisticated way. That is why we decided to use this model for de-
tailed investigation. At the time when the paper was written this framework 
represented the most developed approach to the theory of BDI logic. [Artificial Intelli-
gence Center, 2001]. 

4.2.1 Introduction 

The Procedural Reasoning System (PRS) from SRI International is a framework 
for constructing real-time reasoning systems for performing complex tasks in dy-
namic environment. The framework implements the BDI Logic in very exact and 
detailed way. It works on the base of procedural knowledge which describes actions 
to fulfill a goal. For example washing clothes: If we want o clean clothes we have to 
take the dirty clothes put it into the washing machine, put some soap to it and then we 
have to wait one hour or so to reach our goal: clean clothes. PRS provides an envi-
ronment in which this knowledge about action and goals are expressed and executed. 

PRS can operate in highly dynamic environment as an embedded execution sys-
tem. The system can reach any goals which it already knows in its world meanwhile it 
reacts to any new events and goals. In this way it can be easily integrated into goal 
driven and event driven applications. 

The system contains some powerful capabilities for real time applications such as 
multiple copies of objects, work as an agent, or also the possibility to run action par-
allel. PRS also supports metalevel capabilities which can be used for complex control 
and scheduling behaviors which are required for individual applications. 

4.2.2 Overview 

The PRS System bases on five main elements, a database in which includes the ac-
tual knowledge of the system, goals which describe the states that should be reached 
finally, acts can be seen as a temporarily states during the resolution process, inten-
tions are tasks which response to posted goals or facts and finally the interpreter 
which handles the complete goal resolution. In the following we will specify and de-
scribe the elements in a more exact way. 

(1) Database: 
The database contains the actual information about the world. The database sup-

ports dynamic information as well as static information about a domain. Static 
information describes fixed properties about the application domain such as the struc-
ture of subsystems or physical laws that must be considered by mechanical 
components. This information is saved in the database for life. Dynamic objects are 
not the same all time and so they have to actualize from time to time. For example: 
observation of the world may change from time to time. 

Database facts can also describe the internal state of PRS e.g.: metalevel-facts. 
Metalevel facts describe the current goals and actions of the system. They are very 
important for the implementation of alternative control strategies for PRS. 
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(2) Goals: 
Goals are normally expressed as conditions over a sequence of time that means 

over a sequence of world states. They are specified as a combination of a goal opera-
tor and a logical formula. In the following the accepted goal operators: 

Table 4: Goal Operators 

Definition Meaning 

Achieve C achieve the condition C 

Achieve-by C (A1…An) achieve the condition C with restricted sets of acts 
(a1...An) 

TEST C test condition 

USE-RESSOURCE R take the resource C 

WAIT-UNTIL C wait as long as condition C is true 

REQUIRE-UNTIL G C check that goal G stays true until condition C is 
satisfied 

CONCLUDE P add P to database 

RETRACT P : remove P from database 

 

As database facts can describe internal states of PRS goals can characterize inter-
nal behavior of the system. This is called metalevel-goals. 

(3) Acts: 
The way to reach a goal or to react to a certain situation is specified by a declara-

tive procedure specification which is called Acts. An Acts consists of a plot in which 
the steps of the procedure are described. The environment specifies the preconditions 
for which the Act can be used. Both components environment and plot specifies de-
claratively in which way an action can be used to respond to a goal or event in certain 
situations. 

The plot of an act can be viewed like a plan to reach a goal. A graph is represent-
ing the starting situation the way and also the goals and subgoals which have to be 
done to reach the final state or goal. To fulfill the act ever goal and every subgoal 
must be reached or be successful. 

 Each PRS application contains two kinds of acts. On the one hand the act for-
malized by the user and on the other hand some predefined default acts that are built 
into the system by itself. User-specified acts can contain both acts, predefined ones 
that pertain to the application domain and also metalevel acts which manipulate the 
beliefs, goals and intentions of PRS. Metalevel Acts can be used to encode actions 
that influence the operation of the system. 
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Figure 4: Example of an Intention Graph16 

 

(4) Intentions 
An intention corresponds to a task to be performed by the system which response 

to some posted goals or facts. It consists of some acts with all sub acts to satisfy the 
subgoals of the original act. 

The intention graph orders the intentions with possible multiple least elements. 
The order must be either realized or dropped (disappears from the intention graph) 
before it can be executed. This gives the system the possibility to prioritize execution 
of intentions. 

The example of an Intention Graph illustrates the fault diagnosis in the Reaction 
Control System of the NASA Space Shuttle. In handling a malfunction, the system 
might have in some instants four tasks to handle.  

(5) The Interpreter 
The PRS interpreter runs and handles the entire system. The following describes 

the function of the interpreter by using an example: 

Certain goals are established and certain events occur that the beliefs of the data-
base changes (1).  These changes lead to various acts (2). The acts will then be chosen 
and put into the intention graph (3). Then PRS selects an intention (task) from the in-
tention graph (4). Afterwards one step will be executed (5). This will return a result 
either in doing an primitive action in the world (6) and establishing a new subgoal or 
it will return a modification of the intention graph. 

At this point the cycle of the Interpreter starts a new session until the actions are 
finally executed and the goal is reached. Primitive actions can take place in two situa-
tions: As a part in the world or as an internal state of the system. The action may 
operate directly on the beliefs of the system or indirectly in a growing knowledge of 
the system. On the on hand some goals lead to a new Act, PRS will also try to fulfill 
already saved actions or goals. That means acts can be expanded in a manner analo-
gous to the execution of subroutines in the programming system. 

                                                 
16 Taken from Procedural Reasoning System, User’s Guide, AI Center SRI International 333 Ra-
venswood Avenue Menlo Park, CA 94025 
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If some important facts or goals do become known, PRS will realize this and can 
also decide to change its current intention to another one and starts searching in a 
completely different way. In this way the intention graph can be changed after every 
cycle. In this way the system can easily react on changes of the world or environment. 

 

Figure 5: The Interpreter Loop17 

4.3 Conclusions  

The BDI agent is an approach to simulate the human behavior in problem resolution. 
Every BDI Agent acts as a so said individual unit which has some knowledge about 
the world, a knowledge which was influenced by the surrounding and also by the way 
the unit was used. Like a human the agent can interact with other agents to enlarge its 
knowledge. Every agent acts self-directed and controls its own actions, it communicate 
with humans or other agents for collaborative problem solving by communication (so-
cial ability), it observes its environment and can autonomous react on changes and 
exhibits a rational goal driven behavior in order to achieve its tasks. 

The BDI agent system bases on the philosophical theory of beliefs, desires an inten-
tions. In this situation beliefs denote information on the world that an agent considers 
to be true, desires are the eventual objectives that an agent wants to achieve and inten-
tions are actions which must be done to achieve a sub step on the way to the final 

                                                 
17 Taken from Procedural Reasoning System, User’s Guide 
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desire. Rational agents provide a realization of the means-end-analysis which is the 
general problem solving strategy employed by humans. As it is described in Section 
2.2 there are six requirements to AI technologies to provide Goal Driven Architecture. 

- BDI Agents support the possibility to define a goal as the desired final state 
which should be reached. In BDI Agents a goal is defined as a condition which 
should be reached by finding a path through several sub-goals to a final desired 
state. A BDI Agent also supports the possibility to build a not completed resolu-
tion plan that means it is not necessary to start with a complete plan to find the 
final desired state it is also possible to change the plan after one step because of 
new knowledge about the world. 

- As in chapter 2.2 described goal definitions can be “accompanied by additional 
constraints” which are depended on the knowledge level of the agent. In BDI im-
plementation the database fulfills this requirement. The database contains the 
actual knowledge about the world of the agent and with every task this knowl-
edge will be expanded. 

- BDI agents support an automated goal resolution on a high level with very low 
information requirement on the goal. In this way the amount of information to be 
needed to fulfill a certain task depends on the experience of the BDI agent which 
is directly depended on the number of similar tasks which were already fulfilled 
by the agent. Like a human a BDI agent which has already booked thousands of 
flights for users needs less information than a BDI agent which has more experi-
ences with making insurances for cars. 

- BDI agents are using two types of formalization: The “intention logic” from 
Cohen and Levesque, 1990 and the “BDI logics” from Rao and Georgeff, 1991. 
Both have an unambiguous formal description which leads to a high automated 
goal resolution plan. 

- The possibility of BDI agent not to build a complete resolution path to the final 
desired state gives the agent the possibility to use new information which where 
stored during the resolution path directly to find a more efficient way for goal 
resolution.  

- BDI agents are able to split a goal in multiple sub goals which leads to a better 
resolution of complex problems. 

BDI agents are a prominent approach in AI. Every BDI agent uses methods like 
sensors to get information about the actual environment. An interpreter communicates 
between the sensors and the agent. In order to other agent technologies BDI agents 
have another data structure. It consists of three elements namely beliefs, desires and 
intentions. Beliefs define the actual knowledge of the agent about the world. This 
knowledge changes permanently. Desires are representing the main goals of the 
agent, which influences the behavior of the agent in general. The intension is repre-
senting a goal which the agent wants to achieve. To achieve this goal the agent uses 
hierarchical plans, stored in a database, to come closer to the final desired state (goal). 
Every plan consists of several subplans called intentions. 
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5 AI Planning  

AI planning in concerned with automated techniques for determining plans as 
combinations of several operators for solving more complex problems. A plan is se-
quence of actions that leads form the initial state of a problem description to the final 
desired state [Ghallab et al., 2004]. There are two main different types of planning: 
Classical planning and Nonclassical planning. The former defines the basic tech-
niques within environments that are fully observable, deterministic, finite, static and 
discrete; the latter is used in only partially observable or stochastic environments 
[Russell and Norvig, 2003]. 

In the following chapter we will give an overview of what planning is about, fol-
lowed by the planning problem and planning techniques. Then we will have a closer 
view on two widely used model and description languages for goals called STRIPS 
and a further developed language from CTL called EAGLE [J. Allen, T. Austin and J. 
Hendler, 1990]. 

5.1 Overview 

On a regular basis, it occurs that applying a single operator might not be sufficient 
for resolving a goal, but executable combinations of several operators might be. For 
this reason it is important to have a so called plan for the resolution process. A plan is 
a sequence of actions to reach a goal [Russel, Novig, 2003]. For example: If a person 
wants to open a business he needs basically the following requirements: The knowl-
edge about how to manage a business, some money for the beginning, an office, some 
employees, etc. Now he orders them that means, first the knowledge, second the 
money, third the office and last but not least the employees. This order is called a 
plan. In AI a plan describes the optimum order of continuing actions that are applied 
to reach goals, subgoals and the final state.  

5.1.1 The Planning Problem 

The classical planning problem consists of the following task: given the initial 
state of the world, several actions and their (deterministic) effects, and a sequence of 
actions (viz. a plan) to achieve a certain goal state. The aim and purpose of planning 
is to provide techniques for dynamically combining several operators that provide 
smaller functionalities into an executable sequence for solving problems that require 
more complex functionality for resolution.  

Classical planning techniques apply forward- or backward-chaining as the underly-
ing inference mechanisms for planning algorithms. Informally, the idea of forward 
chaining is to iteratively apply a possible operator O to a set of input parameters pro-
vided by the initial state of the goal formulation G (i.e., all inputs and preconditions 
required by O have to be available). If applying O does not solve the problem (i.e., the 
desired final goal state of G is not achieved), then a new query G’   can be computed 
from G and O; the whole process is iterated. Backward chaining planers start from the 
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desired final goal state of G and at each step of the process we choose an operator O 
that will provide at least one of the required parameters. Applying O might result in 
new parameters being required which can be formalized as a new goal G’  ; again the 
process is iterated until a solution is found.  

Planning algorithms have a large computational complexity because, in each itera-
tion, all available operators need to be checked. Several techniques have been 
developed to address this problem. The most important ones are heuristic functions 
and problem decomposition. The former is used to split goal formulations in order 
to reduce computational complexity. For instance, an agent shall buy more than one 
book, for example 3 books. For finishing this action he would need if we have again 
10 digit ISBN numbers 1030 actions (10 for each digit number and 30 for each book). 
In this situation an agent acts differently to a human who would consider that it would 
obvious to have one action for each of the remaining books. For an agent this is not 
obvious because a goal can only result true or false. To solve this problem it is neces-
sary that an agent is able to split the goal into several subgoals in which each subgoal 
is finished independently. That means the action Buy(object 1)^Buy(object 
2)^Buy(object 3) would be split into three different actions Buy(object 1), Buy(object 
2) and Buy(object 3). In this case the agent is able to use the right heuristic for each 
action. Similar, problem decomposition is concerned with de-constructing a complex 
goal into smaller subgoals than can be addressed independently for planning. For in-
stance, consider the scenario of packet delivery by UPS. The company has several 
packets which should be transported to addresses all over the world. Normally it 
would make sense to find the nearest airport for every destination. In this case it can 
happen that it will take O(n!) time if the problem cannot be decomposed. But if it is 
possible to split the problem into k equal parts it will only take O((n/k)!×k) times to 
solve the problem. This helps the planner to work on the different subgoals independ-
ently but with the knowledge that perhaps he needs some additional work to combine 
the subplans. Every agent bases on the assumption that nearly every problem can be 
decomposed into several subplans. 

5.1.2 Planning Techniques  

As we already mentioned above there are different kinds of planning systems. For 
every plan it is necessary to have a goal. Normally this is called final state or resolu-
tion of a problem. In this context we will mention two different kinds of goal 
resolution processes, the basis or classical planning where the Hierarchical Task 
Network Planning (HTN) is an extension and the nonclassical planning environ-
ments.  

The basic of the classical planning have already been mentioned above (5.1.1); 
hence we will concentrate on the extension of the classical planning HTN. The main 
differences between the classical planning and the extension of HTN are the way how 
a problem will be decomposed. In Classical Planning a problem is decomposed into a 
large number of individual actions. This method can lead to high cost for finding the 
resolution to a given problem. That means using such a method for large problem so-
lution would lead to high inefficiency. In HTN every problem is spitted into several 
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sub problems and sub problems can be again spitted into several sub problems. HTN 
makes a top down hierarchy in which every branch illustrates one sub goal. This 
method can result to linear- instead of exponential- time planning algorithms. In HTN 
planning the description of a problem is viewed as a very high level description of 
what should be done. Plans are refined by applying action decompositions. Each de-
composition reduces a high-level action to a number of lower actions. For example: 
We want to public a website and so we will split this goal into the following sub-
goals: finding a provider and a domain name for the website, making a design for the 
site, writing the content and uploading the final site. This process will be continued 
until only primitive actions remain in the plan. Such primitive actions can be exe-
cuted by the agent without the help of humans. 

In the real HTN planning, plans are generated only by action decomposition. HTN 
sees planning as a process to simplify and concrete a given problem. However this 
method is for some task helpful most planning agents are using some kind of hybrid, 
means parts of HTN combined with other technologies. 

5.2 Goal and Action Description in Planning 

5.2.1 STRIPS 

The main task of representing a planning problem is to split it into states, actions 
and goals which should help to find the logical structure of a problem for the planning 
algorithm. For this we need a language which is on the one hand complex enough to 
describe a wide variety of problems and on the other hand restrictive enough to use 
efficient algorithms. STRIPS [ R. Fikes and N. Nilsson. STRIPS: A new approach to 
the application of theorem proving to problem solving. Artifcial Intelligence, 2:189-
208, 1971] is representing one of the first languages of classical planning. The main 
elements of the language are: Representation of states, representation of goals, and 
representation of actions. 

Representation of states. The world will be decomposed by the planner into logical 
conditions and any state is represented as a conjunction of positive literals. Pro-
positional literals are used for describing the state of an agent, for example 
Poor^Unknown represents a hapless agent. STRIPS is also using first order liter-
als for representing a state. In this context it is important to outline that any literal 
in first- order logic must be ground and function- free. Conditions which cannot 
be seen as a state are false and will be ignored. This property is called closed- 
world assumption. 

Representation of goals means that a goal is a partially specified state, represented 
as a conjunction of positive literals. Let us consider we have a goal A which is 
satisfied by a state f if this state contains all elements or more of the goal A. For 
example Fast ^Expensive ^Rare is representing the goal Fast^Expensive. 

A representation of actions is the effect after it was executed. Normally an action 
cannot start until all preconditions for this action are fulfilled. For example our 
packet delivery: we have the Action(Ship(packet s, from Shanghai, to Vienna). 
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To fulfill this action we need the following preconditions: At(packet s, from 
Shanghai)^Ship(packet s)^Harbour(from Shanghai)^Harbour(to Amster-
dam)^At(packet s, from Amsterdam)^Train(from Amsterdam)^Train(to Vienna). 
Such an illustrated schema is representing a so called action schema instead of 
one single action. An action schema consists of three parts:  

• Name of the action including a parameter list 

• The Precondition which is a conjunction of function free literals which 
must be fulfilled to execute the action 

• The effect which is also a conjunction of function- free literals which de-
scribes how the state changes after the action is executed. 

Some planning systems are using two types of lists to improve the readability, the 
add list for positive literals and the delete list for negative ones.The best way to de-
scribe the syntax for planning problems is to declare in which way an actions effect 
states. To do this we must say that an action is applicable if it satisfies the precondi-
tion. For exemplification, the following syntax specifies a precondition needed in the 
car industry: 

At (electric, Augsburg)^ At(motor, Steyr)^ train(electric)^ 
train(motor)^train(Augsburg)^ train(Steyr) 

Now we formalize a state which satisfies the precondition: 

At(electric,from)^train(electric)^train(from)^train(to) 

The next step is a substitution: {electric/E1, from/Augsburg, to/Steyr}. This results 
in an action which is applicable. In the easiest way the solution of a problem is just a 
sequence of actions which results in a state which satisfies the goal.  

 

Regarding knowledge, state, goal, and operator descriptions, STRIPS requires sev-
eral restrictions, among which the following are considered as most important 
[Ghallab et al., 2004]: 

• Only positive literals in states: Poor ^ Unknown 

• Closed world assumption: unmentioned literals are false 

• Effect P ^ ⌐Q means Add P an delete Q 

• Only ground literals in goals: Rich ^ Famous, Modern ^ Dynamic 

• Goal are conjunctions: Modern ^ Dynamic 

• No support for equality 

• No support for types. 

When STRIPS was developed the core idea was to develop a language in which 
planning algorithm are more simple and more efficient on the one hand  and on the 
other hand it should not be to complicated to describe real world problems. STRIPS 
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understands a goal as a final desired state which must be reached to solve the prob-
lem. For a lot of real world problems this approach is not satisfactorily.With this idea 
one of the key elements was the fact that literals must be function free. But in the re-
cent year it became clear that STRIPS is inefficient for some real world domains. In 
this way a lot of other languages or extensions were developed. Among these, we in-
spect EAGLE below which gives a solution to the weak points of STRIPS. 

5.2.2 EAGLE 

Several situations require applications in which planning needs extended goals. 
Actions will lead to different outcomes which can’t be predicted at planning times, 
and where goals are not only states to be reached but also conditions in the whole 
plan execution paths. This is called extended goals. In such systems algorithms are 
needed which include the possibility of different outcomes and the extension of the 
search space. 

CTL (Computation Tree Logic) is a well known language for expressing goals 
[Emerson, 1990] that – in contrast to STRIPS – allows expressing temporal behaviors 
of goals. This is described by an universal quantifier and an existential quantifier. 
However CTL is not able to express different kind of goals which are relevant for 
non-deterministic domains. In the real world there are situation in which a goal can-
not be satisfied. If such a situation would be formalized in CTL the whole process 
would be finished with a failure. To avoid this problem it would be necessary that the 
agent is able to recover from failure. This can be done by using a new formalization 
which weak the goal. That means the agent tries to reach a new goal which nearly sat-
isfies the original goal. For example: We have a robot which should deliver things 
from one room A to room B. Room A and room B are separated by an automatic door 
which only opens after a certain time. Now our robot arrives the door at a time when 
the door is closed. Now the robot cannot deliver the things to the certain room. If we 
formalize this situation CTL the robot would end the process with a failure. If we can 
weaken the goal we are extend the plan that if the door is closed the robot should wait 
a certain time until he start a new approach to deliver the thing into room B. This ex-
tended language is called Eagle. 

Eagle is based on CTL with the ability for extended goals in non deterministic 
domains. It provides basic goals for expressing conditions which the system should 
reach or maintain, and conditions that the system should try to reach or maintain. It is 
possible to define basic goals which should be achieved in reaction to a failure and 
goals that should be repeated until a failure occurs. Table 5 shows the new elements 
introduced with Eagle. 
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Table 5: Elements of Eagle 

Element Description 

DoReach Specifies a property that should be reached 

DoMaint Property that should be maintained true 

TryReach Specifies a property that the agent should try to 
reach but with the ability to weak this goal                   

TryMaint Property that the agent tries to be maintained true 

Fail This property is used to recover from failure. It can 
be used very flexible with a lot of other operators, 
at planning time as well as at execution time 

Repeat Repeat defines the possibility that in case of failure 
the agent should repeat the action after a defined 
cycle 

 

These additional description elements allow specifying trial- and compensation 
strategies for goals. If a given goal can’t be reached Eagle is able to analyze the origin 
goal and formalize, by including the actual situation of the environment, a new goal 
which is achievable. This is not the origin goal but still satisfies the original objective; 
hence, we can understand this as a mechanism for weakening goals.  

5.3 Conclusions  

AI Planning uses a plan for automated problem resolution processes. While the 
goal resolution techniques for SOAR and BDI agents use a sequence of actions which 
can lead closer to the finals state AI Planning tries to construct a complete plan at the 
beginning. This can be done by forward chaining, means the agent start at the front-
end (initial state) and continues until it reach the final state, or backward chaining, 
where the agent start at the final state and works backward step by step until it 
reaches the initial state. For both methods AI planning is using heuristic algorithm 
which should help to find the best resolution path. It uses problem decomposition to 
divide the problem into several sub problems. In AI planning all subgoals can work 
independently from the others which can lead to some additional work to combine the 
different result to one plan. Each step in a plan is called an action or operator descrip-
tion which consists of two elements a precondition and a postcondition. The 
preconditions define the elements which are required to fulfill this action. The post-
condition represents the new situation after the action was performed. 

An interesting aspect is HTN (Hierarchical Task Network Planning). It divides the 
problem into a small number of actions an each of this action has the possibility to 
continue dividing the sub problem into several sub problems. This allows to mini-
mizes the number of individual actions that need to be taken into consideration for 
planning, thereby potentially leading to higher scalability of planning techniques. 
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However the pure HTN viewpoint is rather unnatural and so most planning systems 
are using hybrid approaches. For goal driven architecture it would be interesting to 
combine the HTN method on the backend and the natural aspect on the front end. 

STRIPS is a well known approach, commonly understood as the basis of AI Plan-
ning. It introduces the basic concepts regarding the representation of states and goal 
states and operator descriptions by preconditions and effects, and the basic techniques 
for planning on basis of backward-chaining. A disadvantage of STRIPS as a goal-
driven architecture is that the input must be given in a special format consisting of 
predefined commands. This can lead to communication problems with other agents 
which do not “speak” the same language. STRIPS is using a closed world assumption 
which makes it difficult to enlarge the knowledge with the help of other agents. The 
fact that STRIPS only support positive literals makes it impossible to recover from 
failure which is an important aspect for any kind of goal driven architecture.  

This recovery from failure is supported by EAGLE, a specification language for 
extended goals. Eagle supports with ontologisms like Fail or Repeat a recovery from 
failure which is in an suitable extension in order to provide a higher expressivity for 
goal formulation and success of goal resolution in real world settings. Another inter-
esting fact of Eagle is the possibility to weaken a goal. Especially in dynamic 
environments it is not always possible to reach the predefined goal. In this case a 
usual agent will give up after a certain time. In this case EAGLE would weak the goal 
to reach a satisfied state. 
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6 The UPML Framework  

Problem Solving Methods (PSMs) have been developed in the area of Knowledge 
Engineering as a methodology for formally describing the reasoning process for re-
solving given problems in Knowledge-based Systems [Fensel, 2000]. The Unified 
Problem Solving Method Development Language (UPML) provides a framework for 
formally describing PSMs, consisting of the core element definitions, their formal de-
scription specification, and development guidelines in order to ensure consistency and 
resolvability of a PSM definition [Fensel et al., 2003].  

6.1 Introduction 

UPML unifies and generalizes the conceptual models for describing knowledge-
based systems that have been developed by several approaches in knowledge engi-
neering. Problem Solving Methods (PSMs) have been developed in the area of 
Knowledge Engineering as a methodology for formally describing the reasoning 
process for resolving given problems in Knowledge-based Systems [Fensel, 2000]. 
The Unified Problem Solving Method Development Language (UPML) provides a 
framework for formally describing PSMs, consisting of the core element definitions, 
their formal description specification, and development guidelines in order to ensure 
consistency and resolvability of a PSM definition [Fensel et al., 2003]. 

Knowledge based systems are roughly spoken computer system which are using 
knowledge systems to solve problems. This knowledge is represented declaratively, 
meaning that the functionality of computational facilities is described extensively in-
stead of realizing it in procedural algorithms. The purpose of UPML is to provide a 
general framework for extensively describe the reasoning steps of knowledge based 
systems in a declarative manner. UMPL does not aim at describing different software 
components, but to develop a generalized used knowledge-based system which can be 
used for different tasks.  

In fact, UPML can be understood as an extensive and expressive framework for 
formally describing the core elements of systems for automated problem solving. The 
following analyzes the UPML framework with respect to its characteristics as a goal-
driven architecture and investigates the model and languages used for the declarative 
element descriptions.  

6.2 Structure of UPML 

UMPL identifies six elements that are considered to be relevant for describing the 
reasoning behaviour of knowledge based systems by applying Problem Solving 
Methods (PSM). These elements are:  (1) ontologies provide the formalized general 
terminology and knowledge of a domain; for specific applications, (2) domain models 
extend ontologies with specific domain knowledge these are extended; a (3) a task 
specifies the problem to be solved, and (4) a PSM is a generic methodology for prob-
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lem solving; (5) refiners allow weakening or strengthening of PSMs to make them 
applicable to concrete tasks, and (6) bridges that allow resolving terminological and 
teleological mismatches between ontologies, domain models, tasks, and PSMs. Figure 
6 shows the interrelation of the six UMPL elements. 

 

 

Figure 6: UPML Elements and their Relation18 

 

Comparison this with the general structure of goal-driven architectures identified 
in Section 2.2 reveals the following correlation. UPML tasks denote the client-side 
element for formal specification of user objectives, and PSMs denote the service-side 
as general purpose strategies for problem solving; ontologies, domain models, refin-
ers, and bridges denote the auxiliary elements. Hence, UPML can be understood as a 
description model for goal-driven architectures. Below, we investigate the description 
models for the different elements and their interrelation in detail. 

                                                 
18 source: [Fensel et. al., 2003].   
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6.3 UPML Element Descriptions  

The following investigates the distinct UPML elements with respect to their usage 
purpose and their declarative description models. In particular, we analyze the seman-
tics of the element descriptions. We group the elements in accordance to their 
allocation within the model for goal-driven architectures.  

6.3.1 Ontologies and Domain Models   

Ontologies and domain models provide the formal domain terminology and 
knowledge definitions that are used within all other UPML elements. While ontolo-
gies are used as generic, re-usable domain knowledge conceptualizations, domain 
models refine and extend ontologies for a specific application scenario.  

An ontology provides “an explicit specification of a conceptualization” [Gruber, 
1993], which can be shared by reasoning components which are communicating dur-
ing problem resolution process. As in the other AI technologies ontologies are used to 
define the terminology task for problem resolution. In contrast to the other surveyed 
approaches UPML does not have a specific language for defining ontologies but 
rather supports different languages. These are KARL [Fensel, Angele, Studer, 1998], 
a frame-based language for specifying epistemological aspects close to F-Logic 
[Kifer et al., 1995], and the Modal Change Logic MCL [Fensel, Groenboom, 
Lavalette, 1998] for the dynamic aspects; these languages have been combined into 
the OIL language [Fensel et al., 2001]. Table 6 summarizes the description elements 
of ontologies in UPML.  

Table 6: UPML Ontology Description Model  

Descriptor Explanation 

pragmatics  non-functional aspects (e.g. creator, date, natural 
language description, references) 

signature  defines the data schema of an ontology in terms of 
sorts, constants, and predicates.  

axioms domain knowledge specification in form of logical 
expressions on basis of the signature  

 

A domain model uses one or more ontologies and extends the knowledge defini-
tions with application specific knowledge specifications. In essence, this means that a 
domain model provides an ontology that is refined and extended for a specific appli-
cation purpose. For specification, a domain model imports a general purpose ontology 
and defines extended knowledge in for of new predicates, axioms, and facts. These 
are distinguished into properties and assumptions: while the former can be derived 
from the domain knowledge, the latter denotes aspects that cannot not be derived but 
are needed to be assumed to be true. Table 7 summarizes the description structure of 
domains models.  
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Table 7: UPML Domain Model Description  

Descriptor Explanation 

pragmatics  non-functional aspects (e.g. creator, date, natural 
language description, references)  

ontology  imported ontology (one or more)  

properties  schema of additional domain knowledge that can 
be derived  

assumptions schema additional domain knowledge that is as-
sumed  

domain knowledge concrete facts of domain  

6.3.2 Task 

The purpose of tasks is to specify problems that a knowledge-based system shall 
solve. In contrast to goal definitions in the previously surveyed approaches, a task is a 
generic problem description that can be re-used, i.e. for solving several requests that 
have the same semantic structure. Therefore, a task represents a schematic problem 
description that can be initiated for several specific requests.  

A task description consists of two aspects: at first it defines a goal to be achieved, 
and secondly it has information about the in-and output roles as well as preconditions 
that need to hold before the task can be initiated. Therewith, the problem definition is 
kept independent from specific applications which give the possibility of reuse for 
other applications. Another aspect is the explication of assumptions as conditions on 
the world that need to hold in order to achieve the task. Assumption can be checked 
during the whole problem solving method while preconditions can not. In this way 
assumptions can ensure that the given task can be solved for premissable input. Table 
8 shows the description model of tasks in UPML.  

Table 8: UPML Task Description Model 

Descriptor Explanation 

pragmatics  non-functional aspects (e.g. creator, date, natu-
ral language description, references) 

ontology imported ontology / domain model (one or more)   

specification 

- roles  

- goal  

- precondition 

- assumptions  

specifies the task by:  

-  in- & output constraints  

- state of the world to be achieved  

- conditions that need to hold before execution  

- explicated assumptions and conditions that     
need to hold during the task resolution  
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6.3.3 Problem-Solving Methods  

PSMs denote the service-side element in the UPML framework. It is to note that a 
PSM is a procedure or methodology for problem solving and hence is not comparable 
to operators, i.e. computational facilities available for automated usage and execution. 
Rather then describing the functionality of an operator as an implemented, executable 
program, a PSM provides a goal resolution strategy that defines the reasoning proce-
dure to be undertaken. However, under the assumption that an implementation for a 
PSM exists, this can be understood as an operator for automated problem solving on a 
higher level of abstraction.  

UPML distinguishes between two different types of problem solving methods: 
complex problem solving method which divides a task into several subtasks and 
primitive problem-solving methods that makes assumptions about the knowledge of 
the domain to perform a reasoning step. The central aspects for PSM descriptions in 
UPML are the competence that specifies what the PSM does and the operational de-
scription that specifies how the PSM achieves it’s competence. Table 9 summarizes 
the PSM description model in UPML.  

Table 9: UPML Problem Solving Method Description Model 

Descriptor Explanation 

pragmatics  non-functional aspects (e.g. creator, date, natu-
ral language description, references) 

ontology imported ontology / domain model (one or more)   

competence 

- roles  

- precondition  

- postcondition 
 

- assumptions  
 

- sub-tasks  

specifies WHAT  the PSM does by:  

-  in- & output constraints  

- conditions that need to hold before execution  

- conditions that hold after execution with de-
pendence to the precondition  

- explicated assumptions and conditions that  
need to hold during the task resolution  

- lists of tasks the PSM consists of  

operational specification  

- intermediate roles  

- procedures 

- control  

specifies HOW the PSM works by:  

- in- & outputs needed for PSM execution  

- programs / procedures used  

- control & data flow between sub-tasks and pro-
cedures 
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6.3.4 Refiners and Bridges  

As a novel element not existing in the other investigated approaches, so-called 
adapters in UPML connect other elements in order to make them interoperable if this 
is not given a priori. Conceptually, this follows the idea of mediators proposed by 
[Wiederhold, 1992].   

A Refiner adopts tasks and PSMs by refining their specification, respectively com-
petence such that either a PSM is usable for a task if this has not been given a priori, 
or such that a tasks or a PSM occurs to be a functional refinement of another one. 
This is achieved by defining additional conditions and assumptions that constrain the 
respective functionality descriptions. A Bridge adopts two elements and resolves on-
tological mismatches between them that hamper interoperability. The source and 
target can be any UPML element. Table 10 summarizes the description model of both 
refiners and adapters.  

Table 10: UPML Adapter Description Model  

Descriptor Explanation 

pragmatics  non-functional aspects (e.g. creator, date, natural 
language description, references)  

ontology  imported ontology (one or more)  

auxiliary terminology additional domain terminology & knowledge 
needed for adapter specification  

source element  UPML element that the adaptation starts from  

target element  UPML element that the adaptation results in  

SPECIFIC FOR REFINERS  

refined x   additional axioms / rules that specify the refine-
ments, whereby “x” can be any sub-element of a 
task specification or a PSM competence  

SPECIFIC FOR BRIDGES   

rename terminology renaming  

mapping axioms  mappings between heterogeneous knowledge 
definitions  

 

6.4 Conclusion 

UPML represents a description model for reasoning procedure of knowledge based 
systems. In this case UPML is not representing in order to BDI Agent an imple-
mented framework problem resolution. It is using different problem solving methods 
without the ability of goal resolution techniques, these have been addressed in related 
system implementations, with IRS II as the most prominent one [Motta et al., 2003]. 
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The central aspects of UPML with respect to exhaustive declarative description of 
goals and related aspects are:  

1) usage of ontologies as the knowledge representation formalisms, which is more 
expressive than first-order predicate logic and more suitable for concisely de-
scribing domain knowledge  

2) the description model for tasks, the client-side description element of UPML, 
represents a more general way for formally specifying client objectives to be 
achieved. They are described by in- and output roles for computational execu-
tion, and the desired final goal state; in contrast to the previously examined 
approaches, preconditions and assumptions that constrain possible initial state 
of the world for solving a problem.  

3) PSMs represent the service-side element in UPML. Rather than denoting an 
operator than can be used and executed for automated problem solving, a PSM 
specifies a specific reasoning behaviour for problem solving; it is described by 
a competence as a black box description and optionally by an operational speci-
fication that consists of sub-tasks and the control flow between them. We can 
understand this concept as a means for explicitly specifying the goal resolution 
procedure in a declarative manner.  

4) As a novel aspect, UPML introduces the concept of adapters as intermediate 
elements for connecting and re-use of resources for automated problem solving. 
Therefore, two types of adapters are distinguished: refiners that tries to render 
the problem more precisely, and bridges which can be variable that matches 
different elements from tasks to each other.  
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7 Summary, Findings, Conclusions 

After detailed analysis of the four approaches for goal-driven architectures, this 
section summarizes and depicts the central findings of this survey. With respect to the 
research interest identified introductory, we explicate the commonalities and differ-
ences of the approaches with respect to the notion of goals, their formal description, 
and techniques for goal-driven automated problem solving.  

7.1 Summary  

Pursuing the grand aim of Artificial Intelligence of creating intelligent systems that 
perform tasks automatically in a similar way that humans do, the aim of goal-driven 
architectures is to lift IT-system usage for clients to the knowledge level. Instead of 
formulating technical requests for available computational resources clients shall be 
enabled to formulate their objectives as goals that abstract from technical details and - 
at the same time - carry all information that is needed for detecting and executing the 
appropriate resources for achieving the objective.  

As the central element of such architectures, a goal is a formal, machine-process 
able knowledge level specification of a client objective that needs to satisfy the fol-
lowing requirements: (1) abstracting from technical details to the highest possible 
extent, (2) support all possible kind of objectives that clients may have, (3) carry all 
information needed for automated goal resolution. For determining the state of the art 
in goal-driven architectures, we have identified the AI disciplines of cognitive archi-
tectures, intelligent software agents, planning, and knowledge engineering as 
relevant. Out of field, we have examined respectively one approach with respect to 
how goals are formally described, which types of objectives are supported, and which 
techniques are applied for automated goal resolution.  

 The  first technique investigated in Section 3 is SOAR, a cognitive architecture 
based on a conceptual model of human cognition. SOAR is using production rules in-
stead of a database for the representation of the knowledge. Goal resolution 
techniques are implemented by a decision cycle. This cycle consists of 3 main ele-
ments: elaboration (represents a condition which is satisfied to attain the current 
state), decision (determines the operator to be applied next along with preferences for 
them) and application which is the execution of the defined task. This decision cycle 
is extended with subgoaling called impasse handling and learning (chunking) which 
increases the efficiency of a problem resolution process. 

The second approach investigated in Section 4 is the belief-desire-intention (BDI) 
model developed as a philosophical theory for rationale behavior along with a logical 
formalization for goal-driven intelligent software agents. The approach consists of 
three main aspects: Belief, desires and intentions. Belief describes the actual knowl-
edge about the world which is considered to be true by the agent. This information is 
stored in a database. Desires are describing the final desired state the agent wants to 
achieve. The last element, intentions are representing one or multiple actions that the 
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agents has committed to achieve a substep towards the final desired state. At the be-
ginning of a resolution process the agent has knowledge about the world. Starting 
from the knowledge about the world the agent gets the desires by using the knowl-
edge as well as the given input and problem description. Using these two elements the 
agent tries to find a way through multiple actions to the final desired state by choos-
ing and executing intentions. In this context an intention is representing a fragment of 
plan which is created by the agent at the beginning and during the resolution process. 
This so called plan can also be changed during the resolution by getting new facts 
about the world. This process continues until the agent reaches the final desired state. 

As the third approach, Section 5 has investigated AI Planning as a technique for 
automated construction of plans as a valid sequence of actions for reaching a goal 
state from an initial state. The purpose of planning is to provide automated support 
for combing several applicable operators for possibly more complex problems that 
can not be solved by applying just a single operator. In classical planning, objective 
descriptions in classical planning techniques a restricted to an initial state and a goal 
state to be achieved; operators are described in terms of preconditions and effects, and 
plans are determined on basis of forward- or backward chaining. Extensions of the 
basic planning techniques include conditions on for plan determination (conditional 
planning), as well as descriptions languages like EAGLE that allow trial- and com-
pensation specifications for goals. In contrast to the BDI approach of interleaved 
action and planning, the result of successful planning is a suitable sequence of opera-
tors for achieving a goal that is determined a priori, i.e. the complete control and data 
flow between used operators is determined before any of the operators is executed. 
Although this might cause failures in plan execution because of changes in the world 
that timely occur between the planning and its execution, AI Planning currently re-
ceives a renaissance as the basis for functional Web service composition.  

The fourth and final approach investigated in Section 6 is the Unified Problem 
Solving Method Development Language UPML, an exhaustive framework for explic-
itly describing the reasoning behavior of knowledge-based systems that utilize 
problem solving methods (PSM). PSMs are a generic problem solving methodologies 
that are formally described in order to allow their application for different specific 
problems via refinement. UPML identifies six elements: ontologies and domain mod-
els that specify the domain terminology and knowledge, tasks for specifying 
objectives to be achieved,  problem solving methods as generic methodologies for 
problem solving, and adapters for connecting tasks and problem solving methods by 
refinement (refiners) and solving terminology mismatches between them (bridges); 
UPML defines a description meta-model analyzed above in detail.  In contrast to the 
other approaches surveyed above, UPML is merely a description framework but does 
not encompass any goal resolution techniques. However, it provides valuable insight 
for advanced declarative descriptions of goal-driven systems: using ontologies as the 
data model allows more expressive knowledge definitions, and the concept of tasks 
denotes a generic way for specifying problems or client objectives; furthermore, when 
understanding PSMs rather as a way to generically specify goal resolution strategies 
than as operators for automated execution, their UPML specification provides a way 
for describing more complex client objectives including resolution plan constraints. 
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As already mentioned UMPL is mainly a description language without a technique 
for automated goal resolution. However several approaches has been done to imple-
ment this description language into a functional framework including automated goal 
resolution techniques. The most famous framework is called IRS2 (Internet Reason-
ing Services) form KMI. 

7.2 Findings  

After summarizing the investigations, we can now examine the commonalities and 
differences of the examined approaches. Recalling from the introductory examina-
tions in Section 2.4, the aspects of interest for determining the state of the art in goal-
driven architectures are how are goals and related client-side elements defined and 
described, what kind of objectives and problems can be handled by the technology, 
and which techniques are applied for automated, goal-driven problem solving. In or-
der to attain a concise overview of the state of the art in goal-driven architectures, the 
following summarizes the central findings with respect to the types and definition of 
goals as well as the techniques used for automated goal resolution. 

7.2.1 Goal Types and Descriptions 

Regarding the first two aspects of interest, we observe that three types of problems 
or objectives can be supported by the examined techniques. We refer to these as Goal 
Types. In addition, we can differentiate two types of constraints that are supported by 
advanced models for goal description. We refer to them as Constraint Types.   

The three Goal Types are: 

G-I. Desired State of the World  
This denotes client objectives for creating a new object or state in the world. 
Examples are to buy a travel ticket by providing an  origin, destination, and 
date as input, or the goal state of the blocks world example (i.e. the state where 
there is a tower of 3 blocks on the table); commonly, such goals are specified 
by the desired final state with respect to an initial state. Typically, we find goals 
of this goal type within classical planning as well as in the SOAR technology. 

G-II. Functions to be Performed  
This refers to objectives for performing a certain function, e.g. multiply(a,b) or 
withdrawFromAccount(x). While the client desire is to change the state of the 
world by executing a specific operation, the formal description of such goals is 
commonly given as a \emph{state transition}, i.e. a pre-state constraints and 
post-state constraints that denote the epistemic change between them. We can 
find this goal type in all of the surveyed approaches. 

G-III. Temporal Abiding Goals  
This group denotes client objectives that remain over a longer period of time, 
and typically require several steps for resolution as well as adoption and goal 
refinement during the resolution process. Examples are to write a book or attain 
a PhD degree, which we typically find as desires delegated to intelligent agents. 
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The two Constraint Types are: 

C-I. Goal Resolution Invariants  
This denotes additional constraints that need to hold during all states of the 
world traversed when a goal is solved. For instance that the account shall never 
become negative while a series of purchases is performed. We find such con-
straints implicitly hidden with the domain knowledge in the SOAR technology, 
as well as in BDI Agents and AI Planning.  

C-II. Goal Resolution Procedure Constraints 
This refers to constraints on the process for resolving a goal. Instead of merely 
a black-box description for goal from an initial state to the desired goal state, 
requirements and constraints on intermediate steps and their order are defined 
in a goal formulation. We find this in form of constraints in conditional AI 
planning languages, as trial- and compensation specifications in the EaGLe 
language, and as goal decompositions in terms of collections of sub-goals with 
control- and data flow between them in UPML for complex PSMs.  

 

Regarding the formal specification of goals, we observe that all investigated ap-
proaches apply a state-based model as the underlying logical framework for formally 
describing goals and operators. For all three goal types, the desired goal states are de-
fined in terms of logical expressions in some static knowledge representation 
language (propositional logic or some ontology language). The state of the world that 
holds before the goal resolution procedure is started is either considered to be given 
as the initial state in terms of facts and rules (SOAR, BDI agents, and planning) or 
specified as a respective pre-state constraint (UPML).  

Both constraint types represent extensions of the respective goal type description. 
For type C-I, the constraints are commonly modelled as logical conditions in the re-
spective framework with the meaning that these conditions need to hold during all 
intermediate states traversed during the goal resolution. For constraint type C-II, the 
constraints are either modeled as logical conditions on particular states that are re-
quired to be traversed during the goal resolution procedure (condition AI planning 
and EaGLe), or as declarative descriptions of goal decompositions in terms of collec-
tions of subgoals along with control- and data flow between them (operational 
specification of complex PSMs in UPML).  

Summarizing, defining goals in terms of preconditions, effects, and additional con-
straints appears to be the least common characteristic of the surveyed approaches.  

7.2.2 Goal Resolution Techniques  

Regarding the third aspect of interest, we have determined three approaches for 
automated goal resolution techniques. The decision cycle of SOAR along with sub-
goaling applies forward-chaining in order to subsequently choose the operators for 
reaching the goal state from the initial state. The central characteristic of automated 
goal resolution within the BDI framework is interleaved action and planning, mean-
ing that the agent observes the world, then determines intentions and executes, and 
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repeats this process until the final desire is solved. As the third one, AI Planning 
techniques automatically create the goal resolution plan by matchmaking and for-
ward- or backward-chaining.  

Each of these techniques allows to resolve the specific type of goals, whereby the 
AI Planning as well as the SOAR technique appear to be most suitable for goal types 
I and II while the BDI technique in principle supports resolution for all goal types but 
is mainly designed and applicable for type III. As the commonalities of the goal reso-
lution techniques, we observe that each one encompasses facilities for planning and 
for operator detection. The former is concerned with determining the goal resolution 
plan as the steps to be performed for reaching the final state from the initial state of 
goal formulation, and the latter is concerned with . Therefore, AI planning techniques 
provide the technical core as automated plan determination by finding and combing 
available operators. This is extended towards interleaved action and planning by sub-
goaling and means-to-end analysis for operator detection in SOAR, and further into 
interleaved observation, planning, and action within the BDI framework.  

 

Concluding, Table 11 summarizes the commonalities and differences of the inves-
tigated approaches with respect to the goal and constraint types identified, the formal 
languages used for goal specification, and the applied goal resolution techniques.  

Table 11: Goal-driven Architectures – Commonalities and Differences 

  SOAR BDI Agent AI Planning UPML 

supported Goal & 
Constraint Types  

G-I,G-II 
C-I 

mainly G-III 
C-I 

G-I, G-II 
C-I, C-II 

G-I, G-II 
C-I, C-II 

Goal Description 
Model 

initial state & 
goal state in 
problem space 

beliefs, desires, 
intentions 

initial & goal 
state + 

constraints 

tasks 
in- & output 
precondition  
goal state 

assumptions 

Specification   
Language 

production 
rules + 

propositional 
logic 

BDI logics 
modalities 

FOL 
temporal logic 

possible worlds 

propositional 
logic + 

plan description 
(operators, con-
trol- & data-flow) 

ontologies  
+ 

MCL for  
dynamics 

Goal Resolution 
Technique 

forward chain-
ing with  

sub-goaling 

interleaved  
observation / 

planning / action 

a priori plan de-
termination 

not in the 
scope 
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7.3 Conclusions  

Above, we have summarized the survey and explicated the central findings on goal 
types, their description, and goal resolution techniques developed in existing ap-
proaches. In order to avoid duplication and referring to the summarizes for the 
investigated approaches within the respective sections, the following merely summa-
rizes the central aspects of this survey.  

• pursuing the grand aim of AI research, goal-driven architectures provide so-
phisticated client-side support for automated IT-system usage on the 
knowledge level with its philosophical origins in Cognitive Science  

• the general structure of goal-driven architecture consists of 3 elements: 
goals as the client-side element for objective formulation, service-side ele-
ments as available computational facilities with declarative descriptions, and 
auxiliary elements for enhancing the goal resolution quality  

• goals are formal, machine-processable knowledge level specification of cli-
ent objectives that (1) abstracts from technical details to the highest possible 
, extent, (2) support all possible kind of objectives that clients may have, and 
(3) carry all information needed for automated goal resolution 

• we have determined 3 goal types: (1) desired states of the world, (2) func-
tions to be performed, and (3) temporal abiding goals; the common 
underlying model for formal descriptions of goals and related aspects are 
state-based so that the commonly goal descriptions consist of preconditions 
and effects as state constraints on the initial and final state of the world  

• goal descriptions can be extended with constraints, wherefore we have dis-
tinguished (1) invariants that are requested to hold during each state 
traversed during the goal resolution, and (2) procedural constraints that need 
to hold on particular states that are required to be traversed for goal resolu-
tion; the former is described as additional constraints on the requested 
functionality, and the latter by control- and data flow of goal decomposi-
tions 

• the common core of goal resolution techniques are facilities for planning 
and operator detection; specific techniques extend this with sub-goaling and 
means-to-end analysis for operator selection, respectively interleaved obser-
vation, planning, and action for temporal abiding goals.  
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