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Abstract. This technical report provides the specification ofSemantic Discovery Caching(short:
SDC). As a part of the author’s PhD work, this is a technique for enhancing the efficiency and
scalability of Web service discovery processes in service-oriented architectures. The approach is to
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its applicability in real-world SOA applications.
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1 Introduction

This technical report specifiesSemantic Discovery Caching, short: SDC, a technique for capturing and reuse
of Web service discovery results. This shall allow to decrease the computational costs of Web service discov-
ery procedures and thereby enhance the efficiency and scalability of service-oriented architectures (SOA).
Embedded in a goal-based approach for Semantic Web services, the SDC technique captures knowledge
on discovered Web services for generic, reusable goal descriptions and enables efficient runtime discovery.
This technique is a central part of the author’s PhD work.

The aim of the SDC technique is to decrease the size of the search space for Web service discovery and
to enhance its runtime efficiency. We therefore create an index of available Web services with respect to the
goals that can be solved by them. The starting point for this is the semantic similarity of goal descriptions.
Two goals are considered to be similar if they have at least one common solution. Thus, in the majority
of cases, the same Web services can be used to solve them. We distinguish two notions of goals: agoal
templateis the generic description of a client objective that is defined at design time and kept in the system;
a goal instancedenotes a concrete client request that is created at runtime by instantiating a goal template
with concrete input values. Because of their formal relationship, it always holds that only those Web service
usable for a goal template are possibly usable for any of its goal instances. The indexing structure for
clustering Web services with respect to the solvable goals is the so-calledSDC graph. It consists of a set of
trees wherein the inner nodes are goal templates and the leaf nodes are the Web services usable for the goal
template at the parent node. The arcs are directed connections between the nodes that define the similarity
between goal templates, respectively the usability of a Web service, in terms of the matching degree between
their formal functional descriptions. This is the minimal knowledge relevant for decreasing the search space
and increasing the runtime efficiency of Web service discovery.

The SDC technique is allocated in a SOA system as an intermediate for Web service discovery mech-
anisms to access and search Web service repositories. Usable Web services for goal instances and for se-
mantically similar goal templates are detected on the basis of knowledge in the SDC graph. This is a novel
approach that introduces the concept of semantic caching into the area of semantic SOA technology. By na-
ture, the achievable increase for efficiency and scalability of Web service discovery processes is dependent
on the number and relationship of Web services and goals in concrete SOA applications. Our hypothesis is
that those situations wherein the SDC technique can achieve an adequate efficiency increase correlate with
the most common situation in typical real-world SOA applications.

This report provides the complete specification and evaluation of the SDC technique. A detailed eval-
uation in form of a real-world applicability study as well as detailed discussion of related work will be
addressed in a later stage of research. The document is structured as follows. The remainder of this sec-
tion briefly recalls the research context. Then, Section2 discusses the design and determines the arising
requirements for the SDC technique. Section3 defines the elements of the SDC graph and discusses its
formal properties. Then, Section4 specifies the Web service discovery operations that work on the SDC
graph, and Section5 defines the algorithms for maintenance of the SDC graph in its dynamically changing
environment. Finally, Section6 summarizes the report.
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1.1 Context – A Goal-based Approach for Semantic SOA

The SDC technique is allocated in the Web service discovery part of a goal-based approach for semantically
enabled SOA technologies that is promoted by the Web Service Modeling Ontology WSMO (cf. www.
wsmo.org ). The overall aim is to enable automated discovery, composition, and execution of Web services
with semantic technologies for realizing the vision of service-oriented architectures [10].

In contrast to most other approaches for Semantic Web services (e.g. OWL-S [25], SWSF [3], or WSDL-
S [1]), WSMO does not only provide an ontology-based description model for Web services but integrates
goalsandmediatorsas additional top level elements. Their intended usage is:

goal-driven Web service usage:a client shall formulate the objective to be achieved in terms of a goal,
and a WSMO-enabled system solves this by automatically discovering, composing, and executing
appropriate Web services on basis of formal, declarative descriptions. The aim is to enable problem-
oriented usage of Web services: the client can concentrate on the problems to be solved while all
details on the automated usage of Web services are handled by the system.

mediation-enabled Web service usage:to establish interoperability between Web services and goals if
this is not given a priori, mediators connect potentially heterogeneous elements and apply semantically
enabled techniques for handling and resolving mismatches on the data and the process level [36].

One of the central reasoning tasks in Semantic Web services is discovery, commonly understood as the
detection of those Web services out of the available ones that can be used for solving a given goal. Adopted
from the heuristic classification problem solving method, WSMO proposes a discovery procedure as shown
in Figure1 (taken from [17]). The framework distinguishes the following elements: agoal is an abstract,
reusable description of a client objective; aWeb serviceis a software artifact that has an abstract description
and provides access to real-worldservicesthat can solve a goal. The first process isgoal discovery, which is
concerned with formulating a client objective in terms a goal. This is achieved by associating the concrete
client desire with an generic, reusable goal description. The second process isWeb service discovery, which
is understood as the detection of usable Web services for solving a goal by semantic matchmaking of their
abstract descriptions with a primary focus on the provided and requested functionality. Finally,refinementis
concerned with determining those real-world service that are associated with a discovered Web service and
can be used to solve the client’s desire. This encompasses compatibility tests for all non-functional aspects,
such as behavioral conformance, quality-of-service, and financial aspects.

Figure 1:WSMO Discovery Framework

The PhD work of the author presents one possible realization of this abstract framework with a special
focus on the quality and efficiency of Web service discovery. As conceptually compatible extensions, the
central contributions of the work are:

www.wsmo.org�
www.wsmo.org�
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1. A refined goal model: WSMO initially describes goals by the same description model as used for Web
services. A refinement towards a more accurate model on the basis of experiences from respective
development efforts is presented in [42]. The central extension is the differentiation ofgoal templates
andgoal instances: the former are generic objective descriptions that are defined at design time and
kept in the system; the latter denote concrete client requests that are created at runtime by instantiating
a goal template. A goal template described the requested functionality in terms of preconditions and
effects and optionally a desired workflow that shall be sustained during the goal resolution. A client
interface provides the counterpart of the Web service interface for invocation and consumption of its
functionality (i.e. the choreography interface in WSMO terms). A goal instances instantiates a goal
template by defining an input binding, i.e. an assignment of concrete values for the required inputs.

2. Two-phase Web Service with sophisticated semantic matchmaking:a semantically enabled Web ser-
vice discovery has been developed. This defines semantic matchmaking for discovery on the goal
template and the goal instance level, and integrates both into a two-phased Web service discovery
for the extended goal model. Following the WSMO approach, this focusses on formally described
functionalities requested in goals and provided by Web services. The complete discovery approach is
presented in [41], along with a detailed report in [39]. Section1.2 recalls the central definitions that
are relevant in the context of this report.

3. The Semantic Discovery Caching (SDC) technique:This technique captures Web service discovery
results on the goal template level, and utilizes this knowledge to enhance the efficiency of the discov-
ery process. While [35] discusses the problem statement, the overall research approach, and related
work, the SDC technique is specified and evaluated in this report.

Figure2 shows the refinement of the WSMO discovery framework with the three extensions. The goal
discovery process is replaced by the creation of goal instances: the client browses existing goal templates,
and formulates the objective to be achieved by defining concrete input values for the goal description. This
can be supported by graphical user interfaces as provided in IRS [6] or SWF [43], which eases the goal
formulation for clients. Web service discovery is performed in a two-phased manner: at design, usable Web
services for goal templates are determined; usable Web services for a concrete goal instance are determined
at runtime, whereby the discovery result for the corresponding goal template serves as a pre-filter. The SDC
technique therefore captures the relevant knowledge for enabling efficient runtime discovery.

Figure 2:Realization of WSMO Discovery Framework
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1.2 Two-phase Web Service Discovery

In order to provide a self-contained documentation, the following briefly recalls the central aspects and
definitions of the two-phased Web service discovery with goal templates and goal instances. We refer to [41]
for a comprehensive presentation, and to [39] for a detailed report on the Web service discovery realization.

1.2.1 Concepts and Approach

The discovery approach is defined inAbstract State Spaces(short: ASS) [18]. This defines a state based
model of the world that Web services act in with precisely defined formal semantics. Therein, a particular
execution of a Web service or a composition of Web services denotes a sequence of state transitionsτ =
(s0, . . . , sm), i.e. a change of the world from a start states0 to a termination statesm that is triggered by
the invocation with concrete inputs. The overall functionality provided by a Web service is the set of all its
possible executions; we denote this as{τ}W .

A goal is the formal description of the desire of the client to get from the current state of the world into a
state wherein the objective is satisfied. A goal template specifies conditions on the start state and the desired
final state wherein the objective is considered to be solved. Hence, a goal templateG formally describes a set
of possible solutions that we denote as{τ}G . At runtime, a client creates a goal instanceGI(G) by assigning
concrete values to the input variables defined in the corresponding goal templateG. We refer to this as an
input bindingβ, so that a goal instance formally is a pairGI(G) = (G, β) and its possible solutions are a
subset of those forG, i.e. {τ}GI(G) ⊂ {τ}G . The input bindingβ defined inGI(G) subsequently constitutes
the concrete input values for invoking a Web service in order to solve the goal instance by a real-world
service.

The aim of Web service discovery is find a Web service that can provide aτ that is a solution for the
goal. We thus specify the meaning of a match for Web service discovery as follows.

Definition 1.1 (Meaning of a Match). Let W be a Web service,G a goal template, andGI(G) a goal
instance that instantiatesG with an input bindingβ. Let τ = (s0, . . . , sm) be a sequence of states in an
Abstract State SpaceA.

We define the following sets:
{τ}G := possible solutions forG {τ}GI(G) ⊂ {τ}G := possible solutions forGI(G)
{τ}W := possible executions ofW {τ}W (β) ⊂ {τ}W := possible executions ofW

when invoked withβ
We define theusability of a Web service for solving a goalas:

(i) match(G,W ) : ∃τ. τ ∈ ({τ}G ∩ {τ}W )
(ii) match(GI(G),W ) : ∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β))

This defines the basic matching conditions for Web Service discovery. Clause (i) states that a Web
serviceW is usable for solving a goal templateG if there exists at least one execution ofW that is a possible
solution forG. Clause (ii) defines thatW is usable for solving a goal instanceGI(G) if there is at least
one execution ofW that is also a solution forGI(G) whenW is invoked with the inputs defined inGI(G).
Moreover, the following holds because of{τ}GI(G) ⊂ {τ}G :

1. match(GI(G),W ) ⇒ match(G,W ), i.e. a Web service that is usable for solving a goal instance is
also usable for the corresponding goal template, and, as the logical complement



DERI TR 2007-02-03 5

2. ¬match(G, W ) ⇒ ¬match(GI(G),W ), i.e. that a Web service that is not usable for a goal template
is also not usable for any of its goal instances. This constitutes the foundation of our two-phase
discovery approach, because we can use the Web service discovery result on the goal template level
as a pre-filter for the goal instance level discovery.

We define semantic matchmaking techniques to evaluate the matching conditions from Definition1.1
on the basis of formal descriptions of goals and Web services. Without such techniques, we would need
to perform test runs of a Web service for determining its usability for solving a goal. We focus on the
requested and provided functionalities. This is widely considered as the primary aspect of interest for Web
service discovery; other aspects such as behavioral conformance test, quality-of-service, financial, and the
non-functional context are dealt with in subsequent usability tests [29]. Due to the high precision and recall
rates that are achievable with matchmaking on formal functional descriptions, this replaces keyword-based
discovery techniques. Subsequently, the SDC technique replaces Web service repository categorization by
an index structure of the available Web services with respect to the goals that can be solved by them.

1.2.2 Formal Functional Descriptions

A functional description formally describes the overall functionality provided by a Web service, respectively
possible solutions of a goal. This serves as the basis for semantic matchmaking of requested and provided
functionalities. We apply functional descriptions as defined in the Abstract State Space model (ASS) men-
tioned above, which specifies them on the level of state changes and defines precise formal semantics for
such functional descriptions [18].

An Abstract State SpaceA is defined over a signatureΣ and some domain knowledgeΩ. A functional
description is described as a 5-tuple(Σ,Ω, IF , φpre, φeff ). The signatureΣ differentiatesstatic symbols
ΣS that are not changed,dynamic symbolsΣD that are changed by execution of a Web service, andΣpre

D

that denote the interpretation of a dynamic symbol in the start state. Preconditionsφpre and effectsφeff are
defined as statements in a logicL(Σ). IF = (i1, . . . , in) is a set of variables that denote all required inputs.
To explicitly specify the deterministic dependency between the start- and end-states with respect to input
values, they can occur as the only free variables inφpre andφeff . An input bindingβ : {i1, . . . , in} → UA
is a total function that assigns objects of the universe ofA to eachIF -variable. Finally, the symbolout
denotes the computational outputs that are constrained byφeff .

The meaning of a functional description is defined with respect to the start- and the end-state of a
sequence of state transitions. Formally, aτ = (s0, . . . , sm) in A is considered to satisfy the described
functionality if and only if it holds that ifs0 |=L(Σ) φpre thensm |=L(Σ) φeff . Here,s |=L(Σ) φ expresses
that the formulaφ is satisfied by the universeUA in a states under the logicL(Σ). We refer to this as
implication semantics: if the precondition is satisfied ins0, thensm will satisfy the effect; otherwise, we
can not make any statement about the behavior of the described functionality. Because theIF -variables
occur as free variables in both the preconditionφpre and the effectφeff , the end-statesm is completely
dependent on the start-states0. This reflects the deterministic nature of functionalities provided by Web
services.

While functional descriptions in the ASS model are defined independent of the specification language for
preconditions and effects, we use classical first-order logic (FOL, [33]) for illustration throughout this work.
In order to ease the handling of functional descriptions, we describe them as a first-order logic structure
that maintains the formal semantics as defined in the ASS model. Definition1.2specifies the structure of a
functional description, and Definition1.3defines its formal meaning for describing the overall functionality
of a Web service.
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Definition 1.2 (Functional Description). A functional description is a 4-tupleD = (Σ, Ω, IF , φD) such
that:

(i) Σ is a signature consisting ofΣS (static symbols),ΣD (dynamic symbols),
andΣpre

D (pre-variants of dynamic symbols)
(ii) Ω ⊆ L(Σ) defines consistent domain knowledge
(iii) IF is a set of variablesi1, . . . , in that denote all required input values;

an input bindingβ : {i1, . . . , in} → UA is a total function that assigns
objects of the universe ofA to eachIF -variable

(iv) φD is a FOL formula of the form[φpre]Σpre
D →ΣD

⇒ φeff such that
- φpre is the precondition withIF as the only free variables
- φeff is the effect withIF as the only free variables and the outputs denoted by the predicateout
- [φ]Σpre

D →ΣD
is the formulaφ′ derived fromφ by replacing every dynamic

symbolα ∈ ΣD by its corresponding pre-variantαpre ∈ Σpre
D .

Definition 1.3 (Formal Semantics of a Functional Description).Let W be a Web service with{τ}W as
the set of its possible executions in an Abstract State SpaceA. LetD = (Σ, Ω, IF , φD) be a functional
description. LetΩA = Ω ∪ [Ω]Σpre

D →ΣD
be the domain knowledge extended withαpre ∈ Σpre

D .

W provides the functionality described byD, denoted byW |=A D, if and only if:
(i) everyΣ-interpretationI with I |= ΩA andI, β |= φD under every input

bindingβ : IF → UA represents aτ ∈ {τ}W , and
(ii) everyτ ∈ {τ}W is represented by aΣ-interpretationI with I, β |= φD and

I |= ΩA under every input bindingβ : IF → UA.

This defines that a Web serviceW provides the functionality described byD if and only if everyΣ-
interpretationI, β that is a model ofφD describes aτ = (s0, . . . , sm) ∈ {τ}W . Such aΣ-interpretation
describes the objects that exists in the end-statesm if W is executed for a particular input bindingβ in
a specific start states0. For the implication semantics from clause (iv) in Definition1.2, it holds that
I, β |= φD if I, β |= φpre andI, β |= φeff ; if I 6|= φpre, we can not make any statement about the end-state
of a τ . Hence, if aτ ∈ {τ}W can be described by aΣ-interpretationI with I, β |= φD, then it satisfies the
described functionality; if there is aτ ∈ {τ}W that cannot be described by such aΣ-interpretation, thenW
does not provide the described functionality. Figure3 illustrates this, while we refer to [39] for the formal
explanation of this definition and its relationship to the ASS model.

Figure 3:Illustration ofW |=A D
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The meaning of a functional descriptionDG of a goal templateG is analogous. Here,{τ}G is the set
of sequences of state transitions that are solutions forG such that everyτ ∈ {τ}G corresponds to aΣ-
interpretation that is a model ofDG . To precisely evaluate the usability of a Web service, in some cases we
need to consider the concrete value assignments for theIF -variables. These are provided by the creation of
a goal instanceGI(G) that defines an input bindingβ for theIF -variables inDG of the corresponding goal
templateG. Subsequently, thisβ constitutes the inputs for invoking a Web service in order to solveGI(G).
We discuss this in more detail below in the context of discovery on the goal instance level.

1.2.3 Semantic Matchmaking

The following recalls the specification of the matchmaking techniques for Web service on the goal template,
on the goal instance level, and their integration for the two-phased discovery approach outlined above.
We defines the techniques on functional descriptions and input bindings as specified above, which provide
sufficiently rich descriptions of possible Web service executions and possible solution for goals. We refer
to [41] and [39] for more exhaustive explanations and illustrative examples.

Goal Template Level Discovery.
We express the usability of a Web serviceW for solving a goal templateG in terms of matching degrees.
The distinct degrees denote specific relationships between the possible executions{τ}W of W and possible
solutions{τ}G for G. Four degrees –exact, plugin, subsume, intersect– denote different situations wherein
the matching condition in clause (i) of Definition1.1 is satisfied; thedisjoint degree denotes that this is not
given. In our two-phase discovery, these matching degrees serve as a pre-filter for determining the usability
of a Web serviceW for solving a goal instanceGI(G) that instantiates the goal templateG.

We define the criteria for each degree overDG andDW from Definition1.2, along with an explicit quan-
tification of input bindingsβ. As the condition for theexactdegree,ΩA |= ∀β. φDG ⇔ φDW defines that
every possible execution ofW is a solution forG and vice versa. We assume that all functional descriptions
D are consistent, i.e. that there exists aΣ-interpretationsI under aβ that is a model ofφD. Representing a
refinement of the matching degree definitions from [17], we therewith obtain a precise means for differen-
tiating the usability of a Web service on the goal template level. Table1 provides a concise compilation of
the matchmaking degree definitions.

Table 1:Definition of Matching Degrees forDG ,DW

Denotation
DG = (Σ, Ω, IF , φDG )
DW = (Σ, Ω, IF , φDW )

Definition
β : IF → UA

φD = [φpre]Σpre
D

→ΣD
⇒ φeff

ΩA = Ω ∪ [Ω]Σpre
D

→ΣD

Meaning
for {τ}G , {τ}W with

W |=A DW

exact(DG ,DW ) ΩA |= ∀β. φDG ⇔ φDW
if and only if τ ∈ {τ}G

thenτ ∈ {τ}W

plugin(DG ,DW ) ΩA |= ∀β. φDG ⇒ φDW if τ ∈ {τ}G thenτ ∈ {τ}W

subsume(DG ,DW ) ΩA |= ∀β. φDG ⇐ φDW if τ ∈ {τ}W thenτ ∈ {τ}G
intersect(DG ,DW ) ΩA |= ∃β. φDG ∧ φDW

there is aτ such that
τ ∈ {τ}G andτ ∈ {τ}W

disjoint(DG ,DW ) ΩA |= ¬∃β. φDG ∧ φDW
there is noτ such that

τ ∈ {τ}G andτ ∈ {τ}W
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Goal Instance Level Discovery.
A goal instanceGI(G) is created by defining an input bindingβ for the IF -variables in the functional
descriptionDG of the corresponding goal templateG. Formally, an input bindingβ : {i1, . . . , in} → UA is
a total function that defines a variable assignment over the universeUA for the input variablesIF defined in
a functional descriptionD (cf. Definition 1.2). We therewith obtain an assignment of concrete valuesv for
all inputs required inD, i.e. β = {i1|v1, . . . , in|vn}. Given such aβ, we can instantiateD by substituting
all IF -variables that occur as free variables inφpre andφeff by the concrete values defined inβ. We obtain
[D]β as the functional description that is instantiated for the context ofβ; this can be evaluated as it longer
contains any free variables. By instantiatingDG with the input bindingβ defined inGI(G), we obtain[DG ]β
as the functionality requested byGI(G); for the functional descriptionDW of the Web serviceW , we obtain
[DW ]β as the functionality that can be provided byW when it is invoked withβ.

Recalling from clause (ii) of Definition1.1, a match on the goal instance level is given if there exists
a τ = (s0, . . . , sm) in A that is a solution forGI(G) and can be provided by a Web serviceW when
it is invoked with the concrete input values defined inGI(G). To determine this on basis of the given
descriptions, it must hold that – with respect to the domain knowledge – there exists aΣ-interpretationI
that is a common model forφDG andφDW when both functional descriptions are instantiated with the input
bindingβ defined inGI(G). Formally, this means that the union of the formulaeΩA ∪ {[φDG ]β, [φDW ]β}
must be satisfiable, i.e. that there exists aΣ-interpretation that is a model for the extended domain knowledge
ΩA and for the instantiated goal description[φDG ]β and for the instantiated Web service description[φDW ]β.
In accordance to Definition1.3, thisI represents aτ that is a solution forGI(G) and can be provided byW
if it is invoked withβ.

Definition 1.4 (Semantic Matchmaking on the Goal Instance Level).LetDG = (Σ, Ω, IFG , φDG ) be a
functional description of a goal templateG. LetGI(G) be a goal instance that instantiatesG with the input
bindingβ : IFG → UA. LetDW = (Σ, Ω, IFW , φDW ) be a functional description, and letW = (IF , ι) be
a Web service withW |=A DW .

match(GI(G),W ) is given if there exists aΣ-interpretationI such that:

I |= ΩA and I |= [φDG ]β and I |= [φDW ]β.

Integration for Two-Phase Discovery.
To attain an integrated matchmaking framework for our two-phase Web service discovery, we finally com-
bine the semantic matchmaking techniques for the goal template and the goal instance level. We therefore
extend matchmaking degrees from Table1 with the matchmaking condition for the goal instance level. Due
to their definition, we can simplify the matching condition from Definition1.4for the distinct matchmaking
degrees as follows.

Definition 1.5 (Integrated Matchmaking for Two-Phase Web Service Discovery).LetDG describe the
requested functionality in a goal templateG. LetGI(G) be a goal instance ofG that defines an input binding
β. LetW be a Web service, and letDW be a functional description such thatW |=A DW .

W is usable for solvingGI(G) if and only if:
(i) exact( DG,DW ) or

(ii) plugin( DG,DW ) or
(iii) subsume( DG,DW ) and

∧
ΩA ∧ [φDW ]β is satisfiable, or

(iv) intersect( DG,DW ) and
∧

ΩA ∧ [φDG ]β ∧ [φDW ]β is satisfiable.
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This specifies the minimal matchmaking conditions for determining the usability of a Web service for
solving a concrete client request that is described by a goal instance. Under both theexactand theplugin
degree,W can be used for solving any goal instanceGI(G) because{τ}GI(G) ⊂ {τ}G ⊆ {τ}W and
τ ∈ {τ}GI(G) ⇔ τ ∈ {τ}W (β). Under thesubsumedegree it holds that{τ}G ⊇ {τ}W , i.e. every execution
of W can solveG but there can be solutions ofG that cannot be provided byW . Hence,W is only usable
for solvingGI(G) if the input bindingβ defined inGI(G) allows to invokeW . This is given if there is a
Σ-interpretation that is a model for[φDW ]β and the conjunction of the axioms inΩA. Underintersectas the
weakest degree, the complete matchmaking condition for the goal instance level must hold because there
can be solutions forG that can not be provided byW and vice versa. Thedisjoint degree denotes thatW is
not usable for solving the goal template and thus neither for any of its instantiations. We refer to [39] for the
formal proof of this definition.
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2 Requirements Analysis

This section determines the requirements that arise for the Semantic Discovery Caching technique (SDC).
We commence the discussion with general aspects on Web service discovery that are relevant in this con-
text, and then discuss the requirements for achieving a computationally efficient and scalable discovery
procedure. On the basis of this, we determine the requirements on the constructs and operations for goal-
based discovery caching with respect to the approach undertaken by the SDC technique. Finally, Table2
summarizes the determined requirements in a concise overview.

2.1 Web Service Discovery

Figure4 shows the overall procedure for solving a client request that is formulated as a goal by the use of
Web services. In particular, it shows the central reasoning steps for automatically detecting and executing
Web service on the basis of comprehensive descriptions. This procedure reflects the abstract architecture for
Semantic Web services proposed in [29], and, in particular, denotes an abstraction of the workflow supported
by WSMO-enabled environments for Semantic Web services such as WSMX [50] and IRS [6].

Figure 4:Abstract Architecture for Semantic Web Services

At first, potentially usable Web services are detected out of the available ones. This is performed by
discovery or by composition in case no directly usable Web service exists. This is followed by optional steps
for refining the detection result, such as selecting the most appropriate Web service out of the usable ones
or contracting for determining details on the provided functionality. Then, the behavioral compatibility for
successful interaction between the request and the discovered or composed Web services is tested. Mediation
techniques for handling possibly occurring mismatches can be utilized as auxiliary facilities [37]. Finally,
automated execution of the detected or composed Web services results in resolution of the goal.
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The procedure in Figure4 considers the matchmaking of formally described requested and provided
functionalities as the primary aspect for Web service discovery; other aspects on the usability and of a Web
service are detected in subsequent test. This conception is widely accepted – within the WSMO discovery
framework [17] as well as other approaches (e.g. [28, 23, 4, 16]) – because it allows to more precisely
determine the usability of a Web service than keyword-based matchmaking. Throughout this work, we
focus on discovery ofdirectly usable Web services, i.e. to find one Web service that can solve a given
goal. We therefore apply the description for goals and Web service as well as the semantic matchmaking
techniques as specified in Section1.2. Another scenario that might apply matchmaking of formal functional
descriptions is the candidate detection for Web service composition (i.e. to find those Web services out of
the available ones out of which a composition shall be constructed). However, this merely requires slightly
different definitions of the matchmaking techniques (for further discussion see [35, 44, 9]).

At run time, i.e. for solving a concrete goal, the discovery only needs to find one directly usable Web
service (i.e. that satisfies the matching conditions). Once such a Web service has been found, the subsequent
steps from Figure4 can be performed; the discovery of further usable Web services can be continued in the
background. This is a central difference to search techniques in other areas: for example in data bases,
usually the answer to for a query is only considered to be complete if it contains all knowledge items out of
the stored ones that satisfy the query statement [45]. In contrast, for Web service discovery we can continue
the goal resolution procedure as soon as one usable Web service has been found. Hence, the first requirement
for the SDC technique is to interleave Web service discovery with the subsequent goal resolution steps.

Requirement 1 (Interleaved Web Service Discovery).The discovery of directly usable Web services at
runtime only needs to findONE Web serviceW that satisfies the matching condition for a given goalG.
Once such aW has been found, the subsequent reasoning steps for usability determination and execution
can be performed for solvingG; the discovery of further usable Web services can be performed orthogonal
to the resolution ofG byW .

Although we primarily consider Web service discovery as the suitability of the provided functionality
for solving the requested one, also other aspects are relevant. In particular, these are (1) weighting and
selection of Web services with respect to non-functional aspects such as quality-of-service [47], financial and
locality [19]; (2) dynamic details on the provided functionality that is not covered by the overall functional
description, e.g. whether a retailer provides the specific product that the client asks for; this is commonly
referred to as contracting [29, 22]; (3) the behavioral conformance, i.e. whether the client can provide a
compatible counterpart for the interface of the Web service for invoking and consuming its functionality [34].
While we consider all these aspects to be checked after the Web service discovery on functional aspects, the
relevant information should be available in the goal and Web service descriptions.

Requirement 2 (Support for Non-Functional Discovery). Next to the formally described requested and
provided functionality, the goal and Web service descriptions should contain information for other aspects
relevant for determining the usability of a Web service for solving a goal, in particular quality-of-service,
financial, and locality aspects, support for contracting, and behavioral aspects.

We shall not further elaborate on this requirement, as it is not primarily relevant in the context of SDC.
However, it is met by our approach as follows. Goal templates carry a formally described requested function-
ality (cf. Definition1.2), client policies and preferences on quality-of-service, financial, and locality aspects,
and client interfaces for automated invocation and consumption of Web services [42]. For Web services, we
adopt the WSMO description model that consists of a capability (functional description), non-functional
properties, and the choreography interface [30].
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Moreover, the distinction of goal templates and goal instances that underlies this work allows to de-
fine a resolution procedure for goal instances that encompasses all aspects for Web service discovery. This
differentiates two branches as shown in Figure5. The first one encompasses the discovery operations for
goal templates that are performedorthogonal to runtime: at first, matchmaking of formal functional de-
scriptions is performed; then, the set of discovered Web services is weighted and reduced with respect to
non-functional aspects, and finally the set is again reduced with respect to behavioral conformance test. The
runtime branch encompasses the operations for creation and resolution of a goal instance. At first, the client
browses existing goal templates, chooses one for that is appropriate for formulating the objective that shall
be achieved, and creates a goal instance by instantiating the input values required in the goal template. Then
– in our two-phase discovery approach (cf. Section1.2) – the Web service discovery on the goal instance is
performed for the set of Web services that have been discovered for the corresponding goal template. Once
a usable Web service has been found, it is invoked and executed for solving the goal instance.

Figure 5:Goal Instance Resolution Procedure

2.2 Efficiency and Scalability

We now turn towards thecomputational efficiency(the costs of a system for performing an operation, in this
context: solving of a client request) andscalability (the operational reliability with respect to the expected
amount of resources in its designated area, here: the ability to deal with a very large number of Web ser-
vices). These are important factors for technology adaptation in real world applications. Especially, these
can be considered to be critical for the success of semantically enabled SOA technology that expectably
needs to deal with several millions of Web services.
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Examining the overall procedure for automatically detecting and executing Web service for solving a
given goal from Figure4 reveals that the bottleneck for both efficiency and scalability is Web service dis-
covery. As the first processing step, this needs to take all available Web services into consideration. All
subsequent steps need to deal with a significantly smaller amount of Web services – in fact those determined
by matchmaking of formal functional descriptions as illustrated in Figure5. Hence, if we can increase the
efficiency and scalability of Web service discovery, we consecutively can increase the efficiency and scala-
bility of semantically enabled SOA technology; this is the overall aim of the author’s PhD work [35]. The
following discusses the arising requirements for achieving an efficient and scalable Web service discovery.

2.2.1 Computational Efficiency for Web Service Discovery

In computational theory (e.g. [32]), efficiency is concerned with desirable properties of algorithms or com-
puter systems apart from functionality and technical design. It is described by two properties: thespeed
refers to the time it takes for an operation to complete, which is commonly described by theBig-Onotation
as a time complexity measurement [21]; the spaceproperty refers to the memory or non-volatile storage
used up by the algorithm or system, measured in terms of the amount of persistent and working memory
required at compile time as well as at runtime. Naturally, adequate optimization techniques for efficiency
are highly dependent on the system design and functionality.

In our context, the computational efficiency is mainly related to the runtime branch in Figure5. As the
most critical aspect of efficiency for technology acceptance by end-users, we understand the speed of Web
service discovery as thetime needed for finding one Web service that can be directly used for solving a given
goal instance. The first two steps in the runtime branch – goal template discovery and instantiation – require
interaction of the client with the system. Thus, their speed is not only dependent on the computational
efficiency of the supporting technology. The critical operation is the automated detection of a Web service
that can be used for solving the created goal instance, which is performed by semantic matchmaking as
specified in Section1.2. While the computational costs for individual matchmaking operations can – in
theory – be optimized to a negligible extend [12, 15], the aspect that hampers the time efficiency of Web
service discovery is the size of the search space, i.e. the number of available Web services that need to be
taken into consideration for matchmaking.

The efficiency of Web service discovery is proportional to the size of the search space: the smaller the
number of Web services that need to be matched with the given goal description, the faster Web service
discovery can be completed. Hence, the efficiency for discovery on the goal instance level is proportional to
the number of usable Web services for the corresponding goal template. We can confer the same principle to
the discovery of the goal template level that is performed at design time, respective orthogonal to runtime:
the speed of Web service discovery for a new goal template can be increased if we can infer from the
semantic similarity degree between an existing goal template and the new one that only a subset of the
available Web services is relevant. While this conception is mainly related to the speed property of efficiency,
we shall consider the space property in more detail below in the context of scalability.

Requirement 3 (Efficiency of Web Discovery).The efficiency of Web service discovery denotes the time
needed for finding one Web service that can be directly used for solving a given goal. It is proportional
to the size of the search space, i.e. the number of Web services that need to be matched with the goal
description. The efficiency for Web service discovery on both the goal template level (design time) and on
the goal instance level (runtime) is optimal if the search space is minimal.
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2.2.2 Scalability for Web Service Discovery

Scalability is another desirable property of algorithms or computer systems, concerned with the ability to
handle the large, growing number of available resources in a graceful manner [5]. This is a pre-requisite
for the operational reliability of a system: if it can not handle the amount of resources in its designated
application area, then it can not be considered to be functional for its purpose. However, due to the high
dependence of a system’s design and its usage environment, commonly accepted measurement and analysis
techniques do not exists.

In the context of SOA, scalability refers to the ability to handle the very potentially large number of Web
service that are distributed among the Web and that change dynamically [13]. For Web service discovery as
the first processing step that needs to consider all available Web services, scalability relates to the program-
matic management of semantic matchmaking. The critical aspect is the scalability of the used reasoning
infrastructure. As analyzed in [48], this is hampered by (1) the general complexity of logical reasoning
in comparison to conventional technologies, and (2) that most reasoner implementations keep all relevant
knowledge in the working memory, which limits the number of processable resources tremendously.

In order to perform a matchmaking operation between a goal and a Web service, all related knowledge
must be made available to the underlying reasoning infrastructure. In particular, this is the formal functional
descriptions of the goal and the Web service as well as all background ontologies that are used in the
functional descriptions. Thus, in order to maintain the operational reliability of Web service discovery for
a large, dynamically changing number of available Web services, the invocation of the matchmaker should
be decoupled from the resource management such that for each matchmaking operation only the minimal
knowledge is loaded into the working memory of the matchmaker.

Requirement 4 (Scalability of Web Service Discovery).A Web service discovery is scalable if it maintains
it operational reliability for a large, dynamically changing number of available Web services. To achieve
this, the programmatic management must ensure that only the minimal knowledge needed to perform the
matchmaking (i.e. functional descriptions and background ontologies) is loaded into the working memory.

2.3 Goal-Based Discovery Caching

While the preceding elaborations have discussed general requirements, we now turn towards specific ones
that arise for the planned realization of the SDC technique. As outlined above, the approach is to capture
knowledge on discovery results on the goal template level and utilize this to enhance the efficiency of Web
service discovery. This technique reveals two properties:

1. it provides an index of Web services that is constituted by the similarity of goal templates. In contrast
to existing approaches that cluster Web services with respect to the provided functionalities (e.g. [46,
8]), this index organizes Web services with respect to the goal templates that can be solved by them.

2. on the basis of this index, it reduces the search space for Web service discovery. For discovery on the
goal instance level (runtime) only those Web services need to be considered that have been discovered
for the corresponding goal instance; for the goal template level (design time), in most cases the same
Web services are usable for adjacent goal templates in the index.

Therewith, SDC allows to perform Web services in terms of a caching technique that finds answers to
requests from an intermediate store of answers to previous, similar request. The concept of caching is a
optimization technique that is successfully applied in several areas that need to deal with a large amount of
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information, e.g. in hardware optimization [14], in databases for efficient query answering [27], and for effi-
cient traffic management on the Web [49]. Under certain circumstances – if there are many similar requests
– caching can achieve the best efficiency in comparison to other performance optimization techniques.

The following discusses the requirements for the indexing structure while we address the requirements
for the respective operations in the next section.

2.3.1 Similarity of Goals

The first requirement for creating a sophisticated index of available Web services with respect to the goals
that can be solved by them is the definition of an appropriate measurement for the semantic similarity of goal
templates. As the constituting concept for Web service indexing, the purpose is to declare goal templates to
be similar such that the set of Web services that are usable for solving them is overlapping to a high degree.
If this is given, then the search space for Web service discovery on the goal template level can be reduced by
inferring the usability of a Web services with respect to the semantic similarity of adjacent goal templates.
As we shall elaborate below, this similarity of goal templates can most adequately be expressed in terms of
the matching degrees between their formal functional descriptions.

We do not need to declare the similarity of goal instances because only those Web services that are usable
for the corresponding goal template are potential candidates. We therewith already have a sophisticated pre-
filter for Web service discovery on the goal template level as discussed above in Section1.2.3.

Requirement 5 (Goal Similarity Measure). The notion of semantic similarity of goal templates is the
constituting concept for creating an index of Web services with respect to the goals that can be solved by
them. Given two goal templatesG1 andG2 with {W}G1 and{W}G2 as the set of usable Web services for
them, the similarity betweenG1 andG2 should be defined such that{W}G1 ∩ {W}G2 is maximal.

2.3.2 Goal-based Index of Web Services

The second requirement is concerned with the formal properties of the indexing structure. This consists of
the goal templates and the Web services that are usable for them. The goal templates are organized with
respect to their similarity. The connections between goal templates can be defined as directed edges, so
that we obtain a tree of goal templates as the foundation of the indexing structure. Each goal template is
connected to the Web services that can be used to solve it, so that Web services denote the leaf nodes of the
goal tree. We shall refer to this structure as theSDC graph.

The intended use of the SDC graph is to serve as an efficient search tree for the goal discovery phase
(cf. Figure 5). In particular, it should allow to efficiently find the most adequate goal template for an
incoming goal instance. This means if a new goal instance is created for which usable Web services shall be
discovered, then it should be associated with the goal template out of the existing ones that most precisely
fits to the goal instance. The reason is that the closer the corresponding goal template fits to the goal instance,
the smaller is the number of Web services that are usable for the goal template but not for the goal instance.
Given that the existing goal templates are organized in a tree with respect to their semantic similarity, then
the most adequate goal template in this tree should be detectable with the minimal computational efficiency.
Hence, the following requirements arise for the SDC graph.

Requirement 6 (Properties of the SDG Graph).The SDC graph is the indexing structure for Web ser-
vices with respect to the goals that can be solved by them. It consists of a tree of goal templates that are
connected by directed edges with respect to their semantic similarity, and the Web services usable for each
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goal template as the leaf nodes in the SDC graph. In order to serve as an efficient search tree for the most
adequate goal template for an incoming goal instance, the SDC graph must satisfy the following properties:

1. the goal template tree should be constituted by a subsumption hierarchy with respect to the function-
alities requested in the goal templates. The reason is that if a goal templateG2 requested a more
specific functionality than a goal templateG1, then the set of possible solutions forG2 is a subset
of those forG1; using the notation from Definition1.1, this means that{τ}G1 ⊇ {τ}G2 . In conse-
quence, it holds that the set of Web services usable forG2 is a subset of those usable forG1 because
¬match(G1, W ) ⇒ ¬match(G2,W ).

2. the child nodes in the goal template tree must be disjoint. The reason is that for the detection of the
most adequate goal template only one branch of the subsumption hierarchy needs to be investigated.
If the goal template tree is balanced, then this allows to achieve a logarithmic search time.

3. only minimal knowledge on the usability of a Web service should be captured in order to ensure a
scalable management of the SDC graph.

2.4 Operations and Technical Integration

We conclude the analysis by discussing the requirements on the operations and technical integration of the
SDC technique into complete architectures for Semantic Web services.

The first requirement in this context concerns the technical integration. The SDC technique is not a
single, detached technology that can solve a given goal by automated detection and usage of Web services.
Rather, it provides a component for efficient Web service discovery that must be integrated into a system
that provides the other components for automated goal solving by Web services as shown above in Figure4.
In such an overall architecture, the SDC graph provides an intermediate cache for performing Web service
discovery. To realize this integration, a discovery component must be provided that properly utilizes the
SDC graph to perform efficient Web service discovery at runtime.

Requirement 7 (Integration into SWS Architecture). The SDC technique is a component for automated
solving of goals by the use of Web services. It must be integrated into an overall architecture such that
it serves as an intermediate during the discovery procedure for accessing the Web service repository. The
discovery component should properly use the SDC graph in order to perform efficient Web service discovery,
and it should be integrated with the other system components for automated resolution of a goal instance in
an interleaved manner.

Figure 6:SDC Allocation in SWS Environments
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Figure6 shows the aspirated allocation of the SDC technique in an overall architecture for Semantic
Web services and illustrates the workflow of formulating and solving a goal instance. At first, the client
browses the repository of existing goal templates and selects one for formulating the objective that shall be
achieved. This can be supported by the SDC graph, which serves as a taxonomy for browsing goal templates.
Then, the client creates a goal instance by instantiating the inputs required in the chosen goal template. The
discoverer performs matchmaking on the goal instance level at runtime, using the SDC graph as a pre-filter;
one a usable Web service has been discovered, the subsequent processing steps for solving the goal instance
are performed. The SDC component manages the SDC graph and, orthogonal to runtime, performs Web
service discovery on the goal template level.

In order to remain operational in the dynamically changing environment (i.e. the provision of new or
changed Web services), the SDC technique needs to provide support for the changes of relevant aspects in
the world. This denotes the final requirement.

Requirement 8 (Evolution Support). The SDC technique must support the addition, removal, and updating
of goal template and Web service descriptions in order to stay operational in its dynamically changing
environment.

Summary. In order to provide a concise overview of the determined requirements for reference in the
subsequent elaborations, Table2 summarizes the requirements determined above

Table 2:Overview of Requirements for Semantic Discovery Caching
Number Name Description

1
interleaved Web
service discovery

only one Web Service needs to be found at runtime

2
non-functional
discovery support

goal and Web service descriptions should contain information on
non-functional aspects relevant for discovery, esp.: quality-of-
service / financial / locality aspects, support for contracting, and
behavioral aspects.

3
efficiency
of discovery

reduce the search space to a minimum for Web service discovery
on both the goal template and the goal instance level

4
scalability
of discovery

decouple resource management and matchmaking such that for
each single matchmaking operation during discovery only the
minimal knowledge is loaded into the working memory

5 goal similarity
measurement

define the semantic similarity of two goal templates such that the
overlap between their usable Web services is maximal

6
SDC Graph
Properties

the indexing structure should (1) specify a tree of goal templates
as subsumption hierarchy of the requested functionalities such
that (2) child nodes in the tree are disjoint, and (3) only the mini-
mal knowledge on the usability of Web services is captured

7 integration into
SWS architecture

provide a discovery component that (1) properly utilizes the SDC
graph for efficient Web service discovery, and (2) is integrated
with a system for solving a goal by automated Web service usage

8 evolution support
support addition, removal, and updating of goal template and Web
service descriptions
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3 The SDC Graph

This section specifies the SDC graph, i.e. the knowledge structure for capturing Web services for goal
templates. It consists of a tree of goal templates and, as the leaf nodes, the Web services that are usable for
each goal template. The SDC graph serves two purposes: (1) as an taxonomy of existing goal templates that
supports goal formulation by clients, and (2) as the indexing structure whereupon specialized algorithms
can perform efficient Web service discovery. The following specifies the elements and structure of the SDC
graph and discusses its formal properties with respect to its application purpose. The operations for Web
service discovery and management of the SDC graph are specified in the subsequent sections.

Throughout the specification, we will explain the definitions by means of a running example for illustra-
tion and clarification. We consider the following scenario: goal templates describe the objective of finding
the best restaurant in a city that is to be provided for instantiation, and Web services provide search facilities
for the best restaurant in a city that is to be provided as input for invocation. We can define specialized goal
and Web service descriptions with respect to two dimensions that are described in the background ontology:
the geographic location of a city (e.g. the continent, country, or state), and the type of the restaurant (e.g.
French, Italian, Chinese, etc.). This allows to provide easy to understand examples for the different match-
ing situations between goals and Web services, and has been exhaustively discussed within the specification
of the two-phase Web service discovery in [41] and [39].

3.1 Definition

We commence with the definition of the central concepts and elements of the SDC Graph. At first, we define
the similarity measurement for goal templates as the constituting notion for the goal template tree. Upon
this, we specify the elements and structure of the SDC graph.

3.1.1 Goal Template Similarity

The similarity of goal templates is the constituting notion for creating the indexing structure for Web services
with respect to the goals that can be solved by them. To meet requirement5, the measurement should define
two goal templates to be similar such that the set of usable Web services overlaps to the maximal extent.

With respect to the focus on requested and provided functionalities in our Web service discovery ap-
proach (cf. Section1.2), we consider two goal templates to be similar if they have at least one common
solution. If there is a Web service that can provide this common solution, then it is usable for both goal
templates. The more common solutions exist for the goal templates, the higher is the overlap between the
set of usable Web services for each one. For constructing the goal tree, we are particularly interested in goal
templates whose solutions denote proper subset relationships. We discuss this below in more detail.

One could also consider other aspects for describing the similarity of goal templates, such as that they
are described by semantically related keywords or have been defined in the same application area. However,
the primary purpose of the goal template similarity measurement in the context of SDC is to organize goal
templates in a way that allows to efficiently determine usable Web services for them. Other, non-functional
aspects of goal similarity may be used in the client interface for browsing existing goal templates.

Definition 3.1 (Meaning of Goal Template Similarity). LetG1 be goal template with{τ}G1 as the set of
its possible solutions, and letG2 be goal template with{τ}G2 as the set of its possible solutions.

We say thatG1 andG2 are semantically similar if and only if∃τ. τ ∈ ({τ}G1 ∩ {τ}G2).
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In our model, the objective that is described by a goal template is specified in terms of a functional
description. Recalling from Definition1.2, a functional description is a 4-tupleD = (Σ, Ω, IF , φD) such
thatΣ is the extended signature,Ω is the background ontology,IF = (i1, . . . , in) are the input variables,
andφD = [φpre]Σpre

D →ΣD
⇒ φeff is a formula that specifies meaning ofD as an implication between

the preconditionφpre and the effectφeff , whereinIF occur as the only free variables. Such a functional
description formally describes all possible solutions of a goal template with respect to the possible start- and
end-states and their explicit dependency.

We express the similarity of goal templates in terms of matching degrees between their formal functional
descriptions. Four degrees –exact, plugin, subsume, intersect– distinguish situations wherein the similarity
measure from Definition3.1 is satisfied; thedisjoint denotes that this is not given. The degrees and their
conditions are the same as the ones we have identified for Web service discovery on the goal template level
(cf. Table1 in Section1.2.3). Similar to the usability of a Web service for a goal template, the matching
conditions for each degree are defined over the functional descriptions of goal templates along with an
explicit quantification of the input bindings. The condition for thesubsumedegreeΩA |= ∀β. φDG1 ⇐ φDG2

specifies that under the consideration of the background ontologyΩA all solutions forG2 are also solutions
for G1. It is to remark that the matching conditions encompass the compatibility of the input variables of
DG1 andDG2 : the matching condition is satisfied only if there is an input bindingβ : (i1, . . . , in) → UA
that defines concrete values for allIF -variables in bothDG1 andDG2 ; otherwise, the models for a functional
description can not be determined because their might be free variables after the instantiation. [39] discuss
the input compatibility of functional descriptions in more detail.

Table 3 provides a concise overview of the goal similarity degree definitions and their meaning. In
the following, we distinguish betweensimilarity degreesthat denote the similarity of goal templates from
Definition 3.1, andusability degreesthat denote the usability of a Web service for a goal template; both are
expressed in terms of the matching degree in order to distinguish the situations that are relevant for SDC.

Table 3:Definition and Meaning of Goal Similarity Degrees

Denotation
DG1 = (Σ, Ω, IF , φDG1 )
DG2 = (Σ, Ω, IF , φDG2 )

Definition
β : IF → UA

φD = [φpre]Σpre
D

→ΣD
⇒ φeff

ΩA = Ω ∪ [Ω]Σpre
D

→ΣD

Meaning
for {τ}G1 , {τ}G2

exact(DG1 ,DG2) ΩA |= ∀β. φDG1 ⇔ φDG2

τ ∈ {τ}G1 if and only if τ ∈ {τ}G2 .
all Web services that are usable forG1 are also

usableG2 under the same usability degree.

plugin(DG1 ,DG2) ΩA |= ∀β. φDG1 ⇒ φDG2

if τ ∈ {τ}G1 thenτ ∈ {τ}G2 .
all Web services usable forG1 are also usable

for G2 but not vice versa.

subsume(DG1 ,DG2) ΩA |= ∀β. φDG1 ⇐ φDG2

if τ ∈ {τ}G2 thenτ ∈ {τ}G1 .
all Web services usable forG2 are also usable

for G1 but not vice versa.

intersect(DG1 ,DG2) ΩA |= ∃β. φDG1 ∧ φDG2

there is aτ such that
τ ∈ {τ}G1 andτ ∈ {τ}G2 .

a Web service that can provide thisτ is hence
usable for both goals.

disjoint(DG1 ,DG2) ΩA |= ¬∃β. φDG1 ∧ φDG2

there is noτ such thatτ ∈ {τ}G1 and
τ ∈ {τ}G2 ; we can not make any statement on
the Web services usable for solving the goals.
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The purpose of the goal similarity degrees is to enable efficient determination of usable Web services
for similar goal templates. While defining the inference rules for this in Section3.2, let us consider an
example for illustration. LetDG1 be the functional description of a goal templateG1, and letDG2 be the
functional description of a goal templateG2. Let the similarity degree besubsume(DG1 ,DG2), such that
{τ}G1 ⊇ {τ}G2 . Then, it holds that every Web service that is usable forG2 is also usable forG1, because
if ∃τ. τ ∈ ({τ}G2 ∩ {τ}W ), then thisτ is also an element of{τ}G1 . Here, the overlap between the sets of
usable Web services for similar goal templates is maximal. Hence, specifying the goal template similarity
in terms of matching degree between their formal functional descriptions satisfies requirement5.

3.1.2 Elements and Structure

On the basis of the goal similarity measure we can now define the structure of the SDC graph. The following
specifies the elements and the basic structure, while we shall discuss its formal properties in the detail below
in Section3.3.

Definition 3.2 (SDC Graph). An SDC Graph consists of four elements: goal templatesG, Web servicesW ,
GG mediatorsGGM and WW mediatorsWGM . It is defined such that:

(i) every inner node is a goal templateG
(ii) every leaf node is a Web serviceW
(iii) a GG mediator is a tripleGGM = (source, target, dsimilarity) with:

- a goal templateG1 as the source,
- another a goal templateG2 as the target, and
- dsimilarity denoting the similarity degree betweenG1 andG2

(iv) a WG mediator is a tripleWGM = (source, target, dusability) with:
- a goal templateG as the source,
- a Web serviceW as the target, and
- dusability denoting the usability degree betweenG andW .

In this definition, we consider all elements to be associated with a complete description that is needed
for solving a goal by the automated usage of Web services. This means that for clause (i) a goal templateG
carries a functional description, requirements non-functional aspects, and optionally a desired workflow as
an orchestration of goals (i.e. the complete description model of goal templates as defined in [42]), and for
clause (ii) a Web service is described by a capability (overall provided functionality), non-functional aspects,
and behavioral interfaces for consumption and aggregation of other Web services. Therewith, requirement2
is satisfied as information on all other aspects are available in the goal and Web service descriptions.

In the clauses (iii) and (iv), we usemediatorsfor describing the edges of the SDC graph. The concept of
mediators is promoted by the WSMO framework as a means for handling potentially arising heterogeneities
that hamper the interoperability of goals and Web services [30]; GG mediators and WG mediators are
specialized mediator types defined in WSMO [26]. As specified in [36], a mediator is an intermediate
that connects a source and a target component and utilizes respective mediation facilities for resolving
mismatches of the data and the process level. The main merit from the use of such mediators for defining the
edges in the SDC graph is that we obtain adirectedrelationship between the source and the target element.
This allows to precisely describe the similarity degree between goal templates (in a GG Mediator) as well as
the usability of a particular Web service for a goal template (in a WG mediator). Definition3.3specifies the
relationship of inverse mediators. Besides, with respect to requirement7, mediation facilities for handling
and resolving potentially occurring heterogeneities are implicitly incorporated in the SDC graph.
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Definition 3.3 (Inverse Mediators). Let a mediator be a tripleM = (s, t, d) such thats is the source
element,t is the target element, andd is the matching degree betweens andt.
An inverse mediatorM ′ defines the relationship betweens andt with the inverse direction. We can derive
M ′ fromM with the following relationship betweenM ′ andM for distinct values ofd:

(i) M = (s, t, exact) ⇔ M ′ = (t, s, exact)
(ii) M = (s, t, plugin) ⇔ M ′ = (t, s, subsume)
(iii) M = (s, t, subsume) ⇔ M ′ = (t, s, plugin)
(iv) M = (s, t, intersect) ⇔ M ′ = (t, s, intersect)
(v) M = (s, t, disjoint) ⇔ M ′ = (t, s, disjoint)

Essentially, Definition3.2 defines an SDC graph to consist to two layers. The upper one are the goal
templates that are connected by GG mediators with respect to their similarity degree as defined above in
Table 3. A GG mediator defines a directed edge between two goal templates (from the source goal to
the target goal, see above). Hence, we obtain adirected graphthat constitutes the indexing structure for
available Web services. The lower level are the Web services that are connected to goal templates via WG
mediators. This constitutes the discovery cache for capturing knowledge on Web service discovery on the
goal template level. For this, a WG mediator defines the usability degree of a Web service for solving a
goal template. This can explicate any matching degree under which the Web service is usable for solving
the source goal template (i.e. all butdisjoint). With respect to our primary focus on functional aspects, this
is the minimal knowledge for capturing Web service discovery results on the goal template level and thus
satisfies the third aspect of requirement6. However, the graph of goal templates may contain cycles so that
this structure does not yet satisfy the first and second aspect of requirement6. For achieving this, we will
specify the resolution of intersect-arcs and such cycles below in Section3.3.

To illustrate the definition, Figure7 shows an SDC graph for your running example with two goal tem-
platesG1 andG2, and two Web servicesW1 andW2. LetG1 specify the objective of finding the best restau-
rant in an European city, and letG2 request to find the best restaurant in an Austrian city. As every Austrian
city is also a European city but not vice versa, the similarity degree of the goal templates issubsume(G1,G2)
that is explicated in the GG mediator. LetW1 offer a search facility fir the best French restaurant in a French
city. W1 is usable for a goal instance ofG1 if the city provided as input is in located in France and if the
best restaurant in this city is of type French. Thus, the usability degree isintersect(G1,W1) as discussed
in [41]. Obviously,W1 is not usable forG2 because French and Austrian cities are disjoint. Finally, letW2

provide a search facility for the best restaurant in every city of the world. It is usable for bothG1 andG2

under theplugin degree because{τ}W2 ⊇ {τ}G1 ⊇ {τ}G2 . Moreover, because of this relationship we can
infer the usability degree ofW2 for G2 if the usability degree ofW2 for G1 is known.

Figure 7:Example of an SDC graph
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3.2 Inference Rules for Web Service Usability Degree

The main merit of capturing Web service discovery results for goal templates in the SDC Graph is that we
can infer knowledge on the usability of a Web service for similar goal templates. We express this in terms
of inference rules for the arcs in the SDC graph. For two goal templatesG1,G2 and a Web serviceW ,
the general form of these rules isdusability(G2, W ) ← dsimilarity(G1,G2) ∧ dusability(G1,W ). As we shall
discuss below, these inferences provide the foundation for several operations for Web service discovery and
management of the SDC Graph.

Theorem3.1 specifies these inference rules for all possible combinations of the usability ofW for G1,
and the similarity ofG1 andG2. We refer to the definition of the Web service usability degrees in Table6
in Section1.2.3and the definition of the goal template similarity degrees from Table3 in Section3.1.1.
For convenience, we provide a comprehensive overview of the matching degree definitions as well as their
meaning for goal template similarity and the usability of a Web service for solving a goal template in
AppendixA.

From the theorem, we can make the following observations that are relevant in the context of SDC:

• there are four types of inferences for the usability degree ofW for G2 (separated by horizontal lines):

1. directly inferable, i.e. the usability degree can be determined without matchmaking
(clauses: 1, 2.1, 2.2, 3.1, 3.2, 3.11, 4.1, 5.1, 5.2)

2. guaranteed usabilitybut the degree must be determined via matchmaking ofDG2 andDW

(clauses: 2.3 - 2.6; 2.7 - 2.8; 4.2 - 4.3)

3. possible usability, usability and degree must be determined via matchmaking ofDG2 andDW

(clauses: 3.3 - 3.7; 3.8 - 3.10; 4.4 - 4.6; 4.7 - 4.11)

4. not inferableso that matchmaking betweenDG2 andDW is required
(clauses: 2.9, 4.12, 5.3)

• under theplugin similarity degree, all Web services that are usable forG1 are also usable forG2, but
we can not make any statement about Web services that are usable forG2 but not forG1

• under thesubsumesimilarity degree, only those Web services that are usable forG1 are potentially
usable forG2 but no others can be (cf. clause 2.10)

• under thedisjointsimilarity degree, Web services that are usable forG1 under theexactor thesubsume
are not usable forG2; for Web services with other usability degrees forG1, we can not make any
statement about their usability forG2.
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Theorem 3.1 (Inference Rules for Web Service Usability Degrees).Let W be a Web service, and let
G1 andG2 be goal templates. Letd(G,W ) denote the usability degree ofW for a goal template, and let
d(Gi,Gj) denote the similarity degree betweenG1 andG2.

Givend(G1,W ) andd(G1,G2), we can infer knowledge aboutd(G2,W ) by the following rules.

1. exact(G1,G2) : d(G1,W ) = d(G2,W ).

2. plugin(G1,G2) : (1) exact(G1,W ) ⇒ subsume(G2,W ).
(2) subsume(G1,W ) ⇒ subsume(G2, W ).
(3) plugin(G1,W ) ⇒ exact(G2, W ) or
(4) plugin(G1,W ) ⇒ plugin(G2,W ) or
(5) plugin(G1,W ) ⇒ subsume(G2,W ) or
(6) plugin(G1,W ) ⇒ intersect(G2,W ).
(7) intersect(G1,W ) ⇒ subsume(G2,W ) or
(8) intersect(G1,W ) ⇒ intersect(G2,W ).
(9) disjoint(G1,W ): no statement possible.

3. subsume(G1,G2) : (1) exact(G1,W ) ⇒ plugin(G2,W ).
(2) plugin(G1, W ) ⇒ plugin(G2,W ).
(3) subsume(G1, W ) ⇒ exact(G2,W ) or
(4) subsume(G1, W ) ⇒ plugin(G2,W ) or
(5) subsume(G1, W ) ⇒ subsume(G2,W ) or
(6) subsume(G1, W ) ⇒ intersect(G2, W ) or
(7) subsume(G1, W ) ⇒ disjoint(G2,W ).
(8) intersect(G1,W ) ⇒ plugin(G2, W ) or
(9) intersect(G1,W ) ⇒ intersect(G2,W ) or
(10) intersect(G1,W ) ⇒ disjoint(G2,W ).
(11) disjoint(G1,W ) ⇒ disjoint(G2,W ).

4. intersect(G1,G2) : (1) exact(G1,W ) ⇒ intersect(G2,W ).
(2) plugin(G1, W ) ⇒ plugin(G2,W ) or
(3) plugin(G1, W ) ⇒ intersect(G2, W ).
(4) subsume(G1, W ) ⇒ subsume(G2,W ) or
(5) subsume(G1, W ) ⇒ intersect(G2, W ) or
(6) subsume(G1, W ) ⇒ disjoint(G2,W ).
(7) intersect(G1,W ) ⇒ exact(G2,W ) or
(8) intersect(G1,W ) ⇒ plugin(G2, W ) or
(9) intersect(G1,W ) ⇒ subsume(G2, W ) or
(10) intersect(G1,W ) ⇒ intersect(G2,W ) or
(11) intersect(G1,W ) ⇒ disjoint(G2,W ).
(12) disjoint(G1,W ): no statement possible.

5. disjoint(G1,G2) : (1) exact(G1,W ) ⇒ disjoint(G2, W ).
(2) subsume(G1,W ) ⇒ disjoint(G2,W ).
(3) d(G1,W ) andd 6= subsume: no statement possible.

Proof. The formal proof is provided in AppendixB of this document.
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3.3 Formal Properties and Refinement

We complete the definition of the SDC Graph with the necessary refinements for establishing the desirable
properties as identified in requirement6. Recalling from Section2.3.2, these are (1) a tree structure that
allow to efficiently search the most appropriate goal template for a new, incoming goal instance, and (2) to
capture only the minimal knowledge on Web service discovery results on the goal template level.

The following first analyzes the properties of the initial SDC graph that is obtained from creating the
GG and WG mediators for a given set of goal template and Web service descriptions. Then, we present the
resolution of intersect arcs between goal templates as the means for establishing the desirable properties and
illustrate this in our running example. Finally, we show the formal properties of the refined SDC graph. For
the discussion, we apply the conventional terminology from graph theory as defined in [11].

3.3.1 Initial SDC Graph

Let us consider the following to be given: a set of goal templatesG1, . . . ,Gn, and a set of Web services
W1, . . . , Wm. Furthermore, let many of the goal templates be similar, and let many of the Web services are
usable for the distinct goal templates (e.g. if they are allocated in the same application domain).

Now, let us examine the initial SDC graph that is obtained by determining the matching degrees for
goal similarity and Web service usability and then explicating this knowledge in GG and WG mediators in
accordance to Definition3.2. Recalling from above, an SDC graph consists of two layers: the upper one are
the goal templates that are connected by GG mediators with respect to their similarity degree; we shall refer
to this as thegoal graph. The lower layer are the Web services whose usability degree for goal templates
is explicated in WG mediators that are allocated as leaf nodes to the goal graph; we shall refer to this as the
discovery cache. In the following, we focus on the properties of the goal graph. In particular, we analyze its
structure and identify the reasons why the initially obtained goal graph does not satisfy requirement6, i.e.
providing a sophisticated knowledge structure for searching the most appropriate goal template for a new,
incoming goal instance. In this respect, we make the following observations.

Observation 1 – Types of Similarity Degrees in Goal Graph. The result of performing matchmaking in
order to determine the similarity degree of goal templates as well as the usability degree of Web services
can of course result in any of the five matching degrees. However, we do not keep knowledge aboutdisjoint
degrees in the SDC graph: this degree neither provides useful information for inferring the usability of a
Web service between two goal templates, nor is a Web service usable for solving a goal template or any
of its instantiations (cf. AppendixA). We also do not have to keep two goal templates in the goal graph
whose similarity isexact: the same Web services are usable for both under the same usability degree (cf.
Theorem3.1), so we just need to keep one of them.

If there are two goal templatesG1 andG2 whose possible solutions denote a proper subset relationship
– e.g. {τ}G1 ⊃ {τ}G2 – then we can either define aGGM = (G2,G1, plugin) or its inversionGGM ′ =
(G1,G2, subsume) (cf. Definition 3.3). We prefer to keep GG mediators with asubsumesimilarity degree
because this allows to utilize the goal similarity as a pre-filter for Web service discovery on the goal template
level: if subsume(G1,G2) then all Web services that are not usable forG1 are also not usable forG2 (cf.
clause 3.11 of Theorem3.1). If the similarity degree ofG1 andG2 is intersect, then we can define the
connecting GG mediator with any direction without loosing or gaining any important information. However,
this similarity degree appears to not be very valuable for inferring the usability degree of a Web service: if
intersect(G1,G2), then a Web serviceW is only usable for bothG1 andG2 if it can provide a solution that
is allocated in the intersection of possible solutions ofG1 andG2 (cf. clauses 4.1 - 4.12 of Theorem3.1).
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Figure 8:Initial Structure of the Goal Graph

In conclusion, there are only two types of similarity degrees that occur in the goal graph:subsumeand
intersect. For the sake of comprehensibility, in the following we shall refer to a GG mediator that explicates
a subsumesimilarity degree as ans-arc, and to one that explicates anintersectsimilarity degree as ani-arc
(arc = a directed edge in a graph [11]). The hierarchy that is constituted bys-arcsdenotes the core of the
goal graph: the set of usable Web services for a child node in this hierarchy is a subset of the set of Web
services that are usable for its parent node. Goal templates that are connected byi-arcscan occur everywhere
in the goal graph; in particular, there can be goal templates that are child nodes in thes-archierarchy but
have a common solution. Figure8 illustrates the structure of an initial goal graph. It is to remark that in the
discovery cache any matching degree can appear under which the target Web service is usable for solving
the source goal template (i.e. all butdisjoint). Besides, the creation of such an initial SDC graph requires
management operations; we will address this in detail in Section5.

Observation 2 – Cycles and Concatenations of Intersect-Arcs in the Goal Graph.Two types of un-
desirable situations can occur in the initial goal graph as illustrated in Figure9. The first one is a cycle
that occur ifintersect(G1,G2), intersect(G2,G3), and intersect(G3,G1). Such a cycle can only occur
in a sequence of goal templates that are connected by i-arcs but not for s-arcs: ifsubsume(G1,G2) and
subsume(G2,G3), then alsosubsume(G1,G3) and thus there can not by a cyclic relation betweenG1,G2,
andG3; we discuss this below in more detail. With such a cycle, we might run into an infinite loop when
searching for the most appropriate goal template for an incoming goal instance. This contradicts require-
ment6 and thus must be resolved.

The second construct is an acyclic concatenations ofi-arcs, i.e. if intersect(G1,G2) andintersect(G2,G3)
such that¬∃τ. τ ∈ ({τ}G1 ∩ {τ}G2 ∩ {τ}G3) – i.e. there is at least one common solution for each pair of
goal templates but there is no common solution for all three. In this situation, there can not be any Web
service that is usable for all three goal templates. This does not provide valuable information for inferring
the usability of a Web service for adjacent goal templates, and hence should be resolved.

Observation 3 – Disconnected Nodes in the Goal Graph.There might be goal templates that are not
connected in the goal graph. In particular, it can occur that there are several disconnected sub-graphs, i.e.
separate collections of connected goal templates. This occurs when there are goal templates that do not have
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Figure 9:Examples for Cycles and I-arc Concatenations in Initial Goal Graph

any common solution - e.g. one for searching restaurants and another one for booking flight tickets. In fact,
we can expect that distinct application areas form separate sub-graphs of goal templates. Nevertheless, it can
be that the same Web service is usable for goal templates in disconnected sub-graphs. Figure10 illustrates
this situation. Note that this does not hamper the formal properties of the SDC graph - it merely reflects
different application contexts for which for the same Web service might be usable.

Figure 10:Disconnected Sub-Graphs in Goal Graph

The discussion reveals that the initial goal graph does not yet satisfy the requirements for serving as a
sophisticated knowledge structure for efficient goal template search. Examining the observations (1) and (2)
reveals that those deficiencies that contradict the required formal properties result from i-arcs, i.e. when the
similarity degree of two connected goal templates isintersect. On the other hand, s-arcs appear to be the
most desirable goal template similarity degree as it allows to utilize the goal graph as a pre-filter for Web
service discovery on the goal template level. In conclusion, we can identify the following aspects to the
necessary for establishing the desired properties of the SDC graph in accordance to requirement6:

1. remove all i-arcs such that only the knowledge on the intersection of the solutions for the connected
goal templates remains; then, cycles in the goal graph can no longer occur

2. ensure that the child nodes in the goal graph are disjoint; if this is given, only one branch needs to be
followed for finding goal templates

3. skip inferable WG mediators: if the usability of a Web service for a parent node in the goal graph can
be inferred directly from the usability degree of the Web service for a child node, then omit the WG
mediator between the Web service and the parent node
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3.3.2 Resolution of Intersect Arcs in Goal Graph

The following defines the handling and resolution of i-arcs in the goal graph, which is the central technique
for establishing the desirable formal properties of the SDC Graph. As examined above, the situations where
the similarity degree of goal templates isintersectcause undesired properties of the goal graph, such as
cycles, deficiencies as a sophisticated knowledge structure for goal template search, and insufficient support
for inferring the usability degree of Web services among similar goal templates.

The approach is as follows. Given two goal templatesG1 andG2 such thatintersect(G1,G2), we define
a new goal template that precisely describes the intersection of the possible solution ofG1 andG2. We
refer to this new goal templateGi(G1,G2) as anintersection goal template. Formally,Gi(G1,G2) is defined as
the logical conjunction of the functional descriptions ofG1 andG2. We then replace the i-arc betweenG1

andG2 in the goal graph by two s-arcssubsume(G1,Gi(G1,G2)) andsubsume(G2,Gi(G1,G2)) so thatGi(G1,G2)

becomes a child node ofG1 andG2. Therewith, we can remove all i-arcs from the initial SDC Graph, and
establish a hierarchy of s-arcs that does not longer reveal any undesirable properties. Figure11 illustrates
the approach that we formally specify in the following.

Figure 11:Resolution of Intersect Arcs in the Goal Graph

Definition 3.4 (Intersection Goal Template). Let G1 be a goal template that is formally described by
DG1 = (Σ, Ω, IFG1 , φ

DG1 ) with φDG1 : [φpre
G1

]Σpre
D →ΣD

⇒ φeff
G1

, and letG2 be a goal template that is for-

mally described byDG2 = (Σ,Ω, IFG2 , φ
DG2 ) with φDG2 : [φpre

G2
]Σpre

D →ΣD
⇒ φeff

G2
.

We defineGi(G1,G2) as theintersection goal template ofG1 andG2 such thatDGi(G1,G2)
= (Σ, Ω, IF , φ

DGi(G1,G2) )

with φ
DGi(G1,G2) : ([φpre

G1
]Σpre

D →ΣD
⇒ φeff

G1
) ∧ ([φpre

G2
]Σpre

D →ΣD
⇒ φeff

G2
).

This defines the intersection goal templateGi(G1,G2) of two goal templatesG1 andG2 as the logical
conjunction of their formal functional descriptions (cf. Definition 1.2 in Section1.2.2for the elements and
structure of formal functional descriptions that we apply in our model). Such an intersection goal template
can be defined independently of the similarity degree betweenG1 andG2; however, it only provides useful
information if the similarity degree isintersect(G1,G2).

In Definition3.4, we assume that the functional descriptionsDG1 andDG2 use the same signatureΣ and
the same or at least compatible background ontologiesΩ. Moreover, for constructingGi(G1,G2) it must hold
thatG1 andG2 define compatible input variables. This is given if there is a bijectionπ : IFG1 → IFG2 such
that for each input variableiG1 ∈ IFG1 there exists a compatible input variableiG2 ∈ IFG2 . We refer to [39]
for a more detailed discussion of the compatibility of functional descriptions with respect to the signature,
the background ontology, and the input variables.
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Theorem3.2 specifies the meaning of intersection goal templates. Essentially, for two goal templates
G1 andG2 the intersection goal templateGi(G1,G2) formally describes the set of possible solutions that are
common forG1 andG2. Recalling the formal semantics from Definition1.3, a functional descriptionDG
formally describes{τ}G as set of all possible solutions of a goal with respect to their start- and end-states
such thatτ ∈ {τ}G if τ can be represented by aΣ-interpretation that is a model ofDG .

Theorem 3.2 (Meaning of an Intersection Goal Template).LetG1 be a goal template described byDG1 ,
let G2 be a goal template described byDG2 , and letGi(G1,G2) be the intersection goal template ofG1 andG2

that is described byDGi(G1,G2)
. Let{τ}G be all possible solutions of a goal templateG such thatτ ∈ {τ}G

if and only ifτ is represented by aΣ-interpretationI with I |= DG . It holds that:

τ ∈ {τ}Gi(Gk,Gl)
if and only if τ ∈ ({τ}Gk

∩ {τ}Gl
)

Proof. A functional descriptionD = (Σ,Ω, IF , φD) describes a set of sequences of states{τ} with τ ∈
{τ} if τ can be represented by aΣ-interpretationI such thatI is a model ofφD under an input binding
β : IF → U , formally: I, β |= φD. Under the implication semantics withφD : [φpre]Σpre

D →ΣD
⇒ φeff , this

is given if I, β |= φpre andI, β |= φeff ; if I 6|= φpre, then we can not precisely determine whetherI is a
model ofφD or not.

A Σ-interpretationI under an input bindingβ represents aτ ∈ ({τ}Gk
∩{τ}Gl

) if and only if I, β |= DG1

andI, β |= DG2 . Such anI is also a model ofDGi(G1,G2)
underβ becauseφ

DGi(G1,G2) = φDG1 ∧ φDG2 . If
there is aΣ-interpretationI under an input bindingβ such thatI, β |= DG1 andI, β 6|= DG2 , then thisI is
not a model ofDGi(G1,G2)

underβ becauseφDG1 ∧ false ⇔ false underI, β; accordingly,I, β 6|= DGi(G1,G2)

if I, β 6|= DG1 andI, β |= DG2 . Thus, under all input bindingsβ everyΣ-interpretationI with I, β |=
DGi(G1,G2)

represents aτ ∈ ({τ}Gk
∩ {τ}Gl

).

Resolving Undesirable Situations in the Goal Graph. Intersection goal templates serve as the central
construct for resolving undesirable situations in the initial goal graph. To achieve this, we construct the
intersection goal template for two goal templates whose similarity degree isintersect, and insert this into the
goal graph by replacing the i-arc with s-arcs from the original goal templates to the intersection goal template
(cf. Figure11). This is performed iteratively until all i-arcs in the goal graph are removed. We therewith
can transform connected sub-graphs of the initial goal graph into directed trees of goal templates whose arcs
are only s-arcs without exception. We refer to this asgoal treesthat satisfy all desirable properties that have
been identified in requirement6.

The following specifies the structure of goal trees that is obtained from the resolution of undesirable
situations in the initial goal graph by constructing and inserting intersection goal templates. In particular,
we address the following situations: concatenations of i-arcs, the disjoint representation of child nodes in
the goal tree, and cycles in the initial goal graph. We here specify the resolution patterns for collections of
three goal templates; however, they are generally applicable for paths in the goal graph of any length. For
programmatic realization, the resolution procedures require additional operations that need to be performed
iteratively after each construction and insertion of intersection goal templates: (1) check for i-arcs in newly
created levels of the s-arc hierarchy, and (2) remove redundant s-arcs and goal templates with the similarity
degreeexact. While the following merely addresses the resulting structure of the SDC graph, we shall
specify the algorithms for the SDC graph refinement in Section5. To illustrate the resolution procedures,
we discuss them in our running example in the next section.1

1relevant terms from graph theory [11, 2]: path= walk with no double occurring vertices;length= number of visited vertices



DERI TR 2007-02-03 29

Proposition 3.1 (Goal Graph I-Arc Concatenation Handling). Let there be three goal templatesG1,G2,
andG3 with the similarity degreesintersect(G1,G2) andintersect(G2,G3). As implicitlydisjoint(G1,G3),
we refer to this as a concatenation of i-arcs in the initial goal graph.

The resolution pattern denotes a 2-level goal tree such that

(i) the goal templates at level 1 are:G1,G2,G3

(ii) the goal templates at level 2 are:Gi(G1,G2),Gi(G2,G3)

(iii) Gi(G1,G2) andGi(G2,G3) are disjoint

Proposition 3.2 (Representation of Non-Disjoint Child Nodes in Goal Tree).Let there be three goal tem-
platesG1,G2, andG3 with the similarity degreessubsume(G1,G2), subsume(G1,G3), andintersect(G2,G3).
This denotes a 2-level goal graph whereinG2 andG3 are child nodes ofG1 in the s-arc hierarchy;G2 and
G3 are not disjoint but have a common solution.

The resolution pattern denotes a 3-level goal tree such thatG1 is at level 1,G2 andG3 are at level 2, and
Gi(G2,G3) is at level 3.

Figure 12:Resolution of Undesirable Situations in the Goal Graph

Figure12illustrates the resulting goal trees for both situations. When resolving a concatenation of i-arcs,
the intersection goal templates at the second level describe those solutions that are common for both parent
goal templates. To represent non-disjoint child nodes in the same level in a goal tree, their i-arc is replaced
by an intersection goal template that is allocated on the next level of the goal tree. For both situations, the
original goal templates are not changed and thus still have common solutions; merely the representation of
their similarity is changed in the resulting goal tree.

The purpose of the resulting goal tree is two-fold: one the one hand, it shall enable efficient search of a
goal template; on the other hand, we want to make use of the pre-filtering function of thesubsumesimilarity
degree for Web service discovery on the goal template level. For the latter, let{W}match(G) denote the
set of usable Web servicesW for a goal templateG. It holds thatsubsume(G1,G2) ⇒ {W}match(G1) ⊆
{W}match(G2) (cf. clause 3.11 of Theorem3.1). Hence, in a goal tree wherein the only s-arcs occur, it thus
holds that{W}match(Gl+1) for every goal template at levell+1 is always a subset of{W}match(Gl) for every
goal template at levell. In consequence, the deeper a goal template is allocated in the goal tree, the smaller
is the set of Web services that are usable for solving it.

in a walk;tree= connected graph without cycles;level= (number of edges from the root to a node in a tree) + 1;height= length of
the path of the longest branch / maximal level in a tree
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For the search aspect, let us consider the resulting goal tree for the situation from Proposition3.2. Imag-
ine that we receive a goal instanceGI whose closest goal template isGi(G2,G3); the purpose of finding the
closest goal template is that the lower its is allocated in the goal tree, the fewer Web services are potential
candidates for solvingGI (cf. Definition 1.5 from Section1.2.3). When starting the search from level 1,
we would need to perform three matchmaking operations: determine whetherGI is a proper instance of
G1, then the same forG2, and finally forGi(G2,G3). The same number of operations would be required when
following the branch ofG2. One could also define the resolution of i-arcs such that the child nodes in the
resulting goal tree are truly disjoint. In this example, we could define three new goal templates such that
DG−2 = DG2 ∧ ¬DG2 ,DGi(G2,G2)

= DG2 ∧ DG3 , andDG−3 = DG3 ∧ ¬DG2 ; all three goal templates would be

disjoint and allocated at level 2 such thatG1 is the direct parent forG−2 ,Gi(G2,G2), andG−3 . To findGi(G2,G3)

as the closest goal template forGI, the minimal amount of matchmaking operations is 2 (first forG1 and
then forGi(G2,G3)), and the maximal number is 4 (first forG1, then forG−2 and then forG−3 (or vice versa;
both are negative), and finally for thenGi(G2,G3)). Here, the efficiency of goal template search is dependent
on the number of child nodes on each level of the goal tree – which is artificially increased by defining three
disjoint goal templates for resolving two that have a common solution. In contrast, the computational costs
for searching goal templates in the goal tree structure as defined above is only dependent on the height of
the goal tree, which in most cases reveals a better search efficiency.

While above we have investigated the resolution of relatively easy situations, we now turn towards the
resolution of cycles in the initial goal graph. An analysis reveals that only three types of cycles can occur
in the initial goal graph: (1) if there is a cycle of i-arcs and there is no common solution for all involved
goal templates, (2) if there is a cycle of i-arcs and there is at least one common solution for all involved goal
templates, and (3) if there are three goal templates with at two i-arcs that constitute a cycle; Theorem3.3
shows this formally. The resolution of each type results in a specific pattern of the obtained goal tree. We
define these below along with an illustration in Figure13.

Theorem 3.3 (Types of Cycles in Initial Goal Graph).Given three goal templatesG1,G2, andG3, there
can only be three types of cycles in the initial goal graph.

Type 1:intersect(G1,G2), intersect(G2,G3), andintersect(G3,G1) and¬∃τ. τ ∈ ({τ}G1∩{τ}G2∩{τ}G3)
Type 2:intersect(G1,G2), intersect(G2,G3), andintersect(G3,G1) and∃τ. τ ∈ ({τ}G1 ∩{τ}G2 ∩{τ}G3)
Type 3:intersect(G1,G2), intersect(G2,G3), andsubsume(G3,G1).

Proof. The following implications hold:

For type 1:〈1〉 if one of the i-arcs is missing, then the situation betweenG1,G2, andG3 is a concatenation of
i-arcs (cf. Proposition3.1). 〈2〉 if all three i-arcs are given but¬∃τ. τ ∈ ({τ}G1 ∩ {τ}G2 ∩ {τ}G3) is false,
then there is a cycle of type 2.

For type 2:〈3〉 if all three i-arcs are given but∃τ. τ ∈ ({τ}G1 ∩ {τ}G2 ∩ {τ}G3) is false, then there is a
cycle of type 1.〈4〉 if at least one of the arcs betweenG1,G2, andG3 does not define anintersectsimilarity
degree, then any possible cycle is of type 3.

For type 3:〈5〉 if only at least one s-arc exists betweenG1,G2, andG3, then there can be a cycle of type 1 or
2. 〈6〉 if more than one s-arc exists betweenG1,G2, andG3, then there is a goal tree with two non-disjoint
child nodes at level 2 (cf. Proposition3.2).

Clauses〈1〉−〈6〉 define under which conditions a certain type of cycles is not given. As these conditions
cover all possible situations of similarity betweenG1,G2, andG3, the three identified cycle types are the only
possible ones that can occur in an initial goal graph.
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Proposition 3.3 (Resolution Patterns for Cycles in Initial Goal Graph).Let there be three goal templates
G1,G2, andG3 such that their similarity degrees form a cycle of type 1, type 2, or type 3.

The structural patterns of the goal trees that result from resolving the i-arcs are:

for type 1 cycle:a goal tree of height 2 such that

(i) the original goal templatesG1,G2,G3 are allocated at level 1
(ii) all three intersection goal templates are allocated at level 2
(iii) all goal templates at level 2 are disjoint because¬∃τ. τ ∈ ({τ}G1 ∩ {τ}G2 ∩ {τ}G3)

for type 2 cycle:a goal tree of height 3 such that
COMMENT: there can also be another sub-type: pattern = type 1 + common intersection at level 3

(i) the original goal templatesG1,G2,G3 are allocated at level 1
(ii) two of the three intersection goal templates are allocated at level 2
(iii) the third intersection goal template is allocated at level 3; this describes the common

solutions ofG1,G2,G3, i.e. all τ ∈ ({τ}G1 ∩ {τ}G2 ∩ {τ}G3)
for type 3 cycle: let the initial situation besubsume(G3,G1), intersect(G1,G2), and intersect(G2,G3).
The resulting goal tree is of height 3 such that

(i) two of the three original goal templates are allocated at level 1:
G3 (the source of thesubsume-arc), andG2 that is only connected by i-arcs

(ii) level 2 containsG1 (the target of thesubsume-arc), and the intersection goal templateGi(G2,G3)

(iii) the second intersection goal templateGi(G1,G2) is allocated at level 3;
this describes allτ ∈ ({τ}G1 ∩ {τ}G2 ∩ {τ}G3) as the common solutions ofG1,G2, andG3.

Figure 13:Resolution of Cycles in the Goal Graph
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3.3.3 Illustrative Example

In order to illustrate the preceding definitions, the following illustrates the resolution of a cycle in the initial
goal graph within our best restaurant research example. We consider an example for a cycle of type 3 (cf.
Theorem3.3). For this, we construct three goal templates whose requested functionalities differ with respect
to the locality of the input city and the type of the requested restaurant.

Table4 shows the goal templates, their similarity degrees, and the intersection goal templates that are
relevant for discussion. For the sake of simplicity, we use the same numbering of the goal templates as
in Proposition3.3. Below, we explain the stepwise resolution of the cycle as defined above. For better
traceability, Figure14 illustrates the structure of the goal graph in each step.

Table 4:Goal Templates, Similarity Degree, and Intersection Goal Templates in Example
original goal templates similarity degree
G1: find best restaurant in an Austrian city intersect(G1,G2)
G2: find best French restaurant in any city of the worldintersect(G2,G3)
G3: find best restaurant in a European city subsume(G3,G1)
intersection goal templates
Gi(G1,G2): find best French restaurant in an Austrian city
Gi(G2,G3): find best French restaurant in a European city

Figure 14:Example for Resolving a Cycle in the Initial Goal Graph
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We perform the resolution of i-arcs in a top-down manner – a bottom-up approach could require redun-
dant iterations. Thus, at first we resolve the i-arc betweenG2 andG3 as the most top-level i-arc in the initial
goal graph. We obtain the intersection goal templateGi(G2,G3), and insert it into the goal graph (i.e. remove
the i-arc and insert to s-arcs;cf. Step 1 in Figure14). We obtain a goal graph of height 2. Next, we need to
check the similarity degree between the newly inserted goal template. We observe that there is a new i-arc
betweenG1 andGi(G2,G3) (cf. Step 2). However, the most top level i-arc is the one betweenG1 andG2. So,
we resolve this next and obtain a goal graph of height 3 withGi(G1,G2) at the lowest level (cf. Step 3).

Next, we address the newly created i-arc betweenG1 andGi(G2,G3). We obtain another intersection goal
template that could be inserted into the goal graph as shown in Step 4. We now have resolved all i-arcs,
so that we obtain a goal tree whose edges are s-arcs without exception; we thus omit the arc-labels in the
figure. However, when checking the similarity degree of the new intersection goal template andGi(G1,G2) –
the only goal template that exists at the same level – we observe that their similarity degree isexact: Gi(G1,G2)

describes the common solutions ofG1 andG2, and the new intersection goal template describes the solutions
that are common for all three original goal templates. Hence, we do not keep the newly created intersection
goal template but merely connect the new s-arcs toGi(G1,G2) (cf. Step 5).

As the final step, we remove redundant arcs from the goal tree. The first redundant arc is one of those
that connectG1 andGi(G1,G2); both are s-arcs with the same source and target, so we can omit one of them.
The second one is the s-arc betweenG2 andGi(G1,G2). This arc is redundant because (1) we can reach the
target viaGi(G2,G3), and (2) it may decrease the efficiency of goal template search. Imagine that we receive
a goal instance whose closest goal template isGi(G2,G3). When commencing the search atG2 and we first
follow the direct arc toGi(G1,G2) (for which the matchmaking is not successful), then we have to start again
from G2 before reachingGi(G2,G3). Without the direct arc betweenG2 andGi(G1,G2), we reach the search
target with one matchmaking step less. Hence, we remove that s-arc as well and finally reach the goal tree
structure shown in Step 6 of the figure – which is the same as defined in Proposition3.3.

3.3.4 Formal Properties of Refined SDC Graph

We conclude the specification of the SDC graph by summarizing the refinements that have been defined
above. In particular, we address the properties that result from transforming the initial goal graph into goal
trees by the resolution of i-arcs. We also address the omittance of redundant WG mediators in the discovery
cache, which is the last open aspect from the analysis of the initial SDC graph above in Section3.3.1.

Definition 3.5 (Structure of Refined SDC Graph). The refined SDC graph consists of two layers. The
upper one is anunconnected set of goal treeswherein goal templates are connected by GG mediators such
that the only occurring similarity degree issubsume. The lower layer is thediscovery cachewherein WG
mediators connect goal templates with their usable Web services. The possible usability degrees of a Web
service for solving a goal template areexact, plugin, subsume, or intersect.

This states that in the refined SDC graph, the initial goal graph is refined into a set of goal trees. A
goal tree is a collection of goal templates that are connected by GG mediators such that the only occurring
similarity degree issubsume. Such a goal tree does not contain any cycles (cf. Proposition3.3) or any
other undesirable situations (cf. Proposition3.1 and Proposition3.2), thus satisfies aspects (i) and (ii) of
requirement6. Each connected sub-graph of goal templates from the initial SDC graph is refined into a goal
tree. However, there still can be unconnected goal templates in the refined SDC graph, so that we obtain a set
of unconnected goal trees (cf. Figure10). One could artificially connect these by defining a goal templateG0

with φDG0 = true such that every consistent goal template becomes a child node in one goal tree. However,
this does not appear to be necessary for the application purpose of the SDC graph.
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The first application purpose of the SDC graph is to enable efficient search of the most appropriate goal
template for an new incoming goal instance. The aim of this search is to detect the goal templateG whereof
the incoming goal instanceGI(G) is a proper instantiation such that out of the possible goal templatesG is
allocated at the deepest level in the goal tree. The reason is that the deeperG is located in the goal tree, the
smaller is the set of Web services that are usable forG, and, in consequence, the smaller is the number of
possible candidates for solvingGI(G) (cf. Definition 1.5. While we shall specify the algorithm below in
Section4, let us here examine the computational costs for the goal template search as an important property
of the refined SDC graph. The search is performed in a depth-first manner as discussed above: it commences
at the root of a goal tree, checks for this and every child node whetherGI(G) is a proper instantiation, and
terminates at the goal template for whose child nodes this is not given. In the worst case, we need to inspect
all goal templates on every level of the goal tree that is located on the path from the root node to search
targetG, as well as all child nodes ofG.

Proposition 3.4 (Efficiency for Goal Template Search).LetT be a goal tree wherein the goal templateG
is the search target. Let letn(l) denote the number of goal templates on a level of the goal tree. Letp(G)
be the path inT from the root toG, and letn(l, p(G)) denote the number of goal templates on each level of
p(G). Letn(lG+1) denote the number of goal templates that are child nodes ofG in T .

The computational costs for findingG in T is O(n(l, p(G)) + n(lG+1)).

Figure15 illustrates the search for two target goal templates in a goal tree. If the target isG11, we start
from the root and then inspect all goal templates at the second level. For the third level, apart fromG7 we
only need to inspectG8 or G9 because they are not disjoint (as they haveG11 as a common child node –
one can image this to be derived from Proposition3.2). If we follow the path viaG8, we may also need to
investigateG10, while for the path viaG9 this step can be omitted. If the target isG8, we follow the same
path for the first two levels of the goal tree. On the third level, we may first investigateG7, thenG9, and
finally G8. We also need to ensure that none of the child nodes ofG8 is a possible target. Hence, the search
terminates after determining that bothG10 andG11 are not possible targets.

if target =G11:
p(G11)1 = G1,G4,G8,G11 or p(G11)2 = G1,G4,G9,G11

l1, (p(G11)) = G1 n(l1, p(G11)) = 1
l2, (p(G11)) = G2,G3,G4 n(l2, p(G11)) = 3
l3, (p(G11)) = G7,G8 n(l3, p(G11)) = 2
l4, (p(G11)1)) = G10,G11 n(l4, p(G11)1)) = 2
l4, (p(G11)2)) = G11 n(l4, p(G11)2)) = 1
lG11+1 = ∅ n(lG11+1) = 0

costs for findingG11: minimal = 7, maximal = 8
if target =G8:
p(G8) = G1,G4,G8

l1, (p(G8)) = G1 n(l1, p(G8)) = 1
l2, (p(G8)) = G2,G3,G4 n(l2, p(G8)) = 3
l3, (p(G8)) = G7,G8,G9 n(l3, p(G8)) = 3
n(lG8+1) = G10,G11 n(lG8+1) = 2

costs for findingG8 = 9

Figure 15:Illustration of Goal Template Search



DERI TR 2007-02-03 35

The second application purpose of the SDC graph is to serve as the basis for efficient Web service
discovery. For this, thediscovery cachecaptures knowledge on the usability of Web services for goal
templates in WG mediators that define a directed arc with the usability degree of the target Web service for
the source goal template (cf. Definition3.2). We recall from Definition1.5that for properly performing Web
service discovery on the goal instance level at runtime, we must know the precise usability degree of a Web
service for the corresponding goal template. However, on the basis of the rules for inferring the usability
of a Web service with respect to the similarity degree of adjacent goal templates as specified in Section3.2,
we can omit certain WG mediators in the SDC graph. In particular, we can omit all WG mediators at child
nodes in the goal tree whose usability degree can be inferred directly from a WG mediator with the same
target that is defined at the parent node.

Let us clarify this by the example illustrated in Figure16. Let there be a goal tree with three goal
templatesG1,G2,G3 such thatsubsume(G1,G2) and subsume(G1,G3). We consider four Web services
such that each one if usable for the parent nodeG1 under a different usability degree. Forexact(Gl, W1),
we can directly infer thatplugin(G2,W1) andplugin(G3,W1) (cf. clause 3.1 in Theorem3.1). Hence, we
can omit the WG mediators that connectW1 with G2 and withG3. The same holds underplugin(Gl, W1),
cf. clause 3.2. However, we must explicitly define the WG mediators at child nodes in the goal tree if
the usability degree of a Web service for the parent node issubsumeor intersect. If subsume(Gl,W3) as
illustrated in the figure, the usability degree ofW3 for a child node ofGl can be any of the five degrees, even
disjoint (cf. clauses 3.3 - 3.7). Also underintersect(Gl,W4), this Web service might not be usable for a
child node ofGl (cf. clauses 3.8 - 3.10). Besides, as discussed above, under thesubsumesimilarity degree
the set of usable Web services for every child node in the goal tree is a subset of the usable Web services for
the parent goal template (cf. clause 3.11).

This allows to reduce the discovery cache to consists of only those WG mediators that are necessary for
enabling efficient Web service discovery on both the goal template and the goal instance level. Therewith,
the refined SDC graph finally satisfies the third aspect of requirement6.

Proposition 3.5 (Minimality of Discovery Cache). LetG be a goal template such that there exists at least
oneG2 that is a child node in the goal tree. For all Web services whose usability degree forG is exactor
plugin, only WG mediators withG as the source are defined but none withG2 as the source.

This is the minimal tree on the usability of available Web services for the existing goal templates such that:

(i) every WG mediator that is removed disconnects the SDC graph, and
(ii) any additional WG mediator is redundant.

Figure 16:Omittance of WG Mediators in Discovery Cache
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4 Web Service Discovery with SDC

This section specifies Web service discovery with the Semantic Discovery Caching technique. While we
have summarized the approach for Web service discovery in the introduction (cf. Section1.2), we here define
the algorithms that utilize the SDC graph for realizing an efficient Web service discovery. The operations
for management and evolution support of the SDC graph are specified in Section5; the complete algorithm
for the SDC technique that integrates discovery and management operations is provided in AppendixC.

We have outlined in the introduction that the author’s work presents a refinement of the Web service dis-
covery framework that has been proposed for WSMO (cf. Section1.1). This distinguishes three operations:
(1) the formulation of a client desire as a goal, (2) the discovery of usable Web services for solving goals
on an abstract level, and (3) the refinement of discovery results for consuming a real world service. In this
work, we specify all three operations such that each one uses the knowledge kept in the SDC graph to the
maximal extent. We therewith satisfy requirement7 on the integration of the SDC technique into an overall
architecture for Semantic Web services, and realize an efficient and scalable Web service discovery process
with respect to requirements3 and4. Illustrated in Figure17, the operations are defined as follows.

1. Goal Formulation: this is concerned with the formulation of the objective that a client wants to achieve
as a goal description. For this, the client browses the goal templates existing in the SDC graph,
and chooses one for creating a goal instance. When the goal instance is received by the system, we
internally assign it to the closest goal template in order to minimize the search space for Web service
discovery. This operation is performed at runtime, i.e. when a client specifies a new objective and, for
automated solving, submits this to the system in form of a goal instance.

2. Web Service Discovery on the Goal Template Level:this determines the usability degree of the avail-
able Web services for goal templates by matchmaking of their formal functional descriptions. The
result is captured as the discovery cache in the SDC graph. This operation is performed at design time
– respectively orthogonal to runtime – i.e. whenever a goal template or a Web service description is
added, modified, or removed.

3. Web Service Discovery on the Goal Instance Level:this determines the usability of Web service for
solving a goal instance. For this, the matchmaker checks whether the functional descriptions of the
corresponding goal template and the Web service are satisfiable under the input binding that is defined
in the goal instance. This operation is performed at runtime. The corresponding goal template is the
one determined by the goal formulation procedure; for matchmaking, only those Web services need
to be taken into account that are declared as usable for that goal template in the SDC graph.

In the following, we specify each operation in detail. For human understandability, we specify the
algorithms in Java-style pseudo code; this reflects their realization in the planned prototype implementation.
We also define the semantic matchmaking procedures that are related to each discovery operation. We
specify these in a first-order logic framework on the basis of the formal functional descriptions and the
approach for semantic matchmaking as outlined in the introduction (cf. Section1.2). Moreover, we specify
the algorithms for arefined SDC graph – i.e. its goal graph consists of goal trees withsubsumeas the
only occurring similarity degree, and the discovery cache does not contain any redundant WG mediators
(cf. Definition 3.5) – and in a stable environment (i.e. no updates or changes of the goal template and Web
service descriptions take place). These aspects are ensured by the integration of the respective management
and evolution algorithms (cf. Section5) into the overall SDC algorithm that is specified in AppendixC.
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Figure 17:Operations for Web Service Discovery with SDC

4.1 Goal Instance Formulation and Goal Template Discovery

We commence with the goal formulation procedure. This covers the creation of a goal instance that describes
the concrete objective that the client wants to achieve, and the assignment of this goal instance to the closest
existing goal template. The aim of the goal formulation procedure is to declare a goal templateG as the
corresponding one for a newly created goal instanceGI = (G, β) such thatG is located as deep in the goal
tree as possible whileGI is still a proper instantiation ofG. The reason is that the lowerG is allocated in the
goal tree, the fewer Web service are usable forG and hence are possible candidates forGI. The following
first explains the goal formulation procedure in our framework, and then specifies the matchmaking and
algorithm for search the most proper goal template in the SDC graph.

Let us consider a scenario from our running example. A client wants to find the best restaurant in Vienna
(the Austrian capital). Let us assume that there are some goal templates for finding the best restaurant in
a city that is provided as input. Let the goal templates differ with respect to the locality of the input city,
so that the SDC graph contains the goal tree shown in Figure18: the root node isG1 that describes the
objective of finding best restaurant in any city of the world, the second level is differentiates continents,
and the third level distinguishes countries that are located in continents. The figure also illustrates the steps
for goal formulation: at first the client browses the goal tree and chooses a goal templateGc that appears
to be suitable for describing the objective. Then, the client creates a goal instanceGI = (Gc, β) for the
chosen goal template. Imagine that in this example the client choosesGc = G2 (for Europe), and defines
β = {city |Vienna} as the input binding. However, the most appropriate goal template isG5 (best restaurant
in Austrian cities). Hence, as the final step, we need to search for the most appropriate goal template and,
for further processing, declare this to be the corresponding goal template for the goal instance.

The first two steps of the goal formulation procedure are not SDC-specific, but are required for any
system that realizes goal-based Web service usage. For technical realization, the SDC graph browsing can
best be supported by a graphical user interface. One of the most promising tools for this is WSMT, the
graphical user interface of the WSMX system that provides adequate browsing support for repositories of
WSMO elements (ontologies, Web services, goals, mediators) [20]. For the second step of defining a goal
instance for a chosen goal template, form-based editors for defining concrete values for the inputs required
in chosen goal template appear to be a sophisticated solution. Such graphical support for goal instance
creation by clients are provided by related system implementation such as IRS [6] or SWF [43].



38 DERI TR 2007-02-03

Figure 18:Illustration of Goal Formulation Procedure

In the context of SDC, we thus concentrate on the third step of finding the closest goal templateG for
a given goal instanceGI = (Gc, β). We shall refer to this automated operations asgoal template search.
Essentially, it commences at the goal templateGc that has been chosen for goal formulation by the client,
and tests whetherGI is a proper instantiation of the child nodes ofGc. This is repeated in a depth-first
manner until the closest goal templateG has been found. The result is a revision of the corresponding goal
template for the goal instance such thatGI = (Gc, β) → GI ′ = (G, β). The following first defines required
matchmaking, and then specifies the algorithm.

4.1.1 Matchmaking for Goal Template Search

The matchmaking required for goal template search is to determine whether the goal instanceGI defined
by the client is a proper instantiation of a goal templateG. This is given if the preconditionφpre of DG as
the functional description ofG is satisfiable under the input bindingβ that is defined inGI.

To formally define this, we recall the definition of goal templates and goal instances in our framework
from Section1.2. A goal template describes an objective by a functional description of the form a functional
descriptionDG = (Σ, Ω, IF , φDG ). Therein,IF = (i1, . . . , in) are the input variables that occur as free
variables in the preconditionφpre and the effectφeff , andφDG = [φpre]Σpre

D →ΣD
⇒ φeff defines the impli-

cation semantics. An input bindingβ : (i1, . . . , in) → UA is a total function that assigns concrete values
of the universeUA to theIF -variables (cf. Definition 1.2). We consider all functional descriptions to be
consistent, i.e. there must be an input bindingβ under which there exists at least oneΣ-interpretationI that
is a model ofD, i.e. ∃I, β. I, β |= φD. If this is not given, then a Web service implementation that provides
the functionality described byD is not realizable [18]; in consequence, there cannot be any Web service that
is usable for a goal template with an inconsistent functional description.

A goal instanceGI = (G, β) is created by defining an input bindingβ for functional descriptionDG
of a goal templateG. We callβ completefor DG if it defines a concrete value assignment for at least each
IF -variable inDG . For example, ifIF = (i1, i2, i3), thenβ = {i1|v1, i2|v2, i3|v3} is complete because it
defines a concrete value for each of the three input variables. It may also contain more value assignments
(e.g. alsoi4|v4). Given a complete input bindingβ, we can instantiate the functional description of a goal
template by replacing every occurrence of allIF -variables inDG with the concrete values defined inβ.
From this, we can obtain an instantiated functional description[DG ]β that formally describes the objective
that is formulated in the goal instance.[φDG ]β does not contain any free variables, so that its truth value for
this formula can be determined under everyΣ-interpretation.

A goal instanceGI = (G, β) properly instantiates a goal templateG if β is complete forDG and if
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[DG ]β is satisfiable. This means thatβ must assign a concrete value for at least everyIF -variable inDG
– otherwise the truth value of[DG ]β might can not be determined – and there must be aΣ-interpretation
I that is a model forφDG underβ. Then, thisI represents a sequence of statesτ = (s0, . . . , sn) that is a
solution forG under the input bindingβ defined inGI, and thusτ is also a solution forGI. BecauseDG is
consistent (see above), with this definition of proper instantiation it is ensured that the possible solution for a
goal instanceGI(G) are always a subset of those for its corresponding goal template, i.e.{τ}GI(G) ⊆ {τ}G
(cf. Definition1.1).

Definition 4.1 (Goal Instantiation). LetGI be a goal instance that defines an input bindingβ. LetG be a
goal template that has a functional descriptionDG = (Σ, Ω, IFG , φDG ) withφDG = [φpre]Σpre

D →ΣD
⇒ φeff .

Let [φDG ]β denote the formula that is derived by replacing all occurrences of everyIF -variable inφDG by
the concrete values that are assigned inβ.

We say thatGI properly instantiatesG, denoted by the predicateinstantiates(GI,G), if and only if:

(i) β is complete forDG , and
(ii) [φDG ]β is satisfiable.

This defines matchmaking condition for determining whether a goal instance is a proper instantiation of
a goal template. We illustrate this in our running example below in the context of the goal template search
algorithm. It is to note that ifβ is complete for a goal templateG1 then it is also complete for every goal
templateG2 that is a child node ofG1 in the goal tree. This holds because of the matchmaking condition
for thesubsumesimilarity degree that implicitly requires the compatibility of theIF -variables ofDG1 and
DG2 : ΩA |= ∀β. φDG1 ⇐ φDG2 (cf. Table3). If there is aβ such that[DG2 ]β is satisfiable thenβ must
be complete forDG2 ; if subsume(G1,G1), then also[DG1 ]β must be satisfiable and thereforeβ must be
complete forDG1 .

Proposition 4.1 (Transitive Completeness of Input Bindings in a Goal Tree).LetGi,Gj be goal templates
such thatsubsume(Gi,Gj). An input bindingβ is complete for a functional descriptionD = (Σ,Ω, IF , φD)
with IF = (i1, . . . , in) if β assigns a concrete value for at least everyi ∈ IF .

It holds that: β is complete forDGi if and only if β is complete forDGj .

4.1.2 Algorithm for Goal Template Search

We now can define the algorithm for goal template search. For a newly defined goal instanceGI this
performs a depth-first search for the goal templateG whereofGI denotes a proper instantiation so thatG is
allocated deepest in the goal tree. The procedure of goal formulation as illustrated above is an approximation
towards a real world setting, assuming that the client selects a goal template at least from the correct goal
tree in the SDC graph. We here specify the goal template search algorithm for the more general case: finding
of the closest template for a goal instance for which we do not know a corresponding goal template.

Listing 1 below provides the algorithm for this. Themain part defines the overall control for the
goalTemplateSearchmethod. Initially, thetarget (i.e. the goal template that we search) is defined to be
empty. At first, we invoke thefindRootNodemethod that searches for a goal template that is a root node
of one of the goal trees in the SDC graph. A root node is a goal template that does not have any parents:
root(G) ⇔ ¬∃G2. subsume(G2,G); isolated goal templates are also considered as root nodes – merely their
respective goal tree is of height 1. The search tests iteratively for all root nodes if the incoming goal instance
is a proper instantiation of the goal template; this is given ifinstantiates(GI,G) holds for the currently
inspected goal template (cf. Definition 4.1). By definition, the similarity of each two root goal templates is
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disjoint – otherwise the goal templates would be connected in the SDC graph. Hence, the halting condition
of theforall loop in thefindRootNodemethod is reached if a matching root goal template has been found. If
the incoming goal instanceGI is not a proper instantiation of any root goal template, then the result of the
goal template search is empty, meaning thatGI is not a proper instantiation of any existing goal template.

If we have found a root goal template whereofGI is a proper instantiation, this is the intermediatetarget
of the search. We then search the respective goal tree for the closest goal template, which is performed by
thefindChildNodemethod. This tests whetherGI is a proper instantiation of any of the child nodes of the
current target; if yes, this child node is the intermediatetarget, and thefindChildNodemethod is iteratively
invoked for the newtarget. The halting condition in theelse-part of theforall loop returns the currenttarget
as the search result if there does not exists any child node whereofGI is a proper instantiation; the halting
condition outside theforall loop returns the root goal template as the search result.

We therewith realize a depth-first search whose computational complexity we have already discussed
above in Proposition3.4. Note that the iteration in thefindChildNodemethod allows to skip unnecessary
matchmaking steps for non-disjoint goal templatesG1 andG2 on the same level of the goal tree: regardless
of which one is investigates at first, the iteration will directly proceed with examining the next level of the
goal where the intersection goal templateGi(G1,G2) is allocated (cf. Proposition3.2).2

// type declarations
GI := goalinstance;
G1,G2 := goaltemplate;
target := goaltemplate;

// main
goalTemplateSearch(GI);
target = null ;
findRootNode(GI);
if (! target = null ) then
findChildNode(target);

return target ;
// find root of goal tree
findRootNode(GI){

forall (root(G)) {
if instantiates (GI,G) then
target = G;
return target ;

}
return target ;
}
// find child node in goal tree
findChildNode(G1) {

forall (subsume(G1,G2)) {
if instantiates (GI,G2) then
target = G2;
findChildNode(target);

else
return target ;
}
return target ;
}

Listing 1: Goal Template Search Algorithm

2Syntax for the pseudo code used for algorithm specifications:
:= is a data type declaration,name(input)is the name and the input value of a method;forall(condition) defines a loop that is
iterated for all objects for which the condition is satisfied until the halting condition is reached;if (condition) then (action) else
(action) defines a conventional guarded action;return(value)is the halting condition that returns the value;null denotes that the
value of an object is empty,= defines a value assignment for an object,! defines the negation of the subsequent condition.
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For illustration, let us recall the example from Figure18. If we have already given a corresponding goal
template within the definition of the incoming goal instance (i.e. as in the above procedure), we can (1) skip
the findRootNodemethod, and (2) commence thefindChildNodemethod directly from the already known
goal template. This allows to obtain a better efficiency at runtime.

In the above example, the goal instanceGI created by the client definesβ = {city |vienna}, and it speci-
fiesG2 as the initial corresponding goal template.G2 definesIF = {?x}, the preconditionφpre = city(?x)∧
locatedIn(?x, europe), and the effectφeff = ∀?y. out(?y) ⇔ restaurant(?y) ∧ locatedIn(?y, ?x) ∧
¬(∃?z.restaurant(?z) ∧ locatedIn(?z, ?x) ∧ better(?z, ?y)). GI is a proper instantiation ofG2 because
β satisfiesφpre and the output object?y is the best restaurant in Vienna as requested. So,target= G2 for the
first iteration of thefindChildNodemethod. Imagine that theforall loop first choosesG6 that is for finding
the best restaurant in a German city withφpre = city(?x) ∧ locatedIn(?x, germany). GI is not a proper
instantiation ofG6 because∀?y. locatedIn(?y, austria) ⇒ ¬locatedIn(?y, germany). Hence, the inter-
mediate target remains to beG2. Next, we tryG5 that definesφpre = city(?x) ∧ locatedIn(?x, austria)
with the same input variable as all other goal templates in the goal tree. Obviously,GI is a proper instantia-
tion of this goal template. Hence, the intermediatetarget is changed toG5, and thefindChildNodemethod is
invoked again. BecauseG5 does not have any child nodes in the goal tree, the outer halting condition holds
and the result of the search isG5 – which is the closest goal template forGI.

4.2 Web Service Discovery – Goal Template Level

We now turn towards Web service discovery. This section defines the matchmaking and algorithm for
discovery on the goal template level that is performed at design time, respectively orthogonal to runtime (cf.
Figure17); we address discovery on the goal instance level below in Section4.3.

The aim of the algorithms is to realize an efficient and scalable procedure for Web service discovery on
the goal template level (cf. requirements3 and4). We therefore make extensive use of the inference rules for
usability degrees as defined in Theorem3.1(cf. Section3.2). We here specify the algorithm for determining
the usability degree of all usable Web services for a new goal template that is inserted in the SDC graph. The
result of this operation constitutes the discovery cache for the new goal template. As we shall discuss below
in detail, this algorithm contains all methods that are relevant for Web service discovery on the goal template
level during the evolution of the SDC graph (cf. Section5). The following first explains the matchmaking
for determining the usability degree of a Web service for a goal template, and then specifies the algorithm
for discovering all usable Web services for a new goal template.

4.2.1 Matchmaking for Web Service Usability Degree Determination

Web service discovery on the goal template level is concerned with determining the usability degree of Web
services for a specific goal template. The usability degree provides sufficiently rich information for our
discovery approach, as it allows to perform efficient Web service discovery on the goal instance level at
runtime (cf. Definition 1.5). Hence, this is the only information stored in the discovery cache of the SDC
graph (cf. Definition3.2).

The usability degree of a Web serviceW for a goal templateG is determined by matchmaking of their
functional descriptionsDW andDG , as defined in Section1.2.3. Relevant for the following discussion,
Table5 recalls the definition of the usability degrees and shows the logical relationship between them. For
technical realization of a matchmaker, the conditions for each degree as defined here can be implemented
straight forward in a inference engine for the chosen specification language – e.g. as proof obligations for a
first-order logic theorem prover as done in [40].
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Table 5:Definition and Relationship of Usability Degrees
Degree Definition Formal Relationships

exact(G,W ): ΩA |= ∀β. φDG ⇔ φDW

plugin(G,W ): ΩA |= ∀β. φDG ⇒ φDW

subsume(G,W ): ΩA |= ∀β. φDG ⇐ φDW

intersect(G,W ): ΩA |= ∃β. φDG ∧ φDW

disjoint(G,W ): ΩA |= ¬∃β. φDG ∧ φDW

plugin∧ subsume⇒ exact
plugin⇒ intersect
subsume⇒ intersect
intersect⇒¬ disjoint

The matching conditions for the degrees are not precise in the sense that if the condition for a degree it
satisfied, the actual relationshipDW andDG can maybe also be expressed as a different degree. For example,
if plugin(G,W ), then maybe alsoexact(G, W ) holds – in the case thatDW andDG are logically equivalent.
For our application purpose, we want to dispose this ambiguity: we must know the precise usability degree in
order to beneficially apply the inference rules as well as for realizing an efficient runtime discovery. The right
column of Table5 imposes the following preference order:exact > plugin, subsume > intersect. We
always prefer the degree with the higher preference because the higher the preference, the more beneficially
we can deal with the usability degrees among adjacent goal templates in the SDC graph.

To achieve this, we do not need to modify the matchmaking conditions – we merely need to define a
suitable control algorithm for invoking the matchmaker. Listing2 shows our solution for this. Initially, we
set the usability degree todisjoint. We first check whether the condition for theplugindegree is satisfied; if
yes, we update the usability degree toplugin. Then, we do the same for thesubsumedegree. If the conditions
for both are satisfied – the information is kept in boolean constants – then we update the usability degree to
exact. If this is not given, we check the condition for theintersectdegree and update the usability degree
accordingly. ThematchmakingUsabilitymethod returns the determined degree; in case that the Web service
is not usable for the goal template, the resulting degree remainsdisjoint. Although this is just a minor issue
towards an efficient Web service discovery, this algorithm requires maximal 3 matchmaking operations and
hence is more efficient than respective algorithms defined in related works (e.g. [28]).

// type declarations
G := goaltemplate;
W := webservice;
d := usabilityDegree;
plugin, subsume := boolean;

// main
matchmakingUsability(G,W){

plugin = false ;
subsume = false;
d = disjoint ;
if ( plugin(G,W) ) then {

plugin = true;
d = plugin; }

if ( subsume(G,W) ) then {
subsume = true;
d = subsume; }

if ( (plugin = true) and (subsume = true)) then {
d = exact; }

else {
if ( intersect (G,W) ) then d = intersect ; }

return d;
}

Listing 2: Algorithm for Unambiguous Usability Degree Determination
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Another relevant aspect is that only the minimal knowledge needed to perform the matchmaking is
loaded into the matchmaker. As discussed in the context of requirement4 (cf. Section2.2.2), this is an es-
sential pre-requisite for maintaining the scalability of the discovery engine under a large amount of available
Web services. To guarantee this, for every invocation of thematchmakingUsabilitymethod we only load
the minimal required knowledge into the matchmaker. This is the functional descriptionsDG of the goal
template andDW of the Web service, and the background ontologies that are used inDG andDW . These
can be several distinct ontologies – i.e.Ω1, . . . , Ωn – and they might be heterogeneous. We consider all
mismatches between the ontologies to be resolvedbeforethe matchmaker is invoked. This can be achieved
by respective data level mediation techniques, e.g. those developed in the context of the WSMO mediation
framework [26]. Moreover, we can expect to make use of the work from Francois Scharffe on an algo-
rithm for providing a global view on an integrated ontology for a particular application purpose as proposed
in [31]. Let Ωi(G,W ) be such an integrated, global ontology for all background knowledge used in theDG
andDW , we merely need to extend this with the additions for dynamic symbols and then utilize this as the
minimal relevant background knowledge for the matchmaking.

4.2.2 Algorithm for Discovering All Usable Web Services for a New Goal Template

We now define the algorithm for SDC-enabled Web service discovery for a new goal template that has been
inserted into the SDC graph. This covers all aspects relevant for discovery on the goal template level whereof
parts can be reused in other situations, e.g. if an existing one is modified or removed (we shall address this
in detail in the context of SDC graph evolution management,cf. Section5).

We consider the following situation as the context of the goal template discovery algorithm. There is a
refined SDC graph (cf. Definition 3.5) given so that (1) there are existing goal templates that are organized
in a set of goal trees wherein the only occurring similarity degree issubsume, and (2) the discovery cache
of the SDC graph is minimized, i.e. WG mediators for child nodes in a goal tree whose usability degree is
directly inferrable from the parent node are omitted. A new goal templateGnew is defined and has already
been inserted into the goal graph (i.e.: the GG mediators that connectGnew to its neighbors in the SDC
graph are defined, and all possibly occurring i-arcs have already been resolved). So, we have a refined SDC
graph wherein there is a new goal templateGnew for which there does not yet exists a discovery cache.

The purpose of the Web service discovery algorithm that we specify here is to detect all Web services
that are usable for the new goal templateGnew along with the respective usability degree. The aim is to
make extensive use of the inference rules for determining usability degrees in the SDC graph as defined in
Theorem3.1 (cf. Section3.2). The new goal templateGnew can be allocated at three different position in
the SDC graph. We need to differentiate the Web service discovery for each possible position:

1. Gnew is a new child node in an existing goal tree:Gnew is allocated in an existing goal tree at any
position but not as the root node. We shall denote this situation aschild(Gnew) such thatGnew has at
least one parent:child(Gnew) : ∃G. subsume(G,Gnew).
Here, we know that only those Web services can be usable forGnew that are usable for its parents (the
afore mentioned filter functionality of thesubsumesimilarity degree). For any Web serviceW that
is usable for a parent ofGnew under theexactor plugin usability degree, we can directly infer that
its usability degree is itplugin(Gnew,W ) (cf. clauses 3.1 and 3.2 of Theorem3.1). However, we do
not need to inspect these Web services in our algorithm, because the respective WG mediators will be
removed afterwards in order to maintain the minimality of the discovery cache (cf. Proposition3.5).
For the Web services that are usable for a parent ofGnew under thesubsumeor intersectdegree, we
can apply the respective inference rules from clauses 3.3 - 3.10 in Theorem3.1.
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2. Gnew is a new root node of an existing goal tree:Gnew is a root node of an existing goal tree
so that it only has outgoing s-arcs. We shall denote this situation asroot(Gnew) such thatGnew

does not have any parent but one or more child nodes:root(Gnew) : ∀G. ¬subsume(G,Gnew) ∧
∃G2. subsume(Gnew,G2).
In this situation, every Web service that is usable for any child node ofGnew is usable forGnew. For
this, we can make use of the inference rules under thepluginsimilarity degree (cf. clauses 2.1 - 2.8 of
Theorem3.1). However, there can usable be Web services that are usable forGnew but not for any of
its child nodes (cf. clause 2.9 of Theorem3.1). Hence, we also need to perform matchmaking for all
other available Web services. Redundant WG mediators that might be created in this operation must
be removed afterwards (we shall cover this later in Section5).

3. Gnew is new disconnected node in the SDC graph:there does not exists any goal template in the
SDC graph that has a common solution withGnew, so thatGnew appears as a disconnected node in the
SDC graph. We shall denote this situation asdisconnected(Gnew) such thatdisconnected(Gnew) :
∀G. disjoint(Gnew,G). Here, we can not make beneficial use of any inference rules. Thus, we need
to perform matchmaking with all other available Web services.

Listing3shows the algorithm that covers all three situations. The result of the main methoddiscovery(G)
is a set of triplesdusability(G,W ) that constitutes the discovery cache for the goal template that the algorithm
is invoked with. The operator+ denotes the addition of an element to the discovery cache. The method
childNodeDiscovery(G)performs Web service discovery for the first situation identified above. It considers
all parent nodes of the new goal template, and determines the usability degree for every Web service under
consideration of the inference rules for thesubsumesimilarity degree. As discussed above, it omits all Web
services that are usable under theexactor plugindegree. The methodrootNodeDiscovery(G)performs Web
service discovery for the second situation. It first inspects the Web services that are usable for all child nodes
of the new goal template, thereby considering the inference rules for thepluginsimilarity degree. Secondly,
it performs matchmaking for all Web services that are not usable for any child node. For this, the operator
in checks whether an element is existing in a set, and the methodmatchmakingUsability(G,W)invokes the
algorithm specified above in Listing2. For the third situation, matchmaking is performed for all available
Web services.

This algorithm performs the minimal number of matchmaking operations that is needed for determining
the usability degree of Web services that are usable for a newly defined goal template. This is performed
orthogonal to runtime, so that the computational efficiency of algorithm does not influence the runtime effi-
ciency of the overall discovery procedure. We hence omit a computational costs analysis of this algorithm.

// type declarations
G,G2 := goaltemplate;
W := webservice;
d := usabilityDegree;
discoverycache := {d(G,W)};
// main
discovery(G){

discoverycache = {};
if child (G) then childNodeDiscovery(G);
if root(G) then rootNodeDiscovery(G);
if disconnected(G) then {
forall (W){
matchmakingUsability(G,W);
if (! d = disjoint ) then discoverycache = discoverycache + d(G,W);
} }

return discoverycache; }
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// discovery for G if it is a child node in an existing goal tree
childNodeDiscovery(G){

forall ( G2 and subsume(G2,G) ) {
forall ( W and subsume(G2,W) ) {

matchmakingUsability(G,W);
if (! d = disjoint ) then

discoverycache = discoverycache + d(G,W);
}
forall ( W and intersect(G2,W) ) {

if ( plugin(G,W) ) then d = plugin;
if ( intersect (G,W) ) then d = intersect ;
discoverycache = discoverycache + d(G,W);

}
}
return discoverycache;
}

// discovery for G if it is a root node of an existing goal tree
rootNodeDiscovery(G){

forall ( G2 and subsume(G,G2) ) {
forall ( W and exact(G2,W) ) {

d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and subsume(G2,W) ) {

d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and plugin(G2,W) ) {

plugin, subsume := boolean;
d = intersect ;
if ( plugin(G,W) ) then {

plugin = true;
d = plugin; }

if ( subsume(G,W) ) then {
subsume = true;
d = subsume; }

if ( (plugin = true) and (subsume = true)) then {
d = exact; }

discoverycache = discoverycache + d(G,W);
}
forall ( W and intersect(G2,W) ) {

if ( subsume(G,W) ) then d = plugin;
if ( intersect (G,W) ) then d = intersect ;
discoverycache = discoverycache + d(G,W);

}
}

forall ( W and !(W in discoverycache) {
matchmakingUsability(G,W);
if (! d = disjoint ) then

discoverycache = discoverycache + d(G,W);
}

return discoverycache;
}

Listing 3: Algorithm for Web Service Discovery for a new Goal Template
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4.3 Web Service Discovery – Goal Instance Level

The final operation in the SDC-enabled Web service discovery framework is the discovery on the goal
instance level. Performed at runtime, the purpose is to determine those Web services that are actually usable
for a given goal instance that represents a concrete client objective. For this, we perform matchmaking on
the goal instance level for those Web services that are usable for the corresponding goal template. As soon as
a usable Web service has been detected, the subsequent steps for resolving the client request are performed.
The following recalls the matchmaking technique for discovery on the goal instance level, then specifies the
algorithm for runtime Web service discovery in the SDC framework, and finally analyzes the computational
efficiency of the algorithm.

4.3.1 Matchmaking and Procedure

The central matchmaking technique for runtime Web service discovery is to determine whether a Web
service is usable for solving the concrete objective described in a goal instance. This is given if the execution
of a Web service provides a solution for the goal instance when it is invoked with the concrete input values
that are defined in the goal instance. We briefly recall the formal matchmaking approach for this as explained
in the introduction (cf. Section1.2.3).

A goal instanceGI = (G, β) defines an input bindingβ for the functional descriptionDG of its cor-
responding goal templateG. Given aβ, we can instantiate the functional descriptions by replacing every
occurrence of eachIF -variable with the respective value defined inβ. We obtain[φDG ]β as the instanti-
ated functional description of the goal template; in fact this formally describes the concrete objective that
is represented inGI. Accordingly, [φDW ]β describes the subset of possible solutions of the Web service
W when it is invoked with the concrete input values defined inβ. Because of the formal relationship of a
goal instance and its corresponding goal template, we have defined a matchmaking approach that requires
the minimal number of matchmaking operations for determining the usability of a Web service for solving
a goal instance. Relevant in our context, we recall this from Definition1.5.

LetDG describe the requested functionality in a goal templateG. Let GI(G) be a goal instance ofG that
defines an input bindingβ. Let W be a Web service, and letDW be a functional description such that
W |=A DW . W is usable for solvingGI(G) if and only if:

(i) exact( DG,DW ) or
(ii) plugin( DG,DW ) or
(iii) subsume( DG,DW ) and

∧
ΩA ∧ [φDW ]β is satisfiable, or

(iv) intersect( DG,DW ) and
∧

ΩA ∧ [φDG ]β ∧ [φDW ]β is satisfiable.

Essentially, this defines that if a Web serviceW is usable for the corresponding goal template under the
exactor plugin degree, then it is also usable for the goal instance. If the usability degree ofW for the goal
template issubsumeor intersect, then we need to perform additional matchmaking on the instantiated func-
tional descriptions in order to determine the usability ofW for solving the goal instance. Moreover, only
those Web services that are usable for the goal template can be usable for the goal instance while no others
can be (cf. Definition 1.1). The matching conditions under thesubsumeandintersectusability degrees can
be implemented as a conventional satisfiability test in the chosen reasoner. For our first-order logic approach,
we have defined this as a proof obligation of the form∃O. output(O, [φDG ]β) ∧ output(O, [φDW ]β): this
tests whether there exists aΣ-interpretation that is a common model of the instantiated functional descrip-
tions and defines a common output object [41].
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Above, we have recalled the matchmaking technique that allows to determine whether a Web service is
usable for solving a goal instance. However, the matchmaking alone does not yet satisfy all the requirements
for runtime discovery that we have identified in Section2. To achieve this, we integrate the matchmaking in
the overall discovery procedure as illustrated in Figure19.

At first, we perform the goal template search algorithm specified above in Section4.1 in order to find
the closest goal templateG for the goal instanceGI = (Gc, β) that the client has defined. We obtain a
revision of the goal instanceGI = (G, β) such thatG is a proper goal template forGI that is located the
deepest in the goal tree. The number of Web services that are usable forG is minimal in comparison to all
other existing goal templates whereofGI is a proper instantiation. Thus, we ensure that the search space for
matchmaking the minimal and therewith satisfy requirement3 on the computational efficiency. Secondly, we
realize the interleaved Web service discovery from requirement1: whenever the matchmaking has detected
a usable Web service for the goal instance, the subsequent reasoning steps for automatically solving the goal
instance are invoked; the search continues orthogonal to runtime. Thirdly, with respect to requirement4
on the scalability, we only load the minimal knowledge into the matchmaker for each single matchmaking
operation (the same as explained above for matchmaking on the goal template level,cf. Section4.2).

Figure 19:Runtime Operations for SDC-enabled Web Service Discovery

4.3.2 Algorithm for Runtime Web Service Discovery

Listing 4 provides the algorithm for the integrated runtime Web service discovery as explained above. The
main methoddiscovery(GI)first invokes thegoalTemplateSearchalgorithm that we have specified in List-
ing 1 (cf. Section4.1). This returnsG as the most appropriate goal template whereof the goal instanceGI
(the one for whichdiscovery(GI)is invoked) is a proper instantiation. We then defineGI = (G, β).

The first subroutine islookup(G)that is only invoked if the corresponding goal template is allocated
as a child node in the SDC graph (see possible positions of goal templates above). This finds usable Web
services by inspecting the omitted WG mediators in the SDC graph. Recalling from Proposition3.5(cf. Sec-
tion 3.3.4), WG mediators whose usability degree can be directly inferred are omitted in the SDC graph in
order to maintain the minimality of the discovery cache. In particular, all WG mediators that connect a child
node in a goal tree to a Web service that is usable under theexactor plugin degree for a parent node. For
example, ifsubsume(G1,G2) andplugin(G1,W ), then we only store the arcWGM1 = (G1,W, plugin)
but omitWGM2 = (G2,W, plugin) becauseWGM2 can be directly inferred fromWGM1. This omit-
tance of WG mediators is iteratively applied throughout a goal tree. Thus, non-redundant WG mediators are
always allocated at the highest possible level in a goal tree – i.e. at the root node in the most general case.
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It holds that if a Web serviceW is usable for a goal templateG1 under theexactor plugindegree, then it
is always usable under theplugindegree for every child node:∀G2. plugin(G2,W ) ← subsume(G1,G2) ∧
(exact(G1,W )∨ plugin(G1,W ), cf. clauses 3.1 and 3.2 of Theorem3.1. Coincidently, if a Web serviceW
is usable under theplugindegree for a goal templateG that is referenced in a goal instanceGI((G, β), then
we know thatW is usable for solvingGI without the need of invoking a matchmaker.

These relationships are utilized within the methodlookup(G)to efficiently detect usable Web services
for the given goal instance without matchmaking. It commences at the goal template that is referenced in
the goal instance description, and checks if there is a Web service that is usable under theexactor plugin
degree for any of its parent nodes. As soon as such a Web service has been detected, this is returned as the
result of the overall algorithm. This is repeated in an inverse depth-first manner: it is iteratively invoked for
each parent node before considering another parent node at the same level. This ensure to find usable Web
services via omitted WG mediators with the minimal computational costs.

The second methodgoalInstanceMatching(GI)performs matchmaking on the goal instance level. This
is invoked wheneverlookup(G) is not usable or if it did not return a usable Web service. As explained
above, we know without matchmaking that a Web serviceW is usable forGI = (G, β) if exact(G,W ) or
exact(G,W ). Under the other two usability degrees, we need to perform matchmaking. For this, the method
satisfiable(W,inputs)tests the additional matching condition ifsubsume(G,W ), andsatisfiable(G,W,inputs)
tests the one for the case ofintersect(G,W ). If the latter is not given, then there does not exists any Web
service that can solve the goal instance.

// type declarations
GI := goalinstance;
inputs := inputbinding;
G := goaltemplate;
W := webservice;
// main
discovery(GI) {

G = goalTemplateSearch(GI);
GI = (G,inputs);
lookup(G);
goalInstanceMatching(GI);

}
// usability lookup for inferable usability degrees
lookup(G) {

if ( child (G) ) then {
forall ( G2 and subsume(G2,G) ) {

forall ( W and ( exact(G2,W) or plugin(G2,W) ) ) {
return W;

}
lookup(G2);

} } }
// goal instance level matchmaking
goalInstanceMatching(GI) {

forall ( W and exact(G,W) or plugin(G,W) ) {
return W; }

forall ( W and subsume(G,W) ) {
if ( satisfiable (W,inputs) ) then

return W; }
forall ( W and intersect(G,W) ) {

if ( satisfiable (G,W,inputs) ) then
return W;

else
return systemout = ’goal instance can not be solved’;

} }

Listing 4: Algorithm for Runtime Web Service Discovery
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With respect to the importance of this algorithm for the use of the SDC-enabled Web service discovery
in real-world applications, we illustrate it in our running example. For this, we recall the scenario discussed
above in the context of goal formulation and discuss the two situations shown in Figure20. The goal
instanceGI requests to find the best restaurant in Vienna. There are three goal templates for finding the best
restaurants in cities with different locality restrictions:G2 for Europe,G5 for Germany, andG6 for Austria.
Obviously, and as discussed above, the closest goal template isG6 so that the goal instance is defined as
GI = (G6, {i1|Vienna}).

As the first situation, let there be a Web serviceW1 that allows to find the best restaurant in any city of
the world (left hand side in the figure). We easily see that its usability degree forG2 is plugin and thus the
same forG5 andG6 (as both are child nodes ofG2). Here, the WG mediators to connectW1 with G5 or with
G6 are omitted. In this situation, we can findW1 to be usable for the goal instance by thelookup(G)method:
in the first iteration, it considers the level whereG2 is located at. Because there isW1 as a Web service that
is usable under theplugindegree, we know that it is usable for solvingGI. As said above, no matchmaking
is needed in this method.

In the second situation, let there by a different Web serviceW2 for searching the best Italian restaurant
in a European city. The usability degree ofW2 for all three goal templates isintersect: it only provides the
best restaurant if, by accident, the best restaurant in the input city is of type Italian [41]. Here, thelookup(G)
method will not find a usable Web service because it there does not exists any Web service that is usable
under theexactor plugin degree for any parent node ofG6. When executing thegoalInstanceMatching(GI)
method, we enter theforall loop for theintersectdegree. If we assume that the best restaurant in Vienna is
not of type Italian, then the additional matching condition forW2 to be usable forGI is not satisfied:W2

would provide the best Italian restaurant in Vienna – this is not identical to the best restaurant in Vienna that
is requested byGI.

Figure 20:Illustrative Example for Runtime Web Service Discovery

4.3.3 Computational Efficiency Analysis

The runtime Web service discovery defines the complete procedure that is processed for SDC-enabled Web
service discovery at runtime. In fact, the increase in computational efficiency for Web service discovery
that is aspirated with SDC technique is primarily dependent on the efficiency of the runtime Web service
discovery. With respect to this, we conclude the specification with a computational cost analysis of the
algorithm specified in Listing4.
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As we have shown in the example discussion above, the algorithm can be very efficient. In particular, if
there is a Web service that is usable under theexactor plugin degree for the corresponding goal template,
then it can determine the usability of Web service for solving a goal instance without the need of invocation
a matchmaker. However, in order to express the computational costs in terms of the Big-O-notation, we
must consider the worst case scenario. There are two such scenarios: (1) if there does not exists any usable
Web service for solving the goal instance, or (2) if the usability degree of the only Web services that are
usable for the corresponding goal template issubsumeor intersect.

In both situations, thegoalInstanceMatching(GI)method needs to perform matchmaking for the addi-
tional conditions; in the worst case, every Web service that is usable under either thesubsumeor theintersect
degree must be inspected. Moreover, if the corresponding goal template is located as a child node in the
SDC graph, then thelookup(G)method will inspect every path from the corresponding goal template up to
the root node without success. However, discovery with thelookup(G)method as well as for Web services
under theexactor plugindegree does not require any matchmaking. This can be realized with conventional
technologies – e.g. in a database system that allows to process large amounts of such simple lookup oper-
ations in a time range of milliseconds. This is not the case for discovery steps that require matchmaking:
although the actual matchmaking can (in theory) be performed fast, the invocation and communication with
the matchmaker requires much time. Because of this, for our analysis we only consider the operations that
require matchmaking while neglecting the lookup operations.

Analyzing the two worst case scenarios, we observe that the computational costs of thegoalInstance-
Matching(GI)method is proportional to the number of Web services that are usable forG that is correspond-
ing goal template for the goal instanceGI = (G, β). If there is a Web service at is usable forG under the
exactor plugindegree, then the algorithm does not need to perform matchmaking. If the only Web services
for G are usable under thesubsumeor the intersectdegree, then matchmaking needs to be performed for
them. Hence, when{W}match(G) is the set of Web services that is usable forG, then we can express the
computational complexity of thegoalInstanceMatching(GI)method as the size of this set:|{W}match(G)|.
We then can express the efficiency of the overall runtime discovery algorithm by extending this with the
complexity of the goal template search algorithm (cf. Proposition3.4).

Proposition 4.2 (Efficiency of Runtime Web Service Discovery).LetGI = (G, β) be a goal instance that
is described by its corresponding goal templateG and an input bindingβ. LetG be an element of a refined
SDC graph. The computational costs of Web service discovery forGI is

O(( n(l, p(G)) + n(lG+1) ) + |{W}match(G)|) with:

(i) O(n(l, p(G)) + n(lG+1)) is the computational complexity for findingG with
- n(l, p(G)) is the number of goal templates on each level of the pathp

from the root node of the goal tree toG
- n(lG+1) is the number of goal templates that are child nodes ofG

(ii) |{W}match(G)| is the number of Web services that are usable forG.

This defines the maximal computational costs for finding a Web service for a goal instance at runtime.
The elements of the computational complexity are dependent of each other: the lower the corresponding
goal template is allocated in the goal tree, the longer the goal template search can take – but the lower is
the number of Web services. Furthermore, whenever there is a Web service that is usable under theexact
or plugin degree, no matchmaking is required for discovery at the goal instance level. We shall discuss the
efficiency increase that is achievable with SDC-enabled Web service discovery in the context of a extensive
applicability study.
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5 SDC Graph Maintenance

This section completes the specification of the SDC technique with the operations and algorithms for man-
agement and evolution of the SDC graph. We except the SDC technique to work in dynamic environments
wherein goals and Web services are continuously created, removed, or modified. The SDC graph needs to
support this and should stay operational in the dynamic environment. We therefore distinguish three aspects
relevant for the maintenance of the SDC graph:

1. iterative creation of the SDC graph: this is concerned with the creation of an SDC graph for given
goal templates and Web services. We realize an iterative procedure that commences with a single goal
template and then successively adds other or new goal templates. This must ensure that the result
always reveals the properties of a refined SDC graph, i.e. that it is a set of goal trees withsubsumeas
the only occurring similarity degree and with a minimal discovery cache (cf. Definition3.5).

2. evolution support: this covers the operations for removal or updates of goal templates, and the
addition, removal, or update of Web service descriptions. These operations are necessary to maintain
the operational functionality of the SDC technique in its dynamic environment.

3. advanced management:this is concerned with techniques for increasing the quality of the SDC-
enabled Web service discovery. In particular, we discuss possibilities for automatically creating new
goal templates that provide the backbone of the SDC technique. While the former two aspects are
mandatory, the advanced management technique are optional extensions.

The following specifies the techniques and algorithms for each aspect. All of these operations are
performed at design time, respectively orthogonal to runtime (i.e. only if a goal template or a Web service
description is added, removed, or updated). Because this does not influence the runtime efficiency of SDC-
enabled Web service discovery, we omit a computational cost analysis of the algorithms specified here. In
order to maintain the consistency of the SDC graph, we define the overall control of the SDC algorithms
such that it disallows parallel execution of operations (cf. AppendixC).

5.1 Iterative Creation of the SDC Graph

We commence with the first aspect on the creation of the SDC graph. The aim is to ensure that the resulting
SDC graph always as exposes the properties of arefinedSDC graph, i.e. that the goal templates are organized
as a set of goal trees withsubsumeas the only occurring similarity degree and the discovery cache does not
contain any redundant WG mediators (cf. Definition 3.5). The reason is the algorithms for Web service
discovery specified in Section4 only work properly on the basis of such a refined SDC graph.

To achieve this with minimal computational costs, we specify the algorithm to subsequently build up
the SDC graph and to resolve undesirable situations en-route. This means that we start with one goal
template and then subsequently add other existing ones, respectively newly created goal templates. In each
iteration, we first compute the goal graph and then add the discovery cache. During the constructing of the
goal graph, we resolve all possibly occurring intersection arcs between goal templates. As discussed above
(Section3.3.2), such i-arcs are the reason for undesirable situations in the SDC graph (cycles, insufficient
information, etc.), and their resolution allows to create the goal graph to become a set of goal trees. The
following first defines the algorithms for constructing such a refined goal graph, then for constructing the
minimal discovery cache, and finally illustrates the algorithms in our running example. We here concentrate
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on the functional correctness of the distinct operations; the overall algorithm that integrates all operations is
provided in AppendixC.

5.1.1 Algorithm for Goal Template Insertion

The following specifies the operations for the iterative creation of the SDC graph. For this, we define the
overall procedure for inserting a new goal template into the SDC graph. To ensure that the constructed
goal graph exposes the desired properties of a refined SDC graph, the sub-routines resolve all potentially
occurring i-arcs in the goal graph, and remove redundant edges are resolved during the creation procedure.

The creation commences with an empty SDC graph (i.e. no goal templates are stored). Then, the
goal template insertion algorithm is iteratively invoked for all existing goal templates, respectively when a
new one is added. The matchmaking technique required for creating the goal graph is the determination
of the similarity degree between goal templates (cf. Section3.1.1). For this, we perform matchmaking of
the formal functional descriptions of goal templates with the matching conditions as defined in Table3;
the technical realization is similar to the determination of Web service usability degrees (cf. Section4.2).
In order to minimize the computational costs of the SDC graph management algorithms, we only apply
matchmaking when necessary.

The complete algorithm for inserting a new goal template becomes complicated because we must take
all possible situations into consideration. We thus discuss each method of the algorithm separately.

Overall Procedure for Goal Template Insertion. We commence with the overall control procedure for
the insertion of a new goal templateGnew. Listing 5 shows the algorithm for this. We define the following
data types that are relevant for this operation. ThegoalStoreis the set of all existing goal templates, a
goalTreeis the set of s-arcs that connect all goal templates in a goal tree, and thegoalGraphis the set of all
goal templates in the goal store together with all existing goal trees. ThediscoveryCachecaptures the WG
mediators that connect usable Web services to the goal templates in the goal graph. All these elements are
kept in a persistent memory (e.g. a data base). The functionposition(G) internally keeps the position of a
goal templateG in the goal graph. This function can only have 2 values:root denotes thatG is either the
root node of a goal tree, or it is disconnected in the goal graph;child denotes thatG is located at any position
but not as the root node in a goal tree.

The overall procedure for the insertion of a few goal templateGnew is as follows. Initially – when there
is no goal template stored – the new template is added and defined to be a root node. If there are already
elements in the gaol store, the insertion commences with the investigation of the existing goal templates
whose position isroot. We then distinguish the insertion actions for the distinct similarity degrees. If this
is exactbetweenGnew and an existing root node, then we do not addGnew; for the similarity degreeplugin,
subsume, or intersect, the insertion is handled by sub-routines that we shall discuss below in more detail.
If the similarity degree ofGnew with all existing root nodes isdisjoint, we addGnew as a disconnected root
node in the goal graph. We then have insertedGnew at the appropriate position in the goal graph. As the
second step, we create the discovery cache forGnew by performing Web service discovery.

// type declarations
G,G2 := goaltemplate;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
// function declarations
position (goaltemplate) := (root | child ) ;
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// main
insert (G){

if ( goalStore != {} ) then {
forall ( G2 and position(G2) = root) {

if ( exact(G2,G) ) then return goalStore;
if ( plugin(G2,G) ) then rootNodeInsertion(G,G2);
if ( subsume(G2,G) ) then childNodeInsertion{G,G2};
if ( intersect (G2,G) ) then {

position (G) = root ;
iArcResolution{G,G2}; }

else {
position (G) = root ;
return goalStore = goalStore + G;

} }
discoveryCacheCreation(G);
}

Listing 5: Algorithm for Goal Template Insertion

Insertion of a New Root Node. We now specify the methods for inserting a new goal template into an
existing goal graph. We commence with the insertion ofGnew as a new root node of an existing goal tree.
This is given if the similarity degree betweenGnew and an existing root node isplugin. In this situation, we
must replace the existing root node byGnew and define the necessary s-arcs of the goal tree.

Figure21 shows the possible allocation ofGnew after the insertion: in case (a),Gnew becomes the new
root node of a goal tree that only had one root node beforehand; this also covers the case whenGnew becomes
the parent of a before disconnected goal template. As case (b),Gnew becomes the common root node of two
goal trees that were separated beforehand. Here, the prior root nodes are disjoint, and thus the child nodes
in the each goal tree are disjoint. For instance, imagine that in the figureG1 is for finding the best restaurant
in a European city,G2 for an American city, andGnew is for any city of the world. In the remaining two
possibilities,Gnew becomes a new root node of an existing goal tree that has had two or more root nodes
before. Such a goal tree can only occur as the result from resolving an i-arc: in the figure, the similarity
degree betweenG1 andG2 is intersect, andG3 denotes the intersection goal template (cf. Section3.3.2).
Gnew will only become a new root node only if it is a parent node of at least one of the prior root nodes, i.e.
if and only if eitherplugin(G1,Gnew) or plugin(G2,Gnew) in the figure. If this is given for one of the prior
root nodes, thenGnew replaces this one; this is case (c). Then, the similarity degree betweenGnew with the
other existing root node can only beplugin or intersect: in the former caseGnew replaces both prior root
nodes (i.e. situation (d)); in the latter case, the i-arc betweenGnew and the other root node must be resolved
(we discuss the resolution of i-arcs below).

Figure 21:Possible Situations for New Root Node Insertion

The principles discussed for the four cases are the same when we consider more complex goal graphs,
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i.e. with more nodes and edges. Besides, the lower levels of existing goal trees are not changed ifGnew

becomes a new root node; thus we do not need to investigate them. For the latter cases (c) and (d), every
goal tree that as more than one root node must have an intersection goal template as an element, and, because
of this, all its root nodes are non-disjoint. Therewith, Figure21shows the only possibilities for the insertion
of Gnew as a new root node in the goal graph.

Listing 6 shows the algorithm for the goal template insertion in these situations. It is relatively simple:
essentially, we only need to investigate all goal templates that are currently declared to be root nodes, replace
the current one withGnew, and add the new s-arc into the goal graph (instead ofplugin(GoldRoot,Gnew) we
store the inverse GG mediatorsubsume(Gnew,GoldRoot), cf. Definition 3.3). All potential cases discussed
above are handled by the methodrootNodeInsertionGbecause it is invoked as a sub-routine of theforall
loop over all root nodes in Listing5 (it also inherits the type declarations). For case (a), the prior root
node whereofGnew becomes the new parent node will be investigated at some point in theforall loop while
no other root node with a similarity other thandisjoint exists. In case (b), the root node of the second,
beforehand separated goal tree will be replaced byGnew (and accordingly for all other goal trees that will
be joint underGnew). The same will happen in case (d). In case (c) theforall loop over all root nodes will
eventually detect the other root nodes of the respective goal tree and resolve the occurring i-arcs. As the
result of the insertion, the methodrootNodeInsertionGreturns the updated goal graph.

rootNodeInsertion{G,G2} {
goalStore = goalStore + G;
position (G2) = child ;
position (G) = root ;
goalTree = goalTree + s(G,G2);
return goalGraph;
}

Listing 6: Algorithm for Insertion of a new Root Node

Insertion of a New Child Node in a Goal Tree. Next, we specify the algorithm for insertionGnew as
a new child node into a goal graph. This situation is given if the similarity degree betweenGnew and an
existing root nodeG is subsume. Here,G is a root node of the goal tree whereinGnew shall be inserted as a
new child node, and we have to successively traverse this goal tree in order to properly insertGnew.

Listing 7 below shows the algorithm for this that handles all possibly occurring situations as illustrated
in Figure22. In case (a),Gnew becomes a new, disjoint child node at the lowest level of an existing goal tree.
This also covers the situation whenGnew becomes a child node of a goal template that has been disconnected
in the goal graph beforehand. For this, we merely need to add the new s-arc to the goal graph. The other
situations are handled by theforall loop of thechildNodeInsertionmethod that investigates the child nodes
of the current root node. If the similarity degree betweenGnew and the a child node isexact, we do not
addGnew to the SDC graph. If the similarity degree isplugin, thenGnew becomes an intermediate parent
in the existing goal graph (cases (b) and (c); these are successively determined throughout the iterations
of the forall loop). In this situation, the s-arcs between the current parent and its prior child nodes become
redundant, thus we remove the respective s-arcs (cf. Section3.3.3). In case (d), the similarity degree between
Gnew and the currently inspected child node issubsume. Here, we can inspect the next lower level for the
goal tree in a depth-first manner. For this, we invoke thechildNodeInsertionmethod forGnew and the current
node. As the last possible situation, the similarity degree betweenGnew and the currently inspected child
node isintersect. In this case, we invoke theiArcResolutionmethod forGnew and the currently inspected
child node in order to resolve the occurring i-arc.
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Figure 22:Possible Situations for Insertion of a New Child Node

childNodeInsertion{G,G2}{
goalStore = goalStore + G;
position (G) = child ;
goalTree = goalTree + s(G2,G);
forall ( G3 and s(G2,G3) in goalGraph ) {

if ( exact(G3,G) ) then {
goalStore = goalStore − G;
goalTree = goalTree − s(G2,G);
return goalGraph; }

if ( plugin(G3,G) ) then {
goalTree = goalTree − s(G2,G);
goalTree = goalTree + s(G2,G) + s(G,G3);
goalTree = goalTree − s(G2,G3); }

if ( subsume(G3,G) ) then {
goalTree = goalTree − s(G2,G);
childNodeInsertion{G,G3}; }

if ( intersect (G3,G) ) then {
goalTree = goalTree − s(G2,G);
iArcResolution{G,G3}; }

}
return goalGraph;

}

Listing 7: Algorithm for Insertion of a new Child Node in a Goal Tree

En-Route Resolution of Intersection Arcs in the Goal Graph. The next sub-routine of the goal tem-
plate insertion algorithm is concerned with the insertion ofGnew if its similarity degree with the currently
inspected node isintersect. As discussed above, the occurrence of i-arcs causes undesirable situations in
the goal graph. The aim of the sub-routine for insertion a new goal template under theintersectsimilarity
degree is to resolve all occurring i-arcs during the insertion procedure. For explaining the algorithm for this,
we briefly recall the approach for i-arc resolution as specified in detail in Section3.3.2.

An i-arc occurs if the similarity degree between two goal templateG1 andG2 is intersect. If we would
keep such i-arcs in the goal graph, there could occur cycles that hamper the goal template search as well
as other undesirable situations like concatenations of i-arcs or non-disjoint child nodes in a goal tree that
hamper the operational efficiency of SDC-enabled Web service discovery. The approach for resolving i-
arcs is to define a sol-calledintersection goal templateGi(G1,G2); its functional description is the conjunc-
tion of the original goal templates, so that its possible solutions are exactly those that are common toG1

andG2. The similarity degree betweenGi(G1,G2) and either of the original goal templates issubsume, i.e.
subsume(G1,Gi(G1,G2)) andsubsume(G2,Gi(G1,G2)). Because of this, we do not store the i-arc but only
the two new s-arcs so thatGi(G1,G2) becomes a child node of bothG1 andG2. However, the insertion of an
intersection goal template results in new relationships in the goal graph that need to be handled.
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The approach for handling the insertion of a new goal templateGnew under theintersectsimilarity
degree is that we stepwise resolve each occurring i-arc along with possible implications that can result from
this. Listing8 shows the algorithm for this. In the above algorithms, the methodiArcResolution(G1,G2)
is invoked for two goal templates: the first one isGnew as the new goal template that shall be inserted,
and another oneG2 for with the similarity degree withGnew is intersect. At first, we addGnew as well as
new intersection goal templateGi(Gnew,G2) into the goal store along with the respective s-arcs, and perform
Web service discovery forGi(Gnew,G2). Then, we need to handle the implications that may result from this
insertion. From the discussion in Section3.3.2, we observe that such implications can only occur at the level
of the goal tree whereGi(Gnew,G2) has been inserted. In particular, any similarity degree is possible between
the inserted intersection goal template and a before existing child node of its parents (i.e.Gnew andG2).

In order to ensure that the goal graph maintains its desired properties (as a tree of goal template with
s-arcs as the only occurring edge type), we need to resolve undesired similarity on the level where the new
intersection goal template has been inserted. This is done by theforall loop of theiArcResolutionmethod
that iteratively checks the similarity degree betweenGi(Gnew,G2) and all of the child nodes ofGnew andG2.
If the similarity degree isexact, then we do not storeGi(Gnew,G2) but merely re-direct the new s-arcs to the
currently inspected child node. If the similarity degree isplugin, thenGi(Gnew,G2) becomes an intermediate
parent of the currently inspected node; as the opposite situation,Gi(Gnew,G2) becomes a child node of the
currently inspected node if their similarity degree issubsume. If the degree isintersect, then we resolve the
new i-arc by invoking theiArcResolutionmethod withGi(Gnew,G2) and the currently inspected goal template.
We keep the initially created goal graph only if the similarity degree ofGi(Gnew,G2) and all child nodes of
Gnew andG2 is disjoint.

// function declarations
intersectionGoalTemplate(goaltemplate,goaltemplate) := goaltemplate;
// main
iArcResolution(G1,G2) {
iG1 G2 = intersectionGoalTemplate(G1,G2);
goalStore = goalStore + G1 + iG1 G2;
goalTree = goalTree + s(G1,iG1 G2) + s(G2,iG1 G2);
discoveryCacheCreation(iG1 G2);
forall (G3 and ( (s(G1,G3) or s(G2,G3)) in goalGraph) and G3 != iG1 G2 ) {

if ( exact(G3, iG1 G2) ) then {
goalStore = goalStore − iG1 G2;
goalTree = goalTree − s(G1,iG1 G2) − s(G2,iG1 G2);
if ( ! (s(G1,G3) in goalGraph) ) then {

goalTree = goalTree + s(G1,G3); }
if ( ! (s(G2,G3) in goalGraph) ) then {

goalTree = goalTree + s(G2,G3); } }
if ( plugin(G3, iG1 G2) ) then {

goalTree = goalTree − s(G1,G3) − s(G2,G3);
goalTree = goalTree + s(iG1 G2,G3); }

if ( subsume(G3, iG1 G2) ) then {
if ( s(G1,G3) in goalGraph ) then {

goalTree = goalTree − s(G1,G3);
goalTree = goalTree + s(iG1 G2,G3); }

if ( s(G2,G3) in goalGraph ) then {
goalTree = goalTree − s(G2,G3);
goalTree = goalTree + s(iG1 G2,G3); } }

if ( intersect (G3, iG1 G2) ) then
iArcResolution(iG1 G2, G3);

}
return goalGraph();
}

Listing 8: Algorithm for Dynamic Resolution of Intersection Arcs in the Goal Tree
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The main merit of this algorithm is that it prevents the emergence of all undesirable situations in the
goal graph because all i-arcs are resolved at the time when they occur during the insertion of a new goal
template. Moreover, this algorithm resolves every undesirable situation that can occur due to the existence
of i-arcs into the pattern that we have defined in Section3.3.2. We omit the formal proof here and refer to
the respective discussion for the resolution of cycles (cf. Proposition3.3), for concatenations of i-arcs (cf.
Proposition3.1), and the representation of non-disjoint child in the initial goal graph (cf. Proposition3.2).
We shall demonstrate the algorithm in our running example below in Section5.1.2.

Discovery Cache Creation. Above we have specified the algorithms for inserting a goal template such
that the resulting goal graph exposes the desirable properties of a refined SDC graph. To complete the SDC
graph creation, we need to determine the Web services that are usable for the newly inserted goal template.
For this, we perform Web service discovery on the goal template level as specified in Section4.2.

After the insertion of a new goal templateGnew into the goal graph, theinsert(G)method from Listing5
invokes thediscoveryCacheCreation(G). Specified in Listing9, this performs Web service discovery for
Gnew and ensures that the resulting discovery cache is minimal, i.e. that it does not contain any redundant
WG mediators (cf. Proposition3.5). Because we have stored knowledge about the position ofGnew in
the goal graph, we can directly invoke the respective methods from the Web service discovery algorithm
specified in Listing3 (cf. Section4.2). If Gnew has been inserted as a new child node into the goal graph,
thenchildNodeDiscovery(G)determines the usable Web services. With respect to the inference rules from
Theorem3.1 (cf. Section3.2), this only considers Web services that are usable for a parent nodes ofGnew

under thesubsumeor intersectdegree; under theexactor plugin degree, the WG mediators forGnew are
omitted in the SDC graph. IfGnew is a new root node or if it is disconnected in the goal graph, then the
rootNodeDiscovery(G)method performs the Web service discovery. In order to maintain the minimality
of the discovery cache, we must remove redundant WG mediators that may result from this operation. An
existing WG mediator from a child node ofGnew to W is redundant ifW has been discovered to be usable
for Gnew under theexactor plugin degree. Finally, we can removeGnew in case that no Web service has
been found that can be used to solveGnew. Therewith, we obtain a minimal discovery cache for the SDC
graph, and for each goal template there is at least one usable Web service.

// function declaration
disccoveryCache(G) := {d(G,webservice)};

// main
discoveryCacheCreation(G) {

if ( position (G) = child ) then
childNodeDiscovery(G);

else {
rootNodeDiscovery(G);
forall (G2 and (s(G,G2) in goalGraph) ) {

if ( ( (d(G2,W) = (exact or plugin) ) and d(G,W) ) in discoverycache ) then
discoverycache = discoverycache − d(G,W);

}
if ( disccoveryCache(G) = {} ) then remove(G);
return discoverycache;
}

Listing 9: Algorithm for Discovery Cache Creation

In the preceding elaborations we have shown that the goal insertion algorithm ensures that after every
run the resulting SDC graph exposes the desirable properties of a refined SDC graph (cf. Definition 3.5).
This is essential because the Web service discovery operations specified in Section4 only work efficiently
on a SDC graph with these properties.
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Proposition 5.1 (Properties of Iteratively Constructed SDC Graph).The SDC graph that results from
an execution of the goal template insertion algorithm always exposes the properties of a refined SDC graph:

(i) the goal graph is aset of unconnected goal treeswherein the only occurring similarity degree
is subsumeand all occurring i-arcs are properly resolved, and

(ii) the discovery cache is minimal such that there are no redundant WG mediators.

5.1.2 Example

The iterative goal insertion is one of the central algorithms of the SDC technique. Because of this, we
illustrate the overall procedure within our running example for searching the best restaurant in a city. We
consider the iterative insertion of three goal templates:G1 for finding the best restaurant in a city located
in country that is member of the European Union,G2 for a German city, andG3 for finding the best Italian
restaurant in any city of the world. Furthermore, we discuss the discovery cache creation for a Web service
W for finding the best restaurant in a European city. Remember that the set of European countries is a
superset of member countries of the European Union (e.g. Switzerland and Norway are geographically
located in Europe but are not members of the EU). Figure23 illustrates the setting as well as steps for the
iterative goal template insertion.

Figure 23:Example for Iterative SDC Graph Creation
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We commence with the insertion ofG1. The SDC graph is empty at this point, so that theinsertmethod
from Listing 5 will allocate G1 as a single root node in the goal graph. Then, we perform Web service
discovery forG1, which determines the usability degree ofW for G1 to be plugin and adds the respec-
tive WG mediator. This completes the first insertion and results in a SDC graph as shown in step (1) of
the figure. Next, we insertG2. The insert method will findG1 and determine the similarity degree to be
subsume(G1,G2) and invoke thechildNodeInsertionfrom Listing 7. As there are no further nodes in the
goal graph,G2 is allocated as a new child node ofG1. For Web service discovery, thedisccoveryCacheCre-
ation method from Listing9 will not add a new WG mediator because the usability degree betweenG1 and
W is plugin. Thus, the insertion ofG2 results in the SDC graph shown in step 2.

When we now insertG3, the insert method will find the similarity degree ofG3 andG1 as the root
node to beintersect, cf. step 3, and thus invoke theiArcResolutionalgorithm from Listing8. This creates
the intersection goal templateGi(G1,G3), and inserts this into the goal graph. Following Definition3.4 (cf.
Section3.3.2), an intersection goal template is defined as the conjunction of the functional descriptions
of the original goal templates. This means that hereGi(G1,G3) describes the objective of finding the best
restaurant in a city in the European Union if and only if the best restaurant in this city is of type Italian –
not to find the best Italian restaurant in a city of an EU member country. Nevertheless, the following Web
service discovery for the intersection goal template will determine the usability degree ofW for Gi(G1,G3)

top beintersect(this performed before theforall loop in theiArcResolutionalgorithm,cf. Listing 8). Step 4
in the figure shows the intermediate SDC graph after this operation.

Now, we enter theforall loop of theiArcResolutionalgorithm in order to resolve possible undesired
implications from the insertion ofGi(G1,G3). Indeed, we will find the similarity degree betweenGi(G1,G3) and
G2 to be intersect, see step 5. Hence, theiArcResolutionmethod is invoked again for resolving the new i-
arc. This creates another intersection goal templateGi(G1,G2,G3), inserts this into the goal graph, and performs
Web service discovery that determines the usability degree ofW for Gi(G1,G2,G3) to also beintersect. As there
are no other nodes on the same level asGi(G1,G2,G3), theiArcResolutionalgorithm terminates and returns the
SDC graph shown as step 6 of the figure. However, the insertion operation forG3 is not yet completed: as
the last step, theinsert method invokes thedisccoveryCacheCreationfor G3. The position ofG3 has been
set toroot, and hence therootNodeDiscoverymethod is used that will determine the usability degree ofW
for G3 to beintersect. This completes the insertion operation forG3 that results in the SDC graph shown as
step 7 in the figure.

5.2 Evolution in Dynamic Environment

We now turn towards the maintenance of the SDC graph. In this section we define the operations for
evolution of the SDC graph, that is when goal template or Web service descriptions are added, removed, or
updated. The algorithms for handling such changes in the environment are mandatory in order to maintain
the operational reliability of the SDC technique in its dynamic environment. The following first discusses
the removal and updating of goal templates that are already existing in an SDC graph, and then discusses
changes to the available Web services.

5.2.1 Goal Template Removal and Update

We have already covered the insertion of new goal templates as the foundational operation for creating the
SDC graph above. Hence, we here merely need to specify the algorithms for handling the deletion or an
update of a goal description from the SDC graph.
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Such changes on existing goal templates can occur in the process of maintaining the SDC graph during
the lifetime of the system. They can only be performed for original goal templates but not for intersection
goal templates because these are automatically generated during the SDC graph creation. Moreover, changes
on existing goal templates may seriously derogate the quality of SDC-enabled Web service discovery as
they provide the foundation of the SDC graph. Because of this, removal and in particular updates of goal
templates should only be performed if they are absolute necessary in the application context. Nevertheless,
we must support them in such a way that the properties of the resulting SDC graph are maintained after the
removal or update of a goal template.

Goal Template Removal. This is concerned with removing an existing goal template from the SDC graph.
Possible scenarios for this are the clearing of the SDC graph in the context of an application scenario (cf.
Section5.3.3), or the removal of a goal template if there does not exists any usable Web service for solving
it (e.g. in Listing9). Independent of the reason why a goal template is removed, the properties of the SDC
graph must be maintained after a goal template removal.

Listing 10 shows the algorithm for removing a single goal template from an SDC graph such that the
properties of the SDC graph are maintained. LetGrm be the goal template that shall be removed. In general,
we only need to consider the impacts on the direct neighbors ofGrm that can result from its deletion. We
therefore must distinguish three cases: (1) ifGrm is a parent of an intersection goal template, (2) if the
position ofGrm on the SDC graph isroot, and (3) if the position ofGrm is child. The proper handling of
the latter two cases requires that case (1) is not given. Hence, we first check whetherGrm is a parent of an
intersection goal template; in this case, we first remove the intersection goal template and then removeGrm

(the firstif -clause in Listing10); this is independent of the position ofGrm.
We then require two methods for the removal of a goal template. The first one isrootNodeRemoval

that handles the removal ofGrm in case (2). It first removes all outgoing s-arcs, so thatGrm becomes
disconnected while the similarity relationship between all other goal templates remains. Secondly, we must
adjust the discovery cache. In order to maintain the minimality of the discovery cache, we re-direct those
WG mediators that start fromGrm and defineexactor plugin as the usability degree of the target Web
service such that a new WG mediator is defined for each child node ofGrm to the target Web service with
the usability degreeplugin. Therewith, we re-materialize the previously omitted WG mediators. Then, we
can remove all WG mediators that startGrm without loosing relevant knowledge. For case (3), i.e. ifGrm

is a child node in a goal tree, we redirect the outgoing a-arcs ofGrm to each parent node ofGrm. This also
covers the case ifGrm has been an intersection goal template with two or more parents (i.e. the first removal
step in case (1)). The discovery cache handling is the same as in therootNodeRemovalmethod explained
above. Finally, we removeGrm from the goal store and obtain the updated SDC graph that still captures the
relationship of the remaining goal templates in the goal graph and has a minimal discovery cache.

// type declarations
G,G2,G3 := goaltemplate;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);
// function declarations
position (goaltemplate) := (root | child ) ;
outgoingGGArcs(G) := {s(G,goaltemplate)};
incomingGGArcs(G) := {s(goaltemplate,G)};
disccoveryCache(G) := {d(G,webservice)};
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// main
remove(G) {

if ( G2 and (s(G,G2) in goalGraph) and G3 and (s(G3,G2) in goalGraph) ) then {
remove(G2);
remove(G);

}
if ( position (G) = root ) then {

rootNodeRemoval(G); }
else {

childNodeRemoval(G);
}
goalStore = goalStore − G;
return sdcGraph;
}

// removing a root node
rootNodeRemoval(G) {

goalTree = goalTree − outgoingGGArcs(G);
forall ( G2 and (s(G,G2) in goalGraph) ) {

if ( W and (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {
d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }

}
discoveryCache = discoveryCache − discoveryCache(G);
return sdcGraph;

}
// removing a child node
childNodeRemoval(G) {

forall ( G2 and (s(G,G2) in goalGraph) ) {
forall ( G3 and (s(G3,G) in goalGraph) ) {

goalTree = goalTree + s(G3,G2); }
if ( W and (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {

d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }

}
goalTree = goalTree − outgoingGGArcs(G);
return sdcGraph;

}

Listing 10: Algorithm for Removal of a Goal Template from the SDC Graph

Goal Template Update. This is concerned with the update of the definition of a goal template that exists
in the SDC graph. A possible scenario for such an update is the weakening or strengthening of the objective
description (e.g. in our running example, if the locality constraint for the input city is changed from “Eu-
ropean Union”to “Europe”, respectively vice versa). This may result from refinement operations on a goal
template that has not been solvable by any available Web service before; techniques for such goal refine-
ments are presented in [7, 38]. Another possibility for the need of a goal template update is if the existing
goal template definition is inconsistent or inappropriate in the application context. The straight forward so-
lution for supporting such goal template updates would be do remove the old version and then insert the new
version of the description. However, in certain cases we can omit the execution of the removal and insertion
operation (which both are computational expensive).

In general, the update of a goal template results in a change of the goal description. We can express
this change in terms of the similarity degree between the old and the new version of the goal template. If
the similarity degree isexact, we merely replace the old version of the goal template with the new one. We
do not need to perform any changes in the SDC graph because the position of the updated goal template
in the goal graph as well as its usable Web services will be the same after the update. Furthermore, we
can efficiently handle two other situations: (1) if the updated goal template is a single root node in the goal
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graph and the similarity degree between the old and the new version isplugin, and (2) if the updated goal
template is a child node at the lowest level of a goal tree with only one parent and the similarity degree
between the old and the new version issubsume. In both cases, the position of the updated goal template in
the goal tree will remain the same; we thus merely replace the old version with the new one. However, we
must perform a Web service discovery for the new version because there might be more usable Web services
(case (1)), respectively fewer (case (2)). In all other situations, we perform the default update operation that
first removes the old version (calling theremovemethod from Listing10) and then inserts the new version
with the goal template insertion algorithm from Listing5.

Listing 11 shows the algorithm for handling updates of goal templates in the goal graph as explained.
Therein, theupdate(G1,G2)takes two goal templates as input: the first one denotes the old version of the
updated goal template, and the second one is the new version.

// type declarations
G,G2,G3,G4,G5 := goaltemplate;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);
// function declarations
position (goaltemplate) := (root | child ) ;
singleRoot(G) := boolean;
lowestChildWithSingleParent(G) := boolean;
// main
update(G1,G2) {

if ( exact(G1,G2) ) then {
goalStore = goalStore − G1;
goalStore = goalStore + G2;

}
if ( position (G1) = root and (s(G1,G3) in goalGraph ) and ! (s(G4,G3) in goalGraph) )

then singleRoot(G1) = true;
else singleRoot(G1) = false;

if ( position (G1) = child and ! (s(G1,G3) in goalGraph) and (s(G4,G3) in goalGraph) and ! (s(G5,G3) in goalGraph) )
then lowestChildWithSingleParent(G1) = true;
else lowestChildWithSingleParent(G1) = false;

if ( (singleRoot(G1) and plugin(G1,G2) ) or (lowestChildWithSingleParent(G1) and subsume(G1,G2)) ) then {
position (G2) = position(G1);
goalStore = goalStore − G1;
goalStore = goalStore + G2;
discoveryCacheCreation(G2);

}
else {

remove(G1);
insert (G2);

}
return sdcGraph;

}

Listing 11: Algorithm for Update of a Goal Template in the SDC Graph

5.2.2 Changes on Available Web Services

The second aspect for the maintenance of the SDC graph during the life time of the system is the handling
of changes on the available Web services. Such changes occur if a Web service provider publishes a new
Web service, removes an existing Web service from the registry, or provides an updated description for an
existing Web service. Of course, the discovery cache of the SDC graph must reflect the currently available
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Web service in order to provide useful discovery results. For this, the following specifies the operations
for the insertion, removal, and update of Web service descriptions. We recall that the SDC-enabled Web
service discovery component is decoupled from the Web service registry in the overall system architecture;
the maintenance operations for the SDC graph specified here are invoked when a respective change occurs
in the Web service registry (cf. Figure6 in Section2.4).

Web Service Insertion. This handles the insertion of the a new Web service that has been deployed into
the repository. LetWnew be this new Web service. To properly incorporate this into the SDC graph, we
merely need to addWnew to discovery cache – that is, to define the minimal number of new WG mediators
that describe the usability degree ofWnew for every goal template that exists in the goal graph.

Listing 12 shows the algorithm for this. We start with inspecting the usability degree ofWnew for all
goal templates whose position isroot. If Wnew is usable for a root node, we proceed with determining its
usability degree for the child nodes in the goal graph. The sub routinechildNodeWSInsertiondoes this in a
depth-first manner, thereby taking the inference rules from Theorem3.1 into account.

// type declarations
G,G2,G3,G4,G5 := goaltemplate;
W := webservice;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);

// main
insert (W) {

forall (G and position(G) = root) {
matchmakingUsability(G,W);
if (! d = disjoint ) then {

discoverycache = discoverycache + d(G,W);
childNodeWSInsertion(G,W);

}
}

return discoverycache;
}

//
childNodeWSInsertion(G,W) {

if ( (d(G,W) = exact) or (d(G,W) = plugin) or (d(G,W) = disjoint ) ) then return discoverycache;
else {

forall ( G2 and (s(G,G2) in goalGraph) ) {
if ( d(G,W) = subsume ) then {

matchmakingUsability(G2,W);
if (! d = disjoint ) then

discoverycache = discoverycache + d(G2,W);
}
if ( d(G,W) = intersect ) then {

if ( plugin(G2,W) ) then d = plugin;
if ( intersect (G2,W) ) then d = intersect ;
discoverycache = discoverycache + d(G2,W);

}
childNodeWSInsertion(G2,W);
}

}
return discoverycache;

}

Listing 12: Algorithm for Insertion of a Web Service Description
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Web Service Removal. When a Web serviceWrm is removed from the registry, it is no longer available for
solving a goal and hence must be removed from the SDC graph. The algorithm for this is straight forward:
we delete all WG mediators whose target isWrm. As an additional step, we can afterwards remove those
goal templates for whichWrm has been the only usable Web service – because then there does no longer
exists a Web service that can be used to solve this goal template or any of its instantiations. Listing14
provides the algorithm for this; we here omit the type declarations as they are the same as above.

// function declarations
discoveryCache(W) := {d(goaltemplate,W)}
// main
remove(W) {

discoveryCache(W) = {d(G,W)};
discoverycache = discoverycache − discoveryCache(W);
return discoverycache;

}
// optional removal of goal templates
removeGAfterWSDeletion(W) {
discoveryCache(W) = {d(G,W)};
forall (G and (d(G,W) in discoveryCache(W)) ) {
remove(G); }

return sdcGraph;
}

Listing 13: Algorithm for Deletion of a Web Service Description

Web Service Update. The final operation handles the change of the description of a Web serviceW that
is an element of the SDC graph. This occurs when the functionality provided byW is changed, or as a
correction of the description ofW . Similar to the update of goal templates discussed above, the straight
forward solution for this is to remove the old version and then add the new version of the Web service
description. However, here there is also a situation that can be handled more efficiently.

If the description update result in a matching degreeplugin(Wold,Wnew) – i.e. that the new functional-
ity completely covers the old one – and the usability degree ofWold for a root nodeGroot in the goal graph
has beenexactor plugin, then the usability degree ofWnew for Groot and all its child nodes remains the
same. We also do not need to add additional WG mediators for the child nodes ofGroot as these would be
redundant. This might be a quite regular situation in real world settings, e.g., if in our running example the
provider extends the locality coverage of a best-restaurant-search Web service from the member states of
the European Union to all countries located in Europe. In all other situations, the potential impacts of the
update are too complex to be handled individually so that we apply the default update procedure.

update(W1,W2) {
if ( plugin(W1,W2) ) then {

forall (G and position(G) = root ) {
if ( (d(G,W1) = exact) or (d(G,W1) = plugin) ) then {

forall ( d(G,W1) in discoverycache ) {
discoverycache = discoverycache + d(G,W2);
discoverycache = discoverycache − d(G,W1);
return discoverycache;

} } } }
else {

remove(W1);
insert (W2);

}
}

Listing 14: Algorithms for Deletion and Update of a Web Service Description
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To conclude, we observe that the algorithms specified above ensure that the SDC graph maintains its
formal properties under any possible change that can occur in during its life time (i.e. the goal graph as
a set of goal trees and a minimal discovery cache). This is essential because therewith the SDC-enabled
Web service discovery stays operational in its dynamically evolving environment. We therewith satisfy
requirement8 – which has been the only remaining one from those discussed in Section2.

Proposition 5.2 (Properties of Evolving SDC Graph).The algorithms for the insertion, removal, and
updating of goal templates and Web services ensure that the SDC graph exposes the properties of a refined
SDC graph at any point in time. This ensures the operational reliability of the SDC-enabled Web service
discovery in its dynamically evolving environment.

5.3 Advanced Management

The preceding elaborations have defined the mandatory algorithms for creation and maintenance of the
SDC graph in its dynamic environment. We now discuss possible extensions for increasing the quality of
the SDC technology. The following addresses ontology-based learning of goal templates, in the integration
of selection and ranking techniques of usable Web services, and the maintenance of the SDC graph in an
application context. These advanced management techniques for the SDC graph are optional extensions,
meaning that they are not mandatory in order to maintain the operational reliability of SDC-enabled Web
service discovery. We thus abandon the definition of algorithms but merely discuss the obtainable benefits.

5.3.1 Goal Template Learning

The first possibility is the automated learning of additional goal templates on the basis of the background
ontology. Goal templates are the backbone of the SDC graph, serving as the indexing structure of available
Web services and as the basis for goal formulation by clients. The more goal templates exists that can be
organized into a fine grained goal tree, the better becomes the quality of the SDC graph for both its purposes.
This quality can be enforced by automated generation of additional goal templates, in particular of new goal
templates that establish a more fine grained goal graph.

Let us illustrate this in our running example. Imagine that there exists a goal templateG1 for finding
the best restaurant in a Germany city. The background ontologyΩ distinguishes the two dimensions of
the geographic locality of a city and the type of the restaurant. On the basis of the locality taxonomy
described inΩ, we can generate a new goal templateG2 for finding the best best restaurant in a European
city. When inserting this into the SDC graph,G2 becomes a parent node ofG1 because their similarity degree
is subsume(G2,G1). Therewith, we have artificially expanded the SDC graph so that now searches for the
best restaurant throughout Europe is supported, and we can make use of the properties of goal trees for
SDC-enabled Web service discovery as discussed above. This procedure can of course be repeated for every
dimension of the description ofG1, e.g. for other countries in Europe as well as for the distinct restaurant
types. So, we can eventually generate an extensive goal tree whose elements cover every possible goal
instance of the best restaurant search that can be expressed by the domain knowledge described inΩ. One
step further, we can also generate the goal template from a concrete goal instance. For example, if a client
specifies a goal instance for finding the best restaurant in Berlin (and “Berlin”is specified to be an instance
of city with respect toΩ), we can generalize this towards the goal templateG1 from above by lifting the
instance declaration to its corresponding concept in the domain ontology. Then, we can commence with the
generation of the extensive goal tree as explained above. These operations would be performed at design
time, and thus do not hamper the run time efficiency of the SDC-enabled Web service discovery.
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This technique applies the idea of ontology learning and especially concept extraction [24]. However,
respective techniques like taxonomy extraction need to be adopted into the context of goal-based Web ser-
vice usage. Therein, the foundational principle is that the application context (i.e. client requests formalized
as goals) is explicitly separated from the functionalities provided by Web services [10]. In general, the
functional description of a goal can consist of an arbitrary number of predicates. Each of these predicates
denotes one dimension for which new, semantically similar goal templates can be created. Nevertheless, the
ontology-based generation of more extensive goal trees appears to be a suitable technique for increasing the
quality of SDC-enabled Web service discovery.

5.3.2 Integration with Non-Functional Discovery

A second possibility is the integration with non-functional discovery aspects. Because of the primary focus
on functional usability of a Web service for solving a goal, our framework allocates the testing of quality-of-
service requirements and behavioral compatibility after the functional Web service discovery (cf. Figure5
in Section2.1). However, these aspects are relevant for the usability of a Web service. Thus, we could
integrate them into the SDC graph in order to increase its quality as a pre-filter for Web service discovery.

Essentially, there are two possibilities that can result non-functional discovery: (1) that a Web service is
not usable for solving a goal, and (2) a ranking of the set of usable Web services. The first case occurs when
the Web service violates some quality requirements specified in the goal description (e.g. the use of a trusted
payment method), or if not resolvable behavioral mismatches occur. This can be handled by removing the
Web service from the discovery cache for the goal template, respectively to not consider the Web service
as a potential candidate for solving a goal instance. For the second case, we can incorporate the result of a
Web service ranking component by organizing the usable Web services for a goal template accordingly. For
example, let there be five Web services that are functionally usable for a goal templateG, and let these be
stored in the SDC graph as a set{W1,W2,W3,W4,W5}. We then perform a ranking the Web services in
this set with respect to the requirements inG. Let this return the preference order〈W2,W4,W1,W5,W3〉.
We can store this as an ordered list in the SDC graph, and for a new goal instance we inspect the candidates
in the sequence of this ordering. With such an integration, the SDC graph captures Web service discovery
results for all aspects that are considered to be relevant for the usability of a Web service for solving a goal.
However, the constituting aspect of the SDC graph remains the functional usability.

5.3.3 SGC Graph Clearing

The final aspect to be discussed here is the maintenance of the SDC graph for a specific application. In
particular, we here refer to maintenance of the goal templates in the SDC graph; the consistency with
the available Web services is automatically maintained by the algorithms for changes in the Web service
repository (cf. Section5.2.2). Changes on existing goal templates may become necessary if a goal template
is not solvable by the available Web services, or if the objective described in a goal templates is no longer
relevant for the application context (e.g. buying a no computer model that is not available any more). We
expect such maintenance operations to be performed manually. The consistency of the SDC graph is ensured
by the respective algorithms for goal template removal and updates (cf. Section5.2.1). As discussed above,
such maintenance operations may derogate the quality of the SDC-enabled Web service discovery.

The SDC graph is stored in a persistent memory, and only loaded partially into the working memory at
runtime. Because of this, the size of the SDC graph is not critical for the operational reliability at runtime.
This is an essential difference between SDC and caching techniques in other areas wherein cache clearing
is critical, e.g. in caching techniques for Web traffic [49].
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6 Summary and Future Work

This technical report has specified the Semantic Discovery Caching technique, short SDC. This captures
Web service discovery results on the goal template level, and utilizes this knowledge to enable efficient Web
service discovery for concrete goal instances at runtime.

We have recalled the approach for Web service discovery on formal functional descriptions that has been
presented in early works. Extending the Web service discovery approach defined in the WSMO framework,
this distinguishes goal templates as generic objective descriptions and goal instances that describe a concrete
client objective by instantiating a goal template with concrete inputs. The purpose of the SDC technique is
to reduce the search space for Web service discovery. Its central construct is the SDC graph that organizes
existing goal templates in tree structures. Therein, the possible solutions of a goal template that is a child
node always denote a subset of those for its parent node. On the basis of this, efficient runtime Web service
discovery can be realized.

The central aspects that have discussed in detail in this report are:

• discussion of the requirements for the SDC technique, in particular the terminology clarification (ef-
ficiency and scalability), the requirements on the SDC graph, and the technical integration of SDC-
enabled Web service discovery into semantically enabled SOA systems (cf. Section2)

• the definition of the SDC graph (cf. Section3), including itselements(goal templates, Web services,
and mediators as directed arcs), the notion ofgoal similaritydescribed as the matching degree between
functional descriptions of goal templates, and the concept ofintersection goal templatesand their
usage for resolving undesirable situations in the SDC graph

• the iterative creation of an SDC graph such that it exposes the following properties:

1. its inner nodes are goal templates that are organized is trees wherein the only occurring similarity
degree issubsume, and

2. its leaf nodes are Web services that are connected by the minimal number of arcs such that the
usability degree of each Web service for every goal template is captured

• algorithms that maintain the structure of the SDC graph in its dynamic environment, i.e. for adding,
removing, and updating goal templates as well as Web service descriptions

• algorithms for SDC-enabled Web service discovery at runtime, including the goal formulation process
and the determination of the usability of a Web service for a goal instance.

This report merely presents the detailed specification of the SDC-enabled Web service discovery. As the
next steps in this research, the SDC technique will be implemented as a component in the WSMX system
(the WSMO reference implementation), and, on the basis of this, its applicability for real world scenarios
will be evaluated. We shall also discuss related work in more detail and therewith explicate the research
contributions of the presented approach.
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APPENDIX

A Matching Degrees Overview

The following provides a concise overview of the matching degrees definition, defined over functional de-
scriptions as specified in Section1.2.2.

In the SGC technique, we use the matchmaking degrees not only for denoting the usability of a Web
service for solving a goal template but also for denoting the degree of similarity of goal templates. With
respect to this, Table6 provides a concise overview of the degree definitions, Table7 explains their meaning
for the usability of Web services, and Table8 explains their meaning for the similarity of goal templates.

Table 6:Definition of Matching Degrees forD1,D2

Denotation
D1 = (Σ, Ω, IF , φD1)
D2 = (Σ, Ω, IF , φD2)

Definition
β : IF → UA

φD = [φpre]Σpre
D

→ΣD
⇒ φeff

ΩA = Ω ∪ [Ω]Σpre
D

→ΣD

Meaning
for {τ}1 |=A D1,
and{τ}2 |=A D2

Visualization

exact(D1,D2) ΩA |= ∀β. φD1 ⇔ φD2
if and only if τ ∈ {τ}1

thenτ ∈ {τ}2

plugin(D1,D2) ΩA |= ∀β. φD1 ⇒ φD2
if τ ∈ {τ}1 then

τ ∈ {τ}2

subsume(D1,D2) ΩA |= ∀β. φD1 ⇐ φD2
if τ ∈ {τ}2 then

τ ∈ {τ}1

intersect(D1,D2) ΩA |= ∃β. φD1 ∧ φD2
there is aτ such that

τ ∈ {τ}1 andτ ∈ {τ}2

disjoint(D1,D2) ΩA |= ¬∃β. φD1 ∧ φD2
there is noτ such that

τ ∈ {τ}1 andτ ∈ {τ}2

Because of their matching conditions, there is a formally relationship between the matching degrees. In
particular, it holds that:

(i) ¬ disjoint⇒ intersect (iii) plugin⇒ intersect
(ii) subsume⇒ intersect (iv) plugin∧ subsume⇒ exact.

With respect to this, we can define an order to the matching degrees such that

exact > plugin, subsume > intersect

To properly separate the distinct situations, we apply a strict use of the matching degrees by always
using the degree with the highest ordering.
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Table 7:Meaning of Matching Degrees for the Usability of a Web service for solving a Goal
exact(DG,DW ) W can be used for solving any goal instanceGI(G)

plugin(DG,DW )

all possible solutions forG can be provided byW but there can exist aτ ∈ {τ}W

such thatτ 6∈ {τ}G . As every possible input bindingβ for G that defined forGI(G)
triggers such an execution ofW that{τ}W (β) ∈ {τ}G , under this degreeW can be
used for solving any goal instance ofG.

subsume(DG,DW )

all executions ofW can satisfyG, but there are possible solutions forG that cannot be
provided byW . In consequence, forW to be usable for a goal instanceGI(G), it has
to hold that{τ}GI(G) ⊆ {τ}W . This is given if the input bindingβ defined forGI(G)
allows to invokeW .

intersect(DG,DW )

under this degree there are possible solutions forG that cannot be provided byW , as
well as executions ofW that do not solveG. Hence, forW to be usable for a goal
instanceGI(G), it has to hold that the input bindingβ defined forGI(G) instantiates
G in a way such that{τ}GI(G) ⊆ {τ}W (β).

disjoint(DG,DW ) W can not be used for solvingG or any of its instantiations.

Table 8:Meaning of Matching Degrees for Semantic Similarity of Goals

exact(DG1 ,DG2)
Both goals are semantically equivalent. Hence, allτ that satisfyG1 also satisfyG2

and vice versa. All Web services that are usable forG1 are also usableG2 under the
same usability degree.

plugin(DG1 ,DG2) Eachτ that satisfiesG1 also satisfiesG2. Hence, all Web services usable forG1 are
also usable forG2 but not vice versa.

subsume(DG1 ,DG2) Eachτ that satisfiesG2 also satisfiesG1. Hence, all Web services usable forG2 are
also usable forG1 but not vice versa.

intersect(DG1 ,DG2)
There is at least oneτ that resolves both goals. A Web service that can provide thisτ
is hence usable for both goals.

disjoint(DG1 ,DG2)
A τ that resolves both goals does not exists. We can not make any statement between
the Web services usable for solving the goals.
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B Proof of Theorem3.1: Inference Rules for Usability Degrees

The following provides the proof for theorem3.1 in Section3.2 that defines the inference rules for deter-
mining the usability degree of a Web serviceW for a goal templateG2 on the basis of the similarity degree
betweenG2 and another goal templateG1 and the usability degree ofW for G1. For each of the five possible
similarity degree, it distinguishes the possible usability degrees ofW for G2. To proof the theorem, we need
to show that the enlisted inferable usability degrees for ofW for G2 are correct and the only possible ones.

We use the following symbols.G1 is the goal template for which the usability degree of a Web service
W is known, andG2 is the goal template for which the usability degree ofW shall be determined.DG1

is the functional description ofG1 that formally describes all its possible solutions{τ}G1 , DG2 the one
of G1 describing the set of solutions{τ}G2 , andDW a functional description such thatW |=A DW , i.e.
DW formally describes{τ}W as the set of all possible executions ofW . All functional descriptions are
defined as a 4-tupleD = (Σ, Ω, IF , φD), cf. Definition 1.2, with implication semantics such thatφD =
[φpre]Σpre

D →ΣD
⇒ φeff (cf. Definition1.3). We further use the definitions from AppendixA on the matching

degrees (cf. Table 6), and their meaning for the usability of a Web service for a goal template and its
corresponding goal instances (cf. Table7), respectively the meaning for denoting the similarity degree of
goal templates (cf. Table8). To properly separate the distinct situations, we apply a strict use of the matching
degrees by always using the degree with the highest ordering ofexact > plugin, subsume > intersect.

Proof. We commence with the first part onexact(G1,G2). This is defined asΩA |= ∀β. φDG1 ⇔ φDG2 , such
that for all possible input bindingsβ it holds thatτ ∈ {τ}G1 if and only if τ ∈ {τ}G2 so that{τ}G1 = {τ}G2 .
Because of this equivalence, it trivially holds that the usability degree of a Web serviceW is the same for
G1 and forG2.

We now discuss the second part that is concerned with theplugin(G1,G2) similarity degree. This is
formally defined asΩA |= ∀β. φDG1 ⇒ φDG2 , so that{τ}G1 ⊆ {τ}G2 and if τ ∈ {τ}G1 thenτ ∈ {τ}G2 .
The following holds under this similarity degree:
〈1〉 Each Web serviceW that is usable forG1 is also usable forG2: if ∃τ. τ ∈ ({τ}G1 ∩ {τ}W ) then also
∃τ. τ ∈ ({τ}G2 ∩ {τ}W ) because{τ}G1 ⊆ {τ}G2 . Thus, whenever the usability degree ofW for G1 is
eitherexact, plugin, subsume, or intersect– each of these satisfies the basic matching condition of the goal
template level (cf. Definition 1.1) – then the usability degree ofW for G2 can not bedisjoint. This applies
to clauses 2.1 to 2.8.
〈2〉 exact(G1,W ) defines that{τ}G1 = {τ}W . Under the assumption that notexact(G1,G2) (handled
above), it holds that{τ}G1 ⊂ {τ}G2 . Hence{τ}G2 ⊃ {τ}W , so thatsubsume(G2,W ) is a possible usability
degree ofW for G2. There can not be anyτ with τ ∈ {τ}W andτ 6∈ {τ}G2 such thatintersect(G2,W ) can
not hold; also,disjoint(G2,W ) can not hold because of〈1〉. This shows clause 2.1.
〈3〉 subsume(G1,W ) defines that{τ}G1 ⊇ {τ}W . Under the assumption that notexact(G1,G2), it holds
that{τ}W ⊆ {τ}G1 ⊂ {τ}G2 , so that the only possible usability degree ofW for G2 is subsume(G2,W ).
〈4〉 plugin(G1,W ) defines that{τ}G1 ⊆ {τ}W . Here, the usability degree ofW for G2 can be eitherexact
if {τ}G2 = {τ}W , plugin if {τ}G2 ⊂ {τ}W , subsumeif {τ}G2 ⊃ {τ}W , or intersectif there exists aτ such
thatτ ∈ {τ}W andτ 6∈ {τ}G2 ; it can not bedisjoint because of〈1〉. This shows clauses 2.3 - 2.6.
〈5〉 intersect(G1, W ) defines that∃τ ∈ ({τ}G1 ∩ {τ}W ), so that also∃τ ∈ ({τ}G2 ∩ {τ}W ) because
of {τ}G1 ⊆ {τ}G2 . Hence,intersect(G2,W ) is one possible usability degree ofW for G2. It can also
be subsume(G2,W ) if {τ}G2 ⊃ {τ}W . It can not beexactor plugin because then it would hold that
τ ∈ ({τ}G1 ⊆ {τ}W ) – which contradicts the matching condition forintersect(G1,W ). This proves
clauses 2.7 - 2.8.
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〈6〉 disjoint(G1,W ) defines that¬∃τ ∈ ({τ}G1 ∩ {τ}W ). Under this similarity degree, we only know that
W can not provide any solution forG1. However,W might be able to provide a solution forG2 such that
∃τ ∈ {τ}W ∩ ({τ}G2 ∩ {τ}G1), but we can not infer the usability degree of such aW for G2. This relates
to clause 2.9.

Next, we discuss the third part for the similarity degreesubsume(G1,G2). This is formally defined as
ΩA |= ∀β. φDG1 ⇐ φDG2 , so that{τ}G1 ⊇ {τ}G2 and if τ ∈ {τ}G2 thenτ ∈ {τ}G1 . The following holds
under this similarity degree:
〈1〉 if exact(G1, W ) such that{τ}G1 = {τ}W and under the assumption notexact(G1,G2) (handled above),
it holds that{τ}W ⊃ {τ}G2 . Hence, the only possible usability degree ofW for G2 is plugin(G2,W ); it
can not beexact, subsume, or intersectbecause{τ}W = {τ}G1 ⊃ {τ}G2 , and notdisjoint because every
possible solution forG1 can be provided byW . Similar, if plugin(G1, W ) then{τ}W ⊇ {τ}G1 ⊃ {τ}G2 so
that the only possible usability degree ofW for G2 is plugin(G2, W ). This proves clauses 3.1 and 3.2.
〈2〉 subsume(G1,W ) defines that{τ}G1 ⊇ {τ}W . Because{τ}W can be any subset of{τ}G1 , here all
five usability degrees are possible forW andG2. In particular,W can be not usable forG2 if ¬∃τ ∈
({τ}G2 ∩ {τ}W ). This relates to clauses 3.3 - 3.7.
〈3〉 intersect(G1,W ) defines that∃τ1 ∈ ({τ}G1 ∩ {τ}W ) but there can be aτ2 ∈ {τ}G1 but τ2 6∈ {τ}W

as well as aτ3 6∈ {τ}G1 but τ3 ∈ {τ}W . The possible degrees under whichW is usable forG2 are
plugin(G2,W ) if {τ}G2 ⊂ {τ}W , or intersect(G2,W ) if ∃τ ∈ ({τ}G2 ∩ {τ}W ). W might also be not
usable, i.e.disjoint(G2,W ), if the condition for theintersectdegree is not satisfied. However, the usability
can neither besubsumeand hence notexactbecause this would require{τ}W ⊆ {τ}G2 ⊆ G1 – which
contradicts the condition ofintersect(G1,W ) undersubsume(G1,G2). This proves clauses 3.8 - 3.10.
〈4〉 if disjoint(G1,W ) then alsodisjoint(G2,W ) because ifW can not provide aτ ∈ {τ}G1 then it also
can not provide aτ ∈ {τ}G2 with {τ}G1 ⊇ {τ}G2 . This proves clause 3.11.

We now turn towards the fourth part on the similarity degreeintersect(G1,G2). Its matching condition
is ΩA |= ∃β. φDG1 ∧ φDG2 , so that∃τ1 ∈ ({τ}G1 ∩ {τ}G2) but there can be aτ2 ∈ {τ}G1 but τ2 6∈ {τ}G2 as
well as aτ3 6∈ {τ}G1 but τ3 ∈ {τ}G2 . Here, the following holds:
〈1〉 if exact(G1, W ) such that{τ}G1 = {τ}W and under the assumption notexact(G1,G2) (handled above),
the only possible usability degree ofW for G2 is intersect(G2,W ) because∃τ.τ ∈ ({τ}G1 ∩ {τ}G2) and
{τ}G1 = {τ}W . This proves clause 4.1.
〈2〉 if plugin(G1,W ) such that{τ}G1 ⊆ {τ}W , then the only possible usability degrees ofW for G2 are
plugin(G2,W ) if {τ}G2 ⊆ {τ}W or intersect(G1,W ) otherwise. It can not besubsume(G2,W ) and
hence notexact(G2,W ) because this would require{τ}G2 ⊇ {τ}W which contradicts{τ}G1 ⊆ {τ}W

underintersect(G1,G2) because there exists aτ2 such thatτ2 ∈ {τ}G1 butτ2 6∈ {τ}G2 . This proves clauses
4.2 and 4.3.
〈3〉 if subsume(G1,W ) such that{τ}G1 ⊇ {τ}W , thenW can be usable forG2 under thesubsumedegree if
{τ}G2 ⊇ {τ}W , or under theintersectdegree if there is aτ such thatτ ∈ {τ}W but τ ∈ {τ}G2 ; otherwise,
W is not usable so thatdisjoint(G2,W ). However, the usability degree ofW for G2 can not beplugin and
hence notexactbecause this would require that{τ}G2 ⊆ {τ}W which contradictssubsume(G1,W ) under
the intersect similarity degree. This proves clauses 4.3 - 4.6.
〈4〉 under theintersectdegree for both the similarity ofG1 andG2 as well as for the usability ofW for
G1, all five usability degrees are possible forW andG2. In particular,W might not be usable forG2 if
¬∃τ ∈ ({τ}G2 ∩ {τ}W ). This relates to clauses 4.7 - 4.11.
〈5〉 disjoint(G1,W ) defines that¬∃τ ∈ ({τ}G1 ∩{τ}W ). However,W might be able to provide a solution
for G2 such that∃τ ∈ {τ}W ∩ ({τ}G2 ∩ {τ}G1), but we can not infer the usability degree of such aW for
G2. This relates to clause 4.12.
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We finally discuss the implications of similarity degreedisjoint(G1,G2. This defines thatG1 andG2)
do not have a common solution with the conditionΩA |= ¬∃β. φDG1 ∧ φDG2 . If the usability ofW for
G1 is eithersubsumeor exact, then{τ}G1 ⊇ {τ}W . As disjoint(G1,G2) defines that{τ}G1 ∩ {τ}G2 = ∅,
W can not be usable in these cases. This proves clauses 5.1 and 5.2. For all other usability degrees ofW
for G1, we can not make any statement about the usability ofW for G2: regardless whetherplugin(G1, W )
or intersect(G1,W ) or disjoint(G1,W ), there might always be aτ such thatτ ∈ ({τ}G2 ∩ {τ}W ). In
particular,W might be usable forG2 if it is not usable forG1. This relates to clause 5.3 and completes the
proof.
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C Complete SDC Algorithm

This appendix provides all algorithms that have been specified in this report in a concise manner, including
the algorithms for creation and maintenance of the SDC graph (cf. Section5), and those for SDC-enabled
Web service discovery (cf. Section5).

Table 9:Syntax for Pseudo Code used in Algorithm Definitions
:= data type declaration
= value assignment

null denotes that the value of an object is empty
and, or logical operators that connect conditions

! defines the negation of the subsequent condition
{e} set with elements of typee

e in {e} denotes thate is an element of a set
name(input,...) name and the input value of a method
name(input) denotes a function

forall(condition) loop that is iterated for all objects for which the condition
is satisfied until the halting condition is reached

if (condition) then (action) defines a conventional guarded action
else (action)
return(value) the halting condition that returns the value

// type declarations
G,G2,G3,G4,G5 := goaltemplate;
GI = goalinstance;
W := webservice;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);

// function declaration for supported entry points
action := ( new | remove | update )
item := ( goaltemplate | goalinstance | webservice );
event(action,item) := boolean;

// main control
SDCcontrol {

if ( event(new,GI) ) then discovery(GI) ;
if ( event(new,G) ) then insert(G);
if ( event(remove,G) ) then remove(G);
if ( event(update,G) ) then update(G);
if ( event(new,W) ) then insert(W);
if ( event(remove,W) ) then remove(W);
if ( event(update,W) ) then update(W);
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% runtime Web service discovery for a new goal instance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
discovery(GI) {

G = goalTemplateSearch(GI);
GI = (G,inputs);
lookup(G);



78 DERI TR 2007-02-03

goalInstanceMatching(GI);
}
// finding the most appropriate goal template
target := goaltemplate;
goalTemplateSearch(GI);
target = null ;
findRootNode(GI);
if (! target = null ) then
findChildNode(target);

return target ;
// find root of goal tree
findRootNode(GI){

forall (root(G)) {
if instantiates (GI,G) then
target = G;
return target ;

}
return target ;
}
// find child node in goal tree
findChildNode(G1) {

forall (subsume(G1,G2)) {
if instantiates (GI,G2) then
target = G2;
findChildNode(target);

else
return target ;
}
return target ;
}
// usability lookup for inferable usability degrees
lookup(G) {

if ( child (G) ) then {
forall ( G2 and subsume(G2,G) ) {

forall ( W and ( exact(G2,W) or plugin(G2,W) ) ) {
return W;

}
lookup(G2);

} } }
// goal instance level matchmaking
goalInstanceMatching(GI) {

forall ( W and exact(G,W) or plugin(G,W) ) {
return W; }

forall ( W and subsume(G,W) ) {
if ( satisfiable (W,inputs) ) then

return W; }
forall ( W and intersect(G,W) ) {

if ( satisfiable (G,W,inputs) ) then
return W;

else
return systemout = ’goal instance can not be solved’;

} }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% insertion of a new goal template
% (for iterative SDC graph creation)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// function declarations
position (goaltemplate) := (root | child ) ;
intersectionGoalTemplate(goaltemplate,goaltemplate) := goaltemplate;
disccoveryCache(G) := {d(G,webservice)};
// main
insert (G){

if ( goalStore != {} ) then {
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forall ( G2 and position(G2) = root) {
if ( exact(G2,G) ) then return goalStore;
if ( plugin(G2,G) ) then rootNodeInsertion(G,G2);
if ( subsume(G2,G) ) then childNodeInsertion{G,G2};
if ( intersect (G2,G) ) then {

position (G) = root ;
iArcResolution{G,G2}; }

else {
position (G) = root ;
return goalStore = goalStore + G;

} }
discoveryCacheCreation(G);
}
// inserting a new goal template as a root node
rootNodeInsertion{G,G2} {
goalStore = goalStore + G;
position (G2) = child ;
position (G) = root ;
goalTree = goalTree + s(G,G2);
return goalGraph;
}

// inserting a new goal template as a child node
childNodeInsertion{G,G2}{

goalStore = goalStore + G;
position (G) = child ;
goalTree = goalTree + s(G2,G);
forall ( G3 and s(G2,G3) in goalGraph ) {

if ( exact(G3,G) ) then {
goalStore = goalStore − G;
goalTree = goalTree − s(G2,G);
return goalGraph; }

if ( plugin(G3,G) ) then {
goalTree = goalTree − s(G2,G);
goalTree = goalTree + s(G2,G) + s(G,G3);
goalTree = goalTree − s(G2,G3); }

if ( subsume(G3,G) ) then {
goalTree = goalTree − s(G2,G);
childNodeInsertion{G,G3}; }

if ( intersect (G3,G) ) then {
goalTree = goalTree − s(G2,G);
iArcResolution{G,G3}; }

}
return goalGraph;

}
// en−route resolution of i−arcs
iArcResolution(G1,G2) {
iG1 G2 = intersectionGoalTemplate(G1,G2);
goalStore = goalStore + G1 + iG1 G2;
goalTree = goalTree + s(G1,iG1 G2) + s(G2,iG1 G2);
discoveryCacheCreation(iG1 G2);
forall (G3 and ( (s(G1,G3) or s(G2,G3)) in goalGraph) and G3 != iG1 G2 ) {

if ( exact(G3, iG1 G2) ) then {
goalStore = goalStore − iG1 G2;
goalTree = goalTree − s(G1,iG1 G2) − s(G2,iG1 G2);
if ( ! (s(G1,G3) in goalGraph) ) then {

goalTree = goalTree + s(G1,G3); }
if ( ! (s(G2,G3) in goalGraph) ) then {

goalTree = goalTree + s(G2,G3); } }
if ( plugin(G3, iG1 G2) ) then {

goalTree = goalTree − s(G1,G3) − s(G2,G3);
goalTree = goalTree + s(iG1 G2,G3); }

if ( subsume(G3, iG1 G2) ) then {
if ( s(G1,G3) in goalGraph ) then {

goalTree = goalTree − s(G1,G3);
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goalTree = goalTree + s(iG1 G2,G3); }
if ( s(G2,G3) in goalGraph ) then {

goalTree = goalTree − s(G2,G3);
goalTree = goalTree + s(iG1 G2,G3); } }

if ( intersect (G3, iG1 G2) ) then
iArcResolution(iG1 G2, G3);

}
return goalGraph();
}
// discovery cache creation (= Web service discovery for a goal template)
discoveryCacheCreation(G) {

if ( position (G) = child ) then
childNodeDiscovery(G);

else {
rootNodeDiscovery(G);
forall (G2 and (s(G,G2) in goalGraph) ) {

if ( ( (d(G2,W) = (exact or plugin) ) and d(G,W) ) in discoverycache ) then
discoverycache = discoverycache − d(G,W);

}
if ( disccoveryCache(G) = {} ) then remove(G);
return discoverycache;
}
// discovery for G if it is a child node in an existing goal tree
childNodeDiscovery(G){

forall ( G2 and subsume(G2,G) ) {
forall ( W and subsume(G2,W) ) {

matchmakingUsability(G,W);
if (! d = disjoint ) then

discoverycache = discoverycache + d(G,W);
}
forall ( W and intersect(G2,W) ) {

if ( plugin(G,W) ) then d = plugin;
if ( intersect (G,W) ) then d = intersect ;
discoverycache = discoverycache + d(G,W);

}
}
return discoverycache;
}
// discovery for G if it is a root node of an existing goal tree
rootNodeDiscovery(G){

forall ( G2 and subsume(G,G2) ) {
forall ( W and exact(G2,W) ) {

d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and subsume(G2,W) ) {

d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and plugin(G2,W) ) {

plugin, subsume := boolean;
d = intersect ;
if ( plugin(G,W) ) then {

plugin = true;
d = plugin; }

if ( subsume(G,W) ) then {
subsume = true;
d = subsume; }

if ( (plugin = true) and (subsume = true)) then {
d = exact; }

discoverycache = discoverycache + d(G,W);
}
forall ( W and intersect(G2,W) ) {

if ( subsume(G,W) ) then d = plugin;
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if ( intersect (G,W) ) then d = intersect ;
discoverycache = discoverycache + d(G,W);

}
}

forall ( W and !(W in discoverycache) {
matchmakingUsability(G,W);
if (! d = disjoint ) then

discoverycache = discoverycache + d(G,W);
}

return discoverycache;
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% removal of a goal template
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// function declarations
position (goaltemplate) := (root | child ) ;
outgoingGGArcs(G) := {s(G,goaltemplate)};
incomingGGArcs(G) := {s(goaltemplate,G)};
disccoveryCache(G) := {d(G,webservice)};

// main
remove(G) {

if ( G2 and (s(G,G2) in goalGraph) and G3 and (s(G3,G2) in goalGraph) ) then {
remove(G2);
remove(G);

}
if ( position (G) = root ) then {

rootNodeRemoval(G); }
else {

childNodeRemoval(G);
}
goalStore = goalStore − G;
return sdcGraph;
}

// removing a root node
rootNodeRemoval(G) {

goalTree = goalTree − outgoingGGArcs(G);
forall ( G2 and (s(G,G2) in goalGraph) ) {

if ( W and (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {
d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }

}
discoveryCache = discoveryCache − discoveryCache(G);
return sdcGraph;

}
// removing a child node
childNodeRemoval(G) {

forall ( G2 and (s(G,G2) in goalGraph) ) {
forall ( G3 and (s(G3,G) in goalGraph) ) {

goalTree = goalTree + s(G3,G2); }
if ( W and (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {

d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }

}
goalTree = goalTree − outgoingGGArcs(G);
return sdcGraph;

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% update of a goal template
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// function declarations
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position (goaltemplate) := (root | child ) ;
singleRoot(G) := boolean;
lowestChildWithSingleParent(G) := boolean;
// main
update(G1,G2) {

if ( exact(G1,G2) ) then {
goalStore = goalStore − G1;
goalStore = goalStore + G2;

}
if ( position (G1) = root and (s(G1,G3) in goalGraph ) and ! (s(G4,G3) in goalGraph) )

then singleRoot(G1) = true;
else singleRoot(G1) = false;

if ( position (G1) = child and ! (s(G1,G3) in goalGraph) and (s(G4,G3) in goalGraph) and ! (s(G5,G3) in goalGraph) )
then lowestChildWithSingleParent(G1) = true;
else lowestChildWithSingleParent(G1) = false;

if ( (singleRoot(G1) and plugin(G1,G2) ) or (lowestChildWithSingleParent(G1) and subsume(G1,G2)) ) then {
position (G2) = position(G1);
goalStore = goalStore − G1;
goalStore = goalStore + G2;
discoveryCacheCreation(G2);

}
else {

remove(G1);
insert (G2);

}
return sdcGraph;

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% insertion of a new Web service
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

insert (W) {
forall (G and position(G) = root) {

matchmakingUsability(G,W);
if (! d = disjoint ) then {

discoverycache = discoverycache + d(G,W);
childNodeWSInsertion(G,W);

}
}

return discoverycache;
}
//
childNodeWSInsertion(G,W) {

if ( (d(G,W) = exact) or (d(G,W) = plugin) or (d(G,W) = disjoint ) ) then return discoverycache;
else {

forall ( G2 and (s(G,G2) in goalGraph) ) {
if ( d(G,W) = subsume ) then {

matchmakingUsability(G2,W);
if (! d = disjoint ) then

discoverycache = discoverycache + d(G2,W);
}
if ( d(G,W) = intersect ) then {

if ( plugin(G2,W) ) then d = plugin;
if ( intersect (G2,W) ) then d = intersect ;
discoverycache = discoverycache + d(G2,W);

}
childNodeWSInsertion(G2,W);
}

}
return discoverycache;

}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% removal of a Web service



DERI TR 2007-02-03 83

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// function declarations
discoveryCache(W) := {d(goaltemplate,W)}

// main
remove(W) {

discoveryCache(W) = {d(G,W)};
discoverycache = discoverycache − discoveryCache(W);
return discoverycache;

}
// optional removal of goal templates
removeGAfterWSDeletion(W) {
discoveryCache(W) = {d(G,W)};
forall (G and (d(G,W) in discoveryCache(W)) ) {
remove(G); }

return sdcGraph;
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% update of a Web service
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
update(W1,W2) {

if ( plugin(W1,W2) ) then {
forall (G and position(G) = root ) {

if ( (d(G,W1) = exact) or (d(G,W1) = plugin) ) then {
forall ( d(G,W1) in discoverycache ) {

discoverycache = discoverycache + d(G,W2);
discoverycache = discoverycache − d(G,W1);
return discoverycache;

} } } }
else {

remove(W1);
insert (W2);

}
}


