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Abstract. This technical report provides the specificationSgfmantic Discovery Cachinghort:

SDC). As a part of the author's PhD work, this is a technique for enhancing the efficiency and
scalability of Web service discovery processes in service-oriented architectures. The approach is to
capture discovery results for goals (formalized client requests) and, on this basis, perform Web ser-
vice discovery for new, semantically similar requests. This allows to (1) attain the highest possible
efficiency viadiscovery-by-lookupmeaning to perform Web service discovery without invoking a
matchmaker, and (2) to increase scalabilityrbgucing the search space for Web service discov-

ery on the basis of clustering Web services with respect goals that can be solved with them. As a
continuation of previous works, this document specifies the central constructs and operations of the
SDC technique. Future research will present a prototype implementation within WSMX along with

a demonstration throughout an illustrative example, and evaluate the SDC technique by discussing
its applicability in real-world SOA applications.
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1 Introduction

This technical report specifi@mantic Discovery Cachinghort: SDC, a technique for capturing and reuse

of Web service discovery results. This shall allow to decrease the computational costs of Web service discov-
ery procedures and thereby enhance the efficiency and scalability of service-oriented architectures (SOA).
Embedded in a goal-based approach for Semantic Web services, the SDC technique captures knowledge
on discovered Web services for generic, reusable goal descriptions and enables efficient runtime discovery.
This technique is a central part of the author's PhD work.

The aim of the SDC technique is to decrease the size of the search space for Web service discovery and
to enhance its runtime efficiency. We therefore create an index of available Web services with respect to the
goals that can be solved by them. The starting point for this is the semantic similarity of goal descriptions.
Two goals are considered to be similar if they have at least one common solution. Thus, in the majority
of cases, the same Web services can be used to solve them. We distinguish two notions of goalls: a
templateis the generic description of a client objective that is defined at design time and kept in the system;
agoal instancalenotes a concrete client request that is created at runtime by instantiating a goal template
with concrete input values. Because of their formal relationship, it always holds that only those Web service
usable for a goal template are possibly usable for any of its goal instances. The indexing structure for
clustering Web services with respect to the solvable goals is the so-&il€dyraph It consists of a set of
trees wherein the inner nodes are goal templates and the leaf nodes are the Web services usable for the goal
template at the parent node. The arcs are directed connections between the nodes that define the similarity
between goal templates, respectively the usability of a Web service, in terms of the matching degree between
their formal functional descriptions. This is the minimal knowledge relevant for decreasing the search space
and increasing the runtime efficiency of Web service discovery.

The SDC technique is allocated in a SOA system as an intermediate for Web service discovery mech-
anisms to access and search Web service repositories. Usable Web services for goal instances and for se-
mantically similar goal templates are detected on the basis of knowledge in the SDC graph. This is a novel
approach that introduces the concept of semantic caching into the area of semantic SOA technology. By na-
ture, the achievable increase for efficiency and scalability of Web service discovery processes is dependent
on the number and relationship of Web services and goals in concrete SOA applications. Our hypothesis is
that those situations wherein the SDC technique can achieve an adequate efficiency increase correlate with
the most common situation in typical real-world SOA applications.

This report provides the complete specification and evaluation of the SDC technique. A detailed eval-
uation in form of a real-world applicability study as well as detailed discussion of related work will be
addressed in a later stage of research. The document is structured as follows. The remainder of this sec-
tion briefly recalls the research context. Then, SecBaliscusses the design and determines the arising
requirements for the SDC technique. SeciBdefines the elements of the SDC graph and discusses its
formal properties. Then, Secti@ghspecifies the Web service discovery operations that work on the SDC
graph, and Sectidh defines the algorithms for maintenance of the SDC graph in its dynamically changing
environment. Finally, Sectiof summarizes the report.
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1.1 Context— A Goal-based Approach for Semantic SOA

The SDC technique is allocated in the Web service discovery part of a goal-based approach for semantically
enabled SOA technologies that is promoted by the Web Service Modeling Ontology W&M@wiw.
wsiTo.org ). The overall aim is to enable automated discovery, composition, and execution of Web services
with semantic technologies for realizing the vision of service-oriented architecifijes [

In contrast to most other approaches for Semantic Web services (e.g. O%¥|,-S\VSF B], or WSDL-
S [1]), WSMO does not only provide an ontology-based description model for Web services but integrates
goalsandmediatorsas additional top level elements. Their intended usage is:

goal-driven Web service usage:a client shall formulate the objective to be achieved in terms of a goal,
and a WSMO-enabled system solves this by automatically discovering, composing, and executing
appropriate Web services on basis of formal, declarative descriptions. The aim is to enable problem-
oriented usage of Web services: the client can concentrate on the problems to be solved while all
details on the automated usage of Web services are handled by the system.

mediation-enabled Web service usageto establish interoperability between Web services and goals if
this is not given a priori, mediators connect potentially heterogeneous elements and apply semantically
enabled techniques for handling and resolving mismatches on the data and the proce3€]level |

One of the central reasoning tasks in Semantic Web services is discovery, commonly understood as the
detection of those Web services out of the available ones that can be used for solving a given goal. Adopted
from the heuristic classification problem solving method, WSMO proposes a discovery procedure as shown
in Figurell (taken from [L7]). The framework distinguishes the following elementgaal is an abstract,
reusable description of a client objectiveMeb servicés a software artifact that has an abstract description
and provides access to real-woslerviceghat can solve a goal. The first procesgasl discoverywhich is
concerned with formulating a client objective in terms a goal. This is achieved by associating the concrete
client desire with an generic, reusable goal description. The second provéss service discoverwhich
is understood as the detection of usable Web services for solving a goal by semantic matchmaking of their
abstract descriptions with a primary focus on the provided and requested functionality. Féfimgments
concerned with determining those real-world service that are associated with a discovered Web service and
can be used to solve the client’s desire. This encompasses compatibility tests for all non-functional aspects,
such as behavioral conformance, quality-of-service, and financial aspects.

b service Web
Is (" .
Goals discovery services
Goal
discovery
—

Desire Services |

Refinement

I

i

Data

Figure 1:WSMO Discovery Framework

The PhD work of the author presents one possible realization of this abstract framework with a special
focus on the quality and efficiency of Web service discovery. As conceptually compatible extensions, the
central contributions of the work are:


www.wsmo.org�
www.wsmo.org�
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1. A refined goal model: WSMO initially describes goals by the same description model as used for Web
services. A refinement towards a more accurate model on the basis of experiences from respective
development efforts is presented #2]. The central extension is the differentiationgufal templates
andgoal instancesthe former are generic objective descriptions that are defined at design time and
kept in the system; the latter denote concrete client requests that are created at runtime by instantiating
a goal template. A goal template described the requested functionality in terms of preconditions and
effects and optionally a desired workflow that shall be sustained during the goal resolution. A client
interface provides the counterpart of the Web service interface for invocation and consumption of its
functionality (i.e. the choreography interface in WSMO terms). A goal instances instantiates a goal
template by defining an input binding, i.e. an assignment of concrete values for the required inputs.

2. Two-phase Web Service with sophisticated semantic matchmakinga semantically enabled Web ser-
vice discovery has been developed. This defines semantic matchmaking for discovery on the goal
template and the goal instance level, and integrates both into a two-phased Web service discovery
for the extended goal model. Following the WSMO approach, this focusses on formally described
functionalities requested in goals and provided by Web services. The complete discovery approach is
presented in41], along with a detailed report if8B]. Sectionl.2 recalls the central definitions that
are relevant in the context of this report.

3. The Semantic Discovery Caching (SDC) techniqueThis technique captures Web service discovery
results on the goal template level, and utilizes this knowledge to enhance the efficiency of the discov-
ery process. While35] discusses the problem statement, the overall research approach, and related
work, the SDC technique is specified and evaluated in this report.

Figure2 shows the refinement of the WSMO discovery framework with the three extensions. The goal
discovery process is replaced by the creation of goal instances: the client browses existing goal templates,
and formulates the objective to be achieved by defining concrete input values for the goal description. This
can be supported by graphical user interfaces as provided ingR8 BWF 43], which eases the goal
formulation for clients. Web service discovery is performed in a two-phased manner: at design, usable Web
services for goal templates are determined; usable Web services for a concrete goal instance are determined
at runtime, whereby the discovery result for the corresponding goal template serves as a pre-filter. The SDC
technique therefore captures the relevant knowledge for enabling efficient runtime discovery.

Discovery

Goal Template Level Web Service

'.‘,y Goal Template

H .
browses § capturing

i desian ti
C|ient"<5.’:; e e @ SPC @l—— - —eign—lze

instantiation invocation run time

creates }

'-..‘.. A 4

“®  Goal Instance

A 4
Service

Discovery
Goal Instance Level

Figure 2:Realization of WSMO Discovery Framework
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1.2 Two-phase Web Service Discovery

In order to provide a self-contained documentation, the following briefly recalls the central aspects and
definitions of the two-phased Web service discovery with goal templates and goal instances. We4éfer to [
for a comprehensive presentation, anci3€j for a detailed report on the Web service discovery realization.

1.2.1 Concepts and Approach

The discovery approach is definedAbstract State Spacdshort: ASS)|1L8]. This defines a state based
model of the world that Web services act in with precisely defined formal semantics. Therein, a particular
execution of a Web service or a composition of Web services denotes a sequence of state transitions
(so,---,Sm), I.e. a change of the world from a start stageto a termination state,,, that is triggered by

the invocation with concrete inputs. The overall functionality provided by a Web service is the set of all its
possible executions; we denote this{agyy .

A goal is the formal description of the desire of the client to get from the current state of the world into a
state wherein the objective is satisfied. A goal template specifies conditions on the start state and the desired
final state wherein the objective is considered to be solved. Hence, a goal teghfdateally describes a set
of possible solutions that we denote{ag . At runtime, a client creates a goal instard€&G) by assigning
concrete values to the input variables defined in the corresponding goal tegpMie refer to this as an
input binding3, so that a goal instance formally is a péli (G) = (G, 3) and its possible solutions are a
subset of those faF, i.e. {7} ¢r(g) C {7}g- The input binding3 defined inG1(G) subsequently constitutes
the concrete input values for invoking a Web service in order to solve the goal instance by a real-world
service.

The aim of Web service discovery is find a Web service that can providthat is a solution for the
goal. We thus specify the meaning of a match for Web service discovery as follows.

Definition 1.1 (Meaning of a Match). Let W be a Web servicgj a goal template, and-1(G) a goal
instance that instantiate§ with an input binding3. Letr = (so,..., s») be a sequence of states in an
Abstract State Spaca.

We define the following sets:
{r}¢ = possible solutions fog {t}are) C{tlg
{r}w = possible executions & {TYwe) c{m}w

possible solutions fo&1(G)
possible executions &
when invoked withp

We define theisability of a Web service for solving a gaas:
(i)  match(G, W) o Ir.re{rrgn{r}w)
(i)  match(GI(G),W) : 3Ir.7€ {T}arg) "{TIwps)

This defines the basic matching conditions for Web Service discovery. Clause (i) states that a Web
servicelV is usable for solving a goal templaféf there exists at least one executionl@fthat is a possible
solution forG. Clause (ii) defines thdt/ is usable for solving a goal instanc#l (G) if there is at least
one execution of¥’ that is also a solution fo&(G) whenW is invoked with the inputs defined G1(G).
Moreover, the following holds becausef} gy C {7}g¢:

1. match(GI(G),W) = match(G, W), i.e. a Web service that is usable for solving a goal instance is
also usable for the corresponding goal template, and, as the logical complement
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2. ~match(G,W) = —match(GI(G), W), i.e. that a Web service that is not usable for a goal template
is also not usable for any of its goal instances. This constitutes the foundation of our two-phase
discovery approach, because we can use the Web service discovery result on the goal template level
as a pre-filter for the goal instance level discovery.

We define semantic matchmaking techniques to evaluate the matching conditions from Defidition
on the basis of formal descriptions of goals and Web services. Without such techniques, we would need
to perform test runs of a Web service for determining its usability for solving a goal. We focus on the
requested and provided functionalities. This is widely considered as the primary aspect of interest for Web
service discovery; other aspects such as behavioral conformance test, quality-of-service, financial, and the
non-functional context are dealt with in subsequent usability t@StsDue to the high precision and recall
rates that are achievable with matchmaking on formal functional descriptions, this replaces keyword-based
discovery techniques. Subsequently, the SDC technique replaces Web service repository categorization by
an index structure of the available Web services with respect to the goals that can be solved by them.

1.2.2 Formal Functional Descriptions

A functional description formally describes the overall functionality provided by a Web service, respectively
possible solutions of a goal. This serves as the basis for semantic matchmaking of requested and provided
functionalities. We apply functional descriptions as defined in the Abstract State Space model (ASS) men-
tioned above, which specifies them on the level of state changes and defines precise formal semantics for
such functional description4 §].

An Abstract State Spac4 is defined over a signatud@ and some domain knowleddge A functional
description is described as a 5-tughe, Q, IF, ¢7™¢, 7). The signature differentiatesstatic symbols
3¢ that are not changedynamic symbolX, that are changed by execution of a Web service, ¥fid
that denote the interpretation of a dynamic symbol in the start state. Preconditiérend effectsp/ are
defined as statements in a lodi¢Y). IF = (i1,...,14,) IS a set of variables that denote all required inputs.
To explicitly specify the deterministic dependency between the start- and end-states with respect to input
values, they can occur as the only free variables?iit and¢ . An input bindingg : {i1,...,in} — Uy
is a total function that assigns objects of the universeldd each/F'-variable. Finally, the symbabut
denotes the computational outputs that are constraingdby

The meaning of a functional description is defined with respect to the start- and the end-state of a
sequence of state transitions. Formallyy a= (so,...,sn,) in A is considered to satisfy the described
functionality if and only if it holds that ifsy =5y ¢*"¢ thens,, =5 . Here,s Fr(n) ¢ expresses
that the formulap is satisfied by the univerde, in a states under the logicC(X). We refer to this as
implication semanticsif the precondition is satisfied igy, thens,, will satisfy the effect; otherwise, we
can not make any statement about the behavior of the described functionality. BecaiiBevrables
occur as free variables in both the preconditigifi¢ and the effecty)”, the end-state,, is completely
dependent on the start-stafg This reflects the deterministic nature of functionalities provided by Web
services.

While functional descriptions in the ASS model are defined independent of the specification language for
preconditions and effects, we use classical first-order logic (F&H]) for illustration throughout this work.
In order to ease the handling of functional descriptions, we describe them as a first-order logic structure
that maintains the formal semantics as defined in the ASS model. Defihitiapecifies the structure of a
functional description, and Definitidh 3 defines its formal meaning for describing the overall functionality
of a Web service.
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Definition 1.2 (Functional Description). A functional description is a 4-tupl® = (X, Q, IF, ¢P) such

that:
(i) X isasignature consisting s (static symbols)Ep (dynamic symbols),

and X7 (pre-variants of dynamic symbols)
(i) Q C L(X) defines consistent domain knowledge
(i) IF is a set of variables,, ..., i, that denote all required input values;
an input bindings : {i1,...,i,} — U4 is a total function that assigns
objects of the universe of to each/F-variable
(iv) " isaFOL formula of the formp?*“|ypre s, | = ¢ such that
- ¢P"¢ is the precondition witHF' as the only free variables
- ¢ is the effect withF" as the only free variables and the outputs denoted by the predicate
- WZPD"‘%ED is the formulagp’ derived fromg by replacing every dynamic

pre

symbola € X p by its corresponding pre-variant,,. € ¥,".

Definition 1.3 (Formal Semantics of a Functional Description).Let W be a Web service withr}y as
the set of its possible executions in an Abstract State SgaceetD = (%,Q, IF, ¢P) be a functional
description. Lef24 = QU [Q]gere_y ) be the domain knowledge extended with. € X7°.

W provides the functionality described B denoted byV" =4 D, if and only if:
(i) everyX-interpretationI with I = Q4 andI, 3 = ¢P under every input
binding 5 : IF — U 4 represents a € {7}y, and
(i) everyr € {r}w is represented by &-interpretation with I, 3 = ¢ and
I = Q4 under every input binding : IF — U 4.

This defines that a Web servid& provides the functionality described 1y if and only if everyX-
interpretation/, 3 that is a model ob” describes a = (so,...,smn) € {T}w. Such aX-interpretation
describes the objects that exists in the end-sigtéf W is executed for a particular input bindirgin
a specific start statey. For the implication semantics from clause (iv) in Definitidr®, it holds that
I,BE¢Pif 1,8 = ¢Pre andl, 3 |= ¢ if T [~ ¢Pr¢, we can not make any statement about the end-state
of ar. Hence, if ar € {7} can be described by¥-interpretation/ with I, 3 |= ¢, then it satisfies the
described functionality; if there isae {7}y that cannot be described by suck-dnterpretation, theml’
does not provide the described functionality. FigBr#ustrates this, while we refer t8B] for the formal
explanation of this definition and its relationship to the ASS model.

Web service W in Awith W [, D FOL Functional Description D
|| Iy (e — gPre)
for B,
. | @eff  ggpre
z.0f )
for B,

{T}y <€ models of D

Figure 3:lllustration of W =4 D
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The meaning of a functional descriptid?y of a goal templatg; is analogous. Herg,r}g is the set
of sequences of state transitions that are solutiong/feuch that every- € {r}g corresponds to &-
interpretation that is a model @i;. To precisely evaluate the usability of a Web service, in some cases we
need to consider the concrete value assignments faiftheriables. These are provided by the creation of
a goal instancé&1(G) that defines an input binding for the IF-variables inDg of the corresponding goal
templateG. Subsequently, thi§ constitutes the inputs for invoking a Web service in order to s6lV&7).
We discuss this in more detail below in the context of discovery on the goal instance level.

1.2.3 Semantic Matchmaking

The following recalls the specification of the matchmaking techniques for Web service on the goal template,

on the goal instance level, and their integration for the two-phased discovery approach outlined above.
We defines the techniques on functional descriptions and input bindings as specified above, which provide
sufficiently rich descriptions of possible Web service executions and possible solution for goals. We refer

to [41] and [39] for more exhaustive explanations and illustrative examples.

Goal Template Level Discovery.
We express the usability of a Web servidéfor solving a goal templatg in terms of matching degrees.
The distinct degrees denote specific relationships between the possible exegufipnsf W and possible
solutions{7}g for G. Four degrees exact, plugin, subsume, intersectlenote different situations wherein
the matching condition in clause (i) of Definitidnl is satisfied; thelisjoint degree denotes that this is not
given. In our two-phase discovery, these matching degrees serve as a pre-filter for determining the usability
of a Web servicéV for solving a goal instanc€(G) that instantiates the goal templaie

We define the criteria for each degree of&grandDyy from Definition1.2, along with an explicit quan-
tification of input bindings3. As the condition for thexactdegreeQ 4 = V3. ¢P¢ < ¢Pw defines that
every possible execution &F is a solution forGg and vice versa. We assume that all functional descriptions
D are consistent, i.e. that there existS-anterpretationd under a3 that is a model ob”. Representing a
refinement of the matching degree definitions frdi¥] [ we therewith obtain a precise means for differen-
tiating the usability of a Web service on the goal template level. TEplevides a concise compilation of
the matchmaking degree definitions.

Table 1:Definition of Matching Degrees fdPg, Dy

. Definition .
Denotation B IF — Ua Meaning
Dg = (E, Q, IF7 ¢Dg) ¢’D — [(bpre]E’”'e o = ¢eﬁ for {T}g, {T}W with
Dy = (3,9, IF, ¢PW) p =D W =4 Dw

Qa=QU [Q]EPDTEHED

exact(Dg, Dw)

Qu V8. 979 & ¢PW

ifand only if 7 € {7}¢
thent € {r}w

plugin(Dg, Dw)

Qu E V. 979 = ¢PW

if 7 € {r}g thent € {r}w

subsumeDg, D)

Qu VB 979 = ¢PW

if 7€ {7}w thent € {7}¢

intersect(Dg, D)

Q4 = 36. 479 A P

there is ar such that
7€ {r}gandr € {r}w

disjoint(Dg, D)

Qu  —38. 979 AP

there is nor such that
7€ {r}gandr € {r}w
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Goal Instance Level Discovery.
A goal instanceG1(G) is created by defining an input binding for the IF-variables in the functional
descriptionDg of the corresponding goal templafe Formally, an input binding : {i1,...,i,} — U4 is
a total function that defines a variable assignment over the uniier$er the input variablegF defined in
a functional descriptio® (cf. Definition|1.2). We therewith obtain an assignment of concrete valuies
all inputs required irD, i.e. 5 = {ii|v1,...,in|v, }. Given such &, we can instantiat® by substituting
all IF-variables that occur as free variablesiti¢ and¢%/ by the concrete values definedsn We obtain
[D]s as the functional description that is instantiated for the contegt tiiis can be evaluated as it longer
contains any free variables. By instantiatiflg with the input bindings defined inGI1(G), we obtainDg| 3
as the functionality requested B¥ (G ); for the functional descriptio®y; of the Web servicél’, we obtain
[Dyw |3 as the functionality that can be provided By when it is invoked with3.

Recalling from clause (ii) of Definitiod.1, a match on the goal instance level is given if there exists
at = (so,...,Sm) in A that is a solution foilGI(G) and can be provided by a Web servidé when
it is invoked with the concrete input values definedGid(G). To determine this on basis of the given
descriptions, it must hold that — with respect to the domain knowledge — there eXisiistarpretation/
that is a common model fai?s and¢”" when both functional descriptions are instantiated with the input
binding 3 defined inGI(G). Formally, this means that the union of the formufag U {[¢P9]3, [¢P"]5}
must be satisfiable, i.e. that there exisis-mterpretation that is a model for the extended domain knowledge
Q.4 and for the instantiated goal descriptierf¢] ; and for the instantiated Web service descripfioh | .
In accordance to Definitich.3, this I represents a that is a solution fo71(G) and can be provided by
if it is invoked with 3.

Definition 1.4 (Semantic Matchmaking on the Goal Instance Level)LetDg = (%,Q, IFg, P9) be a
functional description of a goal templage LetGI(G) be a goal instance that instantiat§swith the input
binding3 : IFg — U,. LetDy = (%,9Q, IFy, ¢PW) be a functional description, and & = (IF, ) be
a Web service withV |=4 Dy .

match(GI(G), W) is given if there exists &-interpretation/ such that:

TEQu and TE[6P] and Ik [6PV]s.

Integration for Two-Phase Discovery.

To attain an integrated matchmaking framework for our two-phase Web service discovery, we finally com-
bine the semantic matchmaking techniques for the goal template and the goal instance level. We therefore
extend matchmaking degrees from Teblwith the matchmaking condition for the goal instance level. Due

to their definition, we can simplify the matching condition from Definitlod for the distinct matchmaking
degrees as follows.

Definition 1.5 (Integrated Matchmaking for Two-Phase Web Service Discovery)Let Dg describe the
requested functionality in a goal templaieLetG1(G) be a goal instance @ that defines an input binding
3. LetIV be a Web service, and &Y, be a functional description such thBt = 4 Dy .

W is usable for solving=1(G) if and only if:

() exact( Dg,Dw) or
(i) plugin( D¢, Dw) or
(i)  subsume( D¢, Dw) and A Qa A [¢pP]g is satisfiable, or

(iv) intersect( Dg,Dw) and AQuA [pP9]5 A [¢PW ] is satisfiable.
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This specifies the minimal matchmaking conditions for determining the usability of a Web service for
solving a concrete client request that is described by a goal instance. Under bexattend theplugin
degree,lV can be used for solving any goal instan@é(G) because{t}grg) C {T}¢ € {7}w and
T €{T}arg) © T € {T}w(g)- Under thesubsumelegree it holds thar}g 2 {7}w, i.e. every execution
of W can solveg but there can be solutions gfthat cannot be provided by’. Hence,W is only usable
for solving GI(G) if the input bindings defined inGI(G) allows to invokelV. This is given if there is a
Y-interpretation that is a model f@$?"] 5 and the conjunction of the axioms 2. Underintersectas the
weakest degree, the complete matchmaking condition for the goal instance level must hold because there
can be solutions fog that can not be provided By and vice versa. Thdisjointdegree denotes th#t is
not usable for solving the goal template and thus neither for any of its instantiations. We r&@jifav {he
formal proof of this definition.
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2 Requirements Analysis

This section determines the requirements that arise for the Semantic Discovery Caching technique (SDC).
We commence the discussion with general aspects on Web service discovery that are relevant in this con-
text, and then discuss the requirements for achieving a computationally efficient and scalable discovery
procedure. On the basis of this, we determine the requirements on the constructs and operations for goal-
based discovery caching with respect to the approach undertaken by the SDC technique. Final®, Table
summarizes the determined requirements in a concise overview.

2.1 Web Service Discovery

Figureld shows the overall procedure for solving a client request that is formulated as a goal by the use of
Web services. In particular, it shows the central reasoning steps for automatically detecting and executing
Web service on the basis of comprehensive descriptions. This procedure reflects the abstract architecture for
Semantic Web services proposed28]| and, in particular, denotes an abstraction of the workflow supported

by WSMO-enabled environments for Semantic Web services such as WSOJlAr{d IRS b].

>
else:
issi not solvable
else: try other WS submission
matchmaking
uses ) R with all WS
Discoverer L L L b] EELE
1
. ” ; 1
P if usable if: composition possible '
1
Mediator [.-]
usess= Composer g
Contracting S WI
l Repository
Process uses Behavioral composition
Mediator | Conformance (executable) ]
1
1
if: compatible |~ 1
~ ]
~o information lookup 1
SS\L - for particular service
B e e e e e e m e e -
if: successful Executor F=-- e~
if:fexecution

error

Figure 4:Abstract Architecture for Semantic Web Services

At first, potentially usable Web services are detected out of the available ones. This is performed by
discovery or by composition in case no directly usable Web service exists. This is followed by optional steps
for refining the detection result, such as selecting the most appropriate Web service out of the usable ones
or contracting for determining details on the provided functionality. Then, the behavioral compatibility for
successful interaction between the request and the discovered or composed Web services is tested. Mediation
techniques for handling possibly occurring mismatches can be utilized as auxiliary fac8itjes-[nally,
automated execution of the detected or composed Web services results in resolution of the goal.
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The procedure in Figurd considers the matchmaking of formally described requested and provided
functionalities as the primary aspect for Web service discovery; other aspects on the usability and of a Web
service are detected in subsequent test. This conception is widely accepted — within the WSMO discovery
framework [L7] as well as other approaches (e!88[23, 4, 16]) — because it allows to more precisely
determine the usability of a Web service than keyword-based matchmaking. Throughout this work, we
focus on discovery oflirectly usable Web servicese. to find one Web service that can solve a given
goal. We therefore apply the description for goals and Web service as well as the semantic matchmaking
techniques as specified in Sectbd. Another scenario that might apply matchmaking of formal functional
descriptions is the candidate detection for Web service composition (i.e. to find those Web services out of
the available ones out of which a composition shall be constructed). However, this merely requires slightly
different definitions of the matchmaking techniques (for further discussior88¢44, 9)).

At run time, i.e. for solving a concrete goal, the discovery only needs to find one directly usable Web
service (i.e. that satisfies the matching conditions). Once such a Web service has been found, the subsequent
steps from Figurdl can be performed; the discovery of further usable Web services can be continued in the
background. This is a central difference to search techniques in other areas: for example in data bases,
usually the answer to for a query is only considered to be complete if it contains all knowledge items out of
the stored ones that satisfy the query staten¥jt [n contrast, for Web service discovery we can continue
the goal resolution procedure as soon as one usable Web service has been found. Hence, the first requirement
for the SDC technique is to interleave Web service discovery with the subsequent goal resolution steps.

Requirement 1 (Interleaved Web Service Discovery).The discovery of directly usable Web services at
runtime only needs to findNE Web servicdV that satisfies the matching condition for a given géal

Once such @V has been found, the subsequent reasoning steps for usability determination and execution
can be performed for solving; the discovery of further usable Web services can be performed orthogonal
to the resolution otz by .

Although we primarily consider Web service discovery as the suitability of the provided functionality
for solving the requested one, also other aspects are relevant. In particular, these are (1) weighting and
selection of Web services with respect to non-functional aspects such as quality-of-g&fjittedncial and
locality [19]; (2) dynamic details on the provided functionality that is not covered by the overall functional
description, e.g. whether a retailer provides the specific product that the client asks for; this is commonly
referred to as contractin@$, 22]; (3) the behavioral conformance, i.e. whether the client can provide a
compatible counterpart for the interface of the Web service for invoking and consuming its functic@#lity [
While we consider all these aspects to be checked after the Web service discovery on functional aspects, the
relevant information should be available in the goal and Web service descriptions.

Requirement 2 (Support for Non-Functional Discovery). Next to the formally described requested and
provided functionality, the goal and Web service descriptions should contain information for other aspects
relevant for determining the usability of a Web service for solving a goal, in particular quality-of-service,
financial, and locality aspects, support for contracting, and behavioral aspects.

We shall not further elaborate on this requirement, as it is not primarily relevant in the context of SDC.
However, itis met by our approach as follows. Goal templates carry a formally described requested function-
ality (cf. Definition/1.2), client policies and preferences on quality-of-service, financial, and locality aspects,
and client interfaces for automated invocation and consumption of Web se#8teB¢r Web services, we
adopt the WSMO description model that consists of a capability (functional description), non-functional
properties, and the choreography interfe®@].[
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Moreover, the distinction of goal templates and goal instances that underlies this work allows to de-
fine a resolution procedure for goal instances that encompasses all aspects for Web service discovery. This
differentiates two branches as shown in FigbreThe first one encompasses the discovery operations for
goal templates that are performedhogonal to runtime at first, matchmaking of formal functional de-
scriptions is performed; then, the set of discovered Web services is weighted and reduced with respect to
non-functional aspects, and finally the set is again reduced with respect to behavioral conformance test. The
runtime branch encompasses the operations for creation and resolution of a goal instance. At first, the client
browses existing goal templates, chooses one for that is appropriate for formulating the objective that shall
be achieved, and creates a goal instance by instantiating the input values required in the goal template. Then
— in our two-phase discovery approacii Sectionl.2) — the Web service discovery on the goal instance is
performed for the set of Web services that have been discovered for the corresponding goal template. Once
a usable Web service has been found, it is invoked and executed for solving the goal instance.

Runtime Operations Orthogonal to Runtime Repository

Functional
Matchmaking
Set of Services \

req. functionality
usable for Goal Template ‘.
. ref. & policies
(functional) (P & z

| client interfaces
Selection /
Contracting

Set of Services ¥
usable for Goal Template i
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Conformance

Test
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@ _________________________ '

result
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Figure 5:Goal Instance Resolution Procedure

2.2 Efficiency and Scalability

We now turn towards theomputational efficiencfthe costs of a system for performing an operation, in this
context: solving of a client request) asdalability (the operational reliability with respect to the expected
amount of resources in its designated area, here: the ability to deal with a very large number of Web ser-
vices). These are important factors for technology adaptation in real world applications. Especially, these

can be considered to be critical for the success of semantically enabled SOA technology that expectably
needs to deal with several millions of Web services.
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Examining the overall procedure for automatically detecting and executing Web service for solving a
given goal from Figurdl reveals that the bottleneck for both efficiency and scalability is Web service dis-
covery. As the first processing step, this needs to take all available Web services into consideration. All
subsequent steps need to deal with a significantly smaller amount of Web services — in fact those determined
by matchmaking of formal functional descriptions as illustrated in Fi&iddence, if we can increase the
efficiency and scalability of Web service discovery, we consecutively can increase the efficiency and scala-
bility of semantically enabled SOA technology; this is the overall aim of the author's PhD B86kkThe
following discusses the arising requirements for achieving an efficient and scalable Web service discovery.

2.2.1 Computational Efficiency for Web Service Discovery

In computational theory (e.g38)), efficiency is concerned with desirable properties of algorithms or com-
puter systems apart from functionality and technical design. It is described by two propertispeéte

refers to the time it takes for an operation to complete, which is commonly described Bigtnotation

as a time complexity measuremegtl]; the spaceproperty refers to the memory or non-volatile storage
used up by the algorithm or system, measured in terms of the amount of persistent and working memory
required at compile time as well as at runtime. Naturally, adequate optimization techniques for efficiency
are highly dependent on the system design and functionality.

In our context, the computational efficiency is mainly related to the runtime branch in Hglethe
most critical aspect of efficiency for technology acceptance by end-users, we understand the speed of Web
service discovery as thiame needed for finding one Web service that can be directly used for solving a given
goal instance The first two steps in the runtime branch — goal template discovery and instantiation — require
interaction of the client with the system. Thus, their speed is not only dependent on the computational
efficiency of the supporting technology. The critical operation is the automated detection of a Web service
that can be used for solving the created goal instance, which is performed by semantic matchmaking as
specified in Sectiold.2. While the computational costs for individual matchmaking operations can — in
theory — be optimized to a negligible exterfP[/15], the aspect that hampers the time efficiency of Web
service discovery is the size of the search space, i.e. the number of available Web services that need to be
taken into consideration for matchmaking.

The efficiency of Web service discovery is proportional to the size of the search space: the smaller the
number of Web services that need to be matched with the given goal description, the faster Web service
discovery can be completed. Hence, the efficiency for discovery on the goal instance level is proportional to
the number of usable Web services for the corresponding goal template. We can confer the same principle to
the discovery of the goal template level that is performed at design time, respective orthogonal to runtime:
the speed of Web service discovery for a new goal template can be increased if we can infer from the
semantic similarity degree between an existing goal template and the new one that only a subset of the
available Web services is relevant. While this conception is mainly related to the speed property of efficiency,
we shall consider the space property in more detail below in the context of scalability.

Requirement 3 (Efficiency of Web Discovery).The efficiency of Web service discovery denotes the time
needed for finding one Web service that can be directly used for solving a given goal. It is proportional
to the size of the search space, i.e. the number of Web services that need to be matched with the goal
description. The efficiency for Web service discovery on both the goal template level (design time) and on
the goal instance level (runtime) is optimal if the search space is minimal.
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2.2.2 Scalability for Web Service Discovery

Scalability is another desirable property of algorithms or computer systems, concerned with the ability to
handle the large, growing number of available resources in a graceful m&jndihjs is a pre-requisite

for the operational reliability of a system: if it can not handle the amount of resources in its designated
application area, then it can not be considered to be functional for its purpose. However, due to the high
dependence of a system’s design and its usage environment, commonly accepted measurement and analysis
techniques do not exists.

In the context of SOA, scalability refers to the ability to handle the very potentially large number of Web
service that are distributed among the Web and that change dynamk3}llyv¢r Web service discovery as
the first processing step that needs to consider all available Web services, scalability relates to the program-
matic management of semantic matchmaking. The critical aspect is the scalability of the used reasoning
infrastructure. As analyzed ii#§], this is hampered by (1) the general complexity of logical reasoning
in comparison to conventional technologies, and (2) that most reasoner implementations keep all relevant
knowledge in the working memory, which limits the number of processable resources tremendously.

In order to perform a matchmaking operation between a goal and a Web service, all related knowledge
must be made available to the underlying reasoning infrastructure. In particular, this is the formal functional
descriptions of the goal and the Web service as well as all background ontologies that are used in the
functional descriptions. Thus, in order to maintain the operational reliability of Web service discovery for
a large, dynamically changing number of available Web services, the invocation of the matchmaker should
be decoupled from the resource management such that for each matchmaking operation only the minimal
knowledge is loaded into the working memory of the matchmaker.

Requirement 4 (Scalability of Web Service Discovery)A Web service discovery is scalable if it maintains

it operational reliability for a large, dynamically changing number of available Web services. To achieve
this, the programmatic management must ensure that only the minimal knowledge needed to perform the
matchmaking (i.e. functional descriptions and background ontologies) is loaded into the working memory.

2.3 Goal-Based Discovery Caching

While the preceding elaborations have discussed general requirements, we now turn towards specific ones
that arise for the planned realization of the SDC technique. As outlined above, the approach is to capture
knowledge on discovery results on the goal template level and utilize this to enhance the efficiency of Web
service discovery. This technique reveals two properties:

1. it provides an index of Web services that is constituted by the similarity of goal templates. In contrast
to existing approaches that cluster Web services with respect to the provided functionalitieé®(e.g. [
8]), this index organizes Web services with respect to the goal templates that can be solved by them.

2. on the basis of this index, it reduces the search space for Web service discovery. For discovery on the
goal instance level (runtime) only those Web services need to be considered that have been discovered
for the corresponding goal instance; for the goal template level (design time), in most cases the same
Web services are usable for adjacent goal templates in the index.

Therewith, SDC allows to perform Web services in terms of a caching technique that finds answers to
requests from an intermediate store of answers to previous, similar request. The concept of caching is a
optimization technique that is successfully applied in several areas that need to deal with a large amount of
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information, e.g. in hardware optimizatioid], in databases for efficient query answeri@g@|][ and for effi-
cient traffic management on the Wé&t8]. Under certain circumstances — if there are many similar requests
— caching can achieve the best efficiency in comparison to other performance optimization techniques.
The following discusses the requirements for the indexing structure while we address the requirements
for the respective operations in the next section.

2.3.1 Similarity of Goals

The first requirement for creating a sophisticated index of available Web services with respect to the goals
that can be solved by them is the definition of an appropriate measurement for the semantic similarity of goal
templates. As the constituting concept for Web service indexing, the purpose is to declare goal templates to
be similar such that the set of Web services that are usable for solving them is overlapping to a high degree.
If this is given, then the search space for Web service discovery on the goal template level can be reduced by
inferring the usability of a Web services with respect to the semantic similarity of adjacent goal templates.
As we shall elaborate below, this similarity of goal templates can most adequately be expressed in terms of
the matching degrees between their formal functional descriptions.

We do not need to declare the similarity of goal instances because only those Web services that are usable
for the corresponding goal template are potential candidates. We therewith already have a sophisticated pre-
filter for Web service discovery on the goal template level as discussed above in 3e2ifon

Requirement 5 (Goal Similarity Measure). The notion of semantic similarity of goal templates is the
constituting concept for creating an index of Web services with respect to the goals that can be solved by
them. Given two goal templat€s and G, with {IW}g, and {W}¢, as the set of usable Web services for
them, the similarity betweey andG, should be defined such thiiti }g, N {W}g, is maximal.

2.3.2 Goal-based Index of Web Services

The second requirement is concerned with the formal properties of the indexing structure. This consists of
the goal templates and the Web services that are usable for them. The goal templates are organized with
respect to their similarity. The connections between goal templates can be defined as directed edges, so
that we obtain a tree of goal templates as the foundation of the indexing structure. Each goal template is
connected to the Web services that can be used to solve it, so that Web services denote the leaf nodes of the
goal tree. We shall refer to this structure as #i&C graph

The intended use of the SDC graph is to serve as an efficient search tree for the goal discovery phase
(cf. Figure5). In particular, it should allow to efficiently find the most adequate goal template for an
incoming goal instance. This means if a new goal instance is created for which usable Web services shall be
discovered, then it should be associated with the goal template out of the existing ones that most precisely
fits to the goal instance. The reason is that the closer the corresponding goal template fits to the goal instance,
the smaller is the number of Web services that are usable for the goal template but not for the goal instance.
Given that the existing goal templates are organized in a tree with respect to their semantic similarity, then
the most adequate goal template in this tree should be detectable with the minimal computational efficiency.
Hence, the following requirements arise for the SDC graph.

Requirement 6 (Properties of the SDG Graph).The SDC graph is the indexing structure for Web ser-
vices with respect to the goals that can be solved by them. It consists of a tree of goal templates that are
connected by directed edges with respect to their semantic similarity, and the Web services usable for each
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goal template as the leaf nodes in the SDC graph. In order to serve as an efficient search tree for the most
adequate goal template for an incoming goal instance, the SDC graph must satisfy the following properties:

1. the goal template tree should be constituted by a subsumption hierarchy with respect to the function-
alities requested in the goal templates. The reason is that if a goal tem@jatequested a more
specific functionality than a goal templagg, then the set of possible solutions @ is a subset
of those forG;; using the notation from Definitiod.1, this means thafr}g, 2 {7}g,. In conse-
guence, it holds that the set of Web services usablgfas a subset of those usable 161 because
—match(G1, W) = —match(Ga, W).

2. the child nodes in the goal template tree must be disjoint. The reason is that for the detection of the
most adequate goal template only one branch of the subsumption hierarchy needs to be investigated.
If the goal template tree is balanced, then this allows to achieve a logarithmic search time.

3. only minimal knowledge on the usability of a Web service should be captured in order to ensure a
scalable management of the SDC graph.

2.4 Operations and Technical Integration

We conclude the analysis by discussing the requirements on the operations and technical integration of the
SDC technique into complete architectures for Semantic Web services.

The first requirement in this context concerns the technical integration. The SDC technique is not a
single, detached technology that can solve a given goal by automated detection and usage of Web services.
Rather, it provides a component for efficient Web service discovery that must be integrated into a system
that provides the other components for automated goal solving by Web services as shown aboveléh Figure
In such an overall architecture, the SDC graph provides an intermediate cache for performing Web service
discovery. To realize this integration, a discovery component must be provided that properly utilizes the
SDC graph to perform efficient Web service discovery at runtime.

Requirement 7 (Integration into SWS Architecture). The SDC technique is a component for automated
solving of goals by the use of Web services. It must be integrated into an overall architecture such that
it serves as an intermediate during the discovery procedure for accessing the Web service repository. The
discovery component should properly use the SDC graph in order to perform efficient Web service discovery,
and it should be integrated with the other system components for automated resolution of a goal instance in
an interleaved manner.
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Figure 6:SDC Allocation in SWS Environments
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Figurel6 shows the aspirated allocation of the SDC technique in an overall architecture for Semantic
Web services and illustrates the workflow of formulating and solving a goal instance. At first, the client
browses the repository of existing goal templates and selects one for formulating the objective that shall be
achieved. This can be supported by the SDC graph, which serves as a taxonomy for browsing goal templates.
Then, the client creates a goal instance by instantiating the inputs required in the chosen goal template. The
discoverer performs matchmaking on the goal instance level at runtime, using the SDC graph as a pre-filter;
one a usable Web service has been discovered, the subsequent processing steps for solving the goal instance
are performed. The SDC component manages the SDC graph and, orthogonal to runtime, performs Web
service discovery on the goal template level.

In order to remain operational in the dynamically changing environment (i.e. the provision of new or
changed Web services), the SDC technique needs to provide support for the changes of relevant aspects in
the world. This denotes the final requirement.

Requirement 8 (Evolution Support). The SDC technique must support the addition, removal, and updating
of goal template and Web service descriptions in order to stay operational in its dynamically changing
environment.

Summary. In order to provide a concise overview of the determined requirements for reference in the
subsequent elaborations, TaBlsummarizes the requirements determined above

Table 2:0Overview of Requirements for Semantic Discovery Caching
Number Name Description
interleaved Web

1 . . only one Web Service needs to be found at runtime
service discovery

goal and Web service descriptions should contain information on

non-functional non-functional aspects relevant for discovery, esp.: quality-of-
2 discovery support | Service / financial / locality aspects, support for contracting, and
behavioral aspects.
efficiency reduce the search space to a minimum for Web service discovery
3 of discovery on both the goal template and the goal instance level
N decouple resource management and matchmaking such that for
4 scalability each single matchmaking operation during discovery only|the
of discovery minimal knowledge is loaded into the working memory
5 goal similarity define the semantic similarity of two goal templates such that the
measurement overlap between their usable Web services is maximal
the indexing structure should (1) specify a tree of goal templates
SDC Graph as subsumption hierarchy of the requested functionalities such
6 Properties that (2) child nodes in the tree are disjoint, and (3) only the mini-

mal knowledge on the usability of Web services is captured

. o provide a discovery component that (1) properly utilizes the SDC
7 Integration into graph for efficient Web service discovery, and (2) is integrated
SWS architecture | ith a system for solving a goal by automated Web service usage
support addition, removal, and updating of goal template and Web
service descriptions

8 evolution support
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3 The SDC Graph

This section specifies the SDC graph, i.e. the knowledge structure for capturing Web services for goal
templates. It consists of a tree of goal templates and, as the leaf nodes, the Web services that are usable for
each goal template. The SDC graph serves two purposes: (1) as an taxonomy of existing goal templates that
supports goal formulation by clients, and (2) as the indexing structure whereupon specialized algorithms
can perform efficient Web service discovery. The following specifies the elements and structure of the SDC
graph and discusses its formal properties with respect to its application purpose. The operations for Web
service discovery and management of the SDC graph are specified in the subsequent sections.

Throughout the specification, we will explain the definitions by means of a running example for illustra-
tion and clarification. We consider the following scenario: goal templates describe the objective of finding
the best restaurant in a city that is to be provided for instantiation, and Web services provide search facilities
for the best restaurant in a city that is to be provided as input for invocation. We can define specialized goal
and Web service descriptions with respect to two dimensions that are described in the background ontology:
the geographic location of a city (e.g. the continent, country, or state), and the type of the restaurant (e.g.
French, Italian, Chinese, etc.). This allows to provide easy to understand examples for the different match-
ing situations between goals and Web services, and has been exhaustively discussed within the specification
of the two-phase Web service discoverydid]and [3€].

3.1 Definition

We commence with the definition of the central concepts and elements of the SDC Graph. At first, we define
the similarity measurement for goal templates as the constituting notion for the goal template tree. Upon
this, we specify the elements and structure of the SDC graph.

3.1.1 Goal Template Similarity

The similarity of goal templates is the constituting notion for creating the indexing structure for Web services
with respect to the goals that can be solved by them. To meet requirpteatmeasurement should define
two goal templates to be similar such that the set of usable Web services overlaps to the maximal extent.

With respect to the focus on requested and provided functionalities in our Web service discovery ap-
proach €f. Sectionl.2), we consider two goal templates to be similar if they have at least one common
solution. If there is a Web service that can provide this common solution, then it is usable for both goal
templates. The more common solutions exist for the goal templates, the higher is the overlap between the
set of usable Web services for each one. For constructing the goal tree, we are particularly interested in goal
templates whose solutions denote proper subset relationships. We discuss this below in more detail.

One could also consider other aspects for describing the similarity of goal templates, such as that they
are described by semantically related keywords or have been defined in the same application area. However,
the primary purpose of the goal template similarity measurement in the context of SDC is to organize goal
templates in a way that allows to efficiently determine usable Web services for them. Other, non-functional
aspects of goal similarity may be used in the client interface for browsing existing goal templates.

Definition 3.1 (Meaning of Goal Template Similarity). LetG; be goal template witf7}¢, as the set of
its possible solutions, and 16 be goal template with7}¢, as the set of its possible solutions.

We say tha/; andG, are semantically similar if and only ii7. 7 € ({7}g, N {7}g,)-
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In our model, the objective that is described by a goal template is specified in terms of a functional
description. Recalling from Definitioh.2, a functional description is a 4-tup® = (%, Q, IF, ¢P) such
thatX is the extended signatur®, is the background ontology/' = (i1, ...,1%,) are the input variables,
and P = [qﬁm]zzgeﬂ% = ¢ is a formula that specifies meaning Bf as an implication between

the preconditionp?™ and the effect)®f, whereinIF occur as the only free variables. Such a functional
description formally describes all possible solutions of a goal template with respect to the possible start- and
end-states and their explicit dependency.

We express the similarity of goal templates in terms of matching degrees between their formal functional
descriptions. Four degree®xact, plugin, subsume, interseatlistinguish situations wherein the similarity
measure from Definitio3.1 is satisfied; thalisjoint denotes that this is not given. The degrees and their
conditions are the same as the ones we have identified for Web service discovery on the goal template level
(cf. Tablell in Section1.2.3. Similar to the usability of a Web service for a goal template, the matching
conditions for each degree are defined over the functional descriptions of goal templates along with an
explicit quantification of the input bindings. The condition for tubsumelegree 4 |= V3. P91 « ¢P9%
specifies that under the consideration of the background ontéloggll solutions forG, are also solutions
for G;. Itis to remark that the matching conditions encompass the compatibility of the input variables of
Dg, andDg,: the matching condition is satisfied only if there is an input binding (i1, ... ,4,) — Ua
that defines concrete values for &it-variables in botiDg, andDg,; otherwise, the models for a functional
description can not be determined because their might be free variables after the instant&®|idisciss
the input compatibility of functional descriptions in more detail.

Table'3 provides a concise overview of the goal similarity degree definitions and their meaning. In
the following, we distinguish betweesimilarity degreeghat denote the similarity of goal templates from
Definition/3.1, andusability degreeshat denote the usability of a Web service for a goal template; both are
expressed in terms of the matching degree in order to distinguish the situations that are relevant for SDC.

Table 3:Definition and Meaning of Goal Similarity Degrees

, Definition
. Pe;?;[a}]'ronpgl B:IF — Ua Meaning
6 = (B LI G B) | 6P = [ ey = ¢ for {7}, {T}g.
Dg, = (%£,Q,IF,¢792) f

Qup=0U [Q]Zzge

—Xp

T € {r}g, ifandonlyifr € {7}g,.
exact(Dg, , Dg,) Q4 = V3. ¢P9 & ¢Po% | all Web services that are usable G are also
usableG2 under the same usability degree.
) if 7 € {r}g, thent € {7}g,.
plugin(Dg,, Dg,) Qa4 = V8. ¢P9 = ¢P% | allWeb sfervi((;esbutsablte fa¥, are also usable
or G but not vice versa.
if 7 € {r}g, thent € {7}g,.
subsumeQg, , Dg,) Q4 = V3. ¢pPo <= ¢Po | all Web sferviC(:;esbutsablte fa¥, are also usable
or G but not vice versa.
there is ar such that
T € {r}g, andr € {7}g,.

a Web service that can provide thiss hence

usable for both goals.

there is nor such that- € {r}¢, and

disjoint(Dg, , Dg,) Q4 b= —38. P9 A ¢P9% | 7 € {r}g,; we can not make any statement on
the Web services usable for solving the goals.

intersect(Dg,, Dg,) | Q4 = 38. $P91 A ¢Po2
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The purpose of the goal similarity degrees is to enable efficient determination of usable Web services
for similar goal templates. While defining the inference rules for this in Se&ignlet us consider an
example for illustration. LeDg, be the functional description of a goal templatg and letDg, be the
functional description of a goal templagg. Let the similarity degree beubsume(Dg,, Dg,), such that
{r}g, 2 {7}g,. Then, it holds that every Web service that is usableJfors also usable fog,, because
if 3r. 7 € ({7}g, N {7}w), then thisr is also an element dfr }¢,. Here, the overlap between the sets of
usable Web services for similar goal templates is maximal. Hence, specifying the goal template similarity
in terms of matching degree between their formal functional descriptions satisfies requiszment

3.1.2 Elements and Structure

On the basis of the goal similarity measure we can now define the structure of the SDC graph. The following
specifies the elements and the basic structure, while we shall discuss its formal properties in the detail below
in Sectiori3.3

Definition 3.2 (SDC Graph). An SDC Graph consists of four elements: goal templgta&eb servicedl’,
GG mediatorsGGM and WW mediator$VGM . Itis defined such that:
(i) everyinner node is a goal templafe
(i) every leaf node is a Web servitgé
(i) a GG mediator is a tripleGGM = (source, target, dsimiiarity) With:
- a goal templat&j; as the source,
- another a goal templatg, as the target, and
- dsimilarity denoting the similarity degree betweénand G,
(iv) aWG mediator is a tripledVGM = (source, target, dysapitity) With:
- a goal templat&7 as the source,
- a Web servicéV as the target, and
- dusability denoting the usability degree betwegmand V.

In this definition, we consider all elements to be associated with a complete description that is needed
for solving a goal by the automated usage of Web services. This means that for clause (i) a goal template
carries a functional description, requirements non-functional aspects, and optionally a desired workflow as
an orchestration of goals (i.e. the complete description model of goal templates as def##}y] ang for
clause (ii) a Web service is described by a capability (overall provided functionality), non-functional aspects,
and behavioral interfaces for consumption and aggregation of other Web services. Therewith, req@irement
is satisfied as information on all other aspects are available in the goal and Web service descriptions.

In the clauses (iii) and (iv), we useediatorsor describing the edges of the SDC graph. The concept of
mediators is promoted by the WSMO framework as a means for handling potentially arising heterogeneities
that hamper the interoperability of goals and Web servi@&s [GG mediators and WG mediators are
specialized mediator types defined in WSMZE|[ As specified in86], a mediator is an intermediate
that connects a source and a target component and utilizes respective mediation facilities for resolving
mismatches of the data and the process level. The main merit from the use of such mediators for defining the
edges in the SDC graph is that we obtaidii@ctedrelationship between the source and the target element.
This allows to precisely describe the similarity degree between goal templates (in a GG Mediator) as well as
the usability of a particular Web service for a goal template (in a WG mediator). DefiBitt@pecifies the
relationship of inverse mediators. Besides, with respect to requirernemtdiation facilities for handling
and resolving potentially occurring heterogeneities are implicitly incorporated in the SDC graph.
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Definition 3.3 (Inverse Mediators). Let a mediator be a triple\/ = (s,t,d) such thats is the source
element; is the target element, antlis the matching degree betweeandt.
Aninverse mediator)/’ defines the relationship betweemndt with the inverse direction. We can derive
M’ from M with the following relationship betweeW’ and M for distinct values of:

t,s, exact)

() M = (s,t,exact) & (

(i) M = (s,t,plugin) & (t, s, subsume)
(i) M = (s,t,subsume) << (t, s, plugin)
(iv) M = (s,t,intersect) < = (t, s,intersect)
(V) M =(s,t,disjoint) <& M =(t,s,disjoint)

M/
M/
M/
MI

Essentially, Definitior8.2 defines an SDC graph to consist to two layers. The upper one are the goal

templates that are connected by GG mediators with respect to their similarity degree as defined above in

Tablel3. A GG mediator defines a directed edge between two goal templates (from the source goal to
the target goal, see above). Hence, we obtadlirected graphthat constitutes the indexing structure for

available Web services. The lower level are the Web services that are connected to goal templates via WG

mediators. This constitutes the discovery cache for capturing knowledge on Web service discovery on the
goal template level. For this, a WG mediator defines the usability degree of a Web service for solving a
goal template. This can explicate any matching degree under which the Web service is usable for solving
the source goal template (i.e. all lisjoint). With respect to our primary focus on functional aspects, this
is the minimal knowledge for capturing Web service discovery results on the goal template level and thus
satisfies the third aspect of requireméntHowever, the graph of goal templates may contain cycles so that
this structure does not yet satisfy the first and second aspect of requit@ntemt achieving this, we will
specify the resolution of intersect-arcs and such cycles below in S&8on

To illustrate the definition, Figuré shows an SDC graph for your running example with two goal tem-
platesG; andg,, and two Web serviceld’; andWs. Let G, specify the objective of finding the best restau-
rant in an European city, and 16t request to find the best restaurant in an Austrian city. As every Austrian
city is also a European city but not vice versa, the similarity degree of the goal templaiésise (G, G2)
that is explicated in the GG mediator. ét; offer a search facility fir the best French restaurant in a French
city. W is usable for a goal instance 6f if the city provided as input is in located in France and if the
best restaurant in this city is of type French. Thus, the usability degriegdssect(G;, W;) as discussed
in [41]. Obviously,W; is not usable fog, because French and Austrian cities are disjoint. FinallyiMet
provide a search facility for the best restaurant in every city of the world. It is usable foGhahd G,
under theplugin degree because }yw, 2 {7}g, 2 {7}g,- Moreover, because of this relationship we can
infer the usability degree di; for G, if the usability degree ofV; for G; is known.

A S
/=~
WGM WGM
intersect plugin
¢ \~ — — ——

W,

Figure 7:Example of an SDC graph
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3.2 Inference Rules for Web Service Usability Degree

The main merit of capturing Web service discovery results for goal templates in the SDC Graph is that we
can infer knowledge on the usability of a Web service for similar goal templates. We express this in terms
of inference rules for the arcs in the SDC graph. For two goal templatgs, and a Web servicéV,
the general form of these rulesdsqitity (G2, W) — dsimitarity(G1, G2) N dusabitity(G1, W). As we shall
discuss below, these inferences provide the foundation for several operations for Web service discovery and
management of the SDC Graph.

Theoremni3.1 specifies these inference rules for all possible combinations of the usabilityfof G,
and the similarity ofG; andG,. We refer to the definition of the Web service usability degrees in Téible
in Sectionl.2.3and the definition of the goal template similarity degrees from Takle Section3.1.1.
For convenience, we provide a comprehensive overview of the matching degree definitions as well as their
meaning for goal template similarity and the usability of a Web service for solving a goal template in
AppendixA.

From the theorem, we can make the following observations that are relevant in the context of SDC.:

¢ there are four types of inferences for the usability degréd dbr G- (separated by horizontal lines):

1. directly inferable i.e. the usability degree can be determined without matchmaking
(clauses: 1,2.1,2.2,3.1,3.2,3.11,4.1,5.1,5.2)

2. guaranteed usabilitput the degree must be determined via matchmakiriggfandDy
(clauses: 2.3-2.6;2.7-2.8;4.2-4.3)

3. possible usabilityusability and degree must be determined via matchmakidzoand Dy
(clauses: 3.3-3.7;3.8-3.10;4.4-4.6; 4.7 - 4.11)

4. not inferableso that matchmaking betweé&n;, andDyy is required
(clauses: 2.9, 4.12, 5.3)

e under theplugin similarity degree, all Web services that are usablegfoare also usable fay,, but
we can not make any statement about Web services that are usa@ebiarnot forG;

e under thesubsumesimilarity degree, only those Web services that are usablg fare potentially
usable forGg, but no others can bef; clause 2.10)

¢ under thaisjoint similarity degree, Web services that are usabl€/founder theexactor thesubsume
are not usable fof,; for Web services with other usability degrees 3, we can not make any
statement about their usability fgs.
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Theorem 3.1 (Inference Rules for Web Service Usability Degrees).et W be a Web service, and let
G1 and G, be goal templates. Let(G, W) denote the usability degree &f for a goal template, and let
d(G;, G;) denote the similarity degree betwegnandGs.

Givend(Gy, W) andd(G1, G2), we can infer knowledge abodtG-, W) by the following rules.

1. e:cact(gl, g2) : d(gl, W) = d(gg, W)

2. plugin(Gi,Ga) (1) exact(Gy, W) = subsume(Ga, W).
(2) subsume(Gi, W) = subsume(Ga, W).
(3) plugin(Gi, W) = exact(G2, W) or
4) plugin(Gi, W) = plugin(Gy, W) or
(5) plugin(Gi, W) = subsume(Ga, W) or
(6) plugin(Gi, W) = intersect(Ga, W).
(7) intersect(Gy, W) = subsume(Gy, W) oOr
(8) intersect(Gi, W) = intersect(Ga, W).
(9) disjoint(G, W): no statement possible.

3. subsume(G1,G2) (1)  exact(Gi, W) = plugin(Ga, W).
(2)  plugin(Gi, W) = plugin(Ga, W).
(3) subsume(Gy, W) = exact(Ga, W) Or
(4)  subsume(G1, W) = plugin(Ga, W) or
(5)  subsume(Gi, W) = subsume(Ga, W) or
(6)  subsume(Gy, W) = intersect(Ga, W) or
(7)  subsume(G1, W) = disjoint(Ga, W).
W)
w)
W)

(8) intersect(Gy, = plugin(Gy, W) or
(9) intersect(G, = intersect(Ga, W) or
(10) intersect(Gy, = disjoint(Ga, W).
(11) disjoint(Gy, W) = disjoint(Ga, W).

4.intersect(G1,G2) : (1)  exact(Gy, W) = intersect(Ga, W).
(2)  plugin(Gi, W) = plugin(Ga, W) or
(3) plugin(Gi, W) = intersect(Ga, W).
(4)  subsume(Gy, W) = subsume(Ga, W) or
(5)  subsume(Gy, W) = intersect(Ga, W) or
(6)  subsume(G1, W) = disjoint(Ga, W).
(7)  intersect(Gy, W) = exact(Ga, W) Or
(8) intersect(Gi, W) = plugin(Ga, W) or
W)
W)
W)

(
(
(9) intersect(Gi, = subsume(Ga, W) or
(10) intersect(Gu, = intersect(Ga, W) or
(11) intersect(Gi, = disjoint(Ga, W).
(12) disjoint(Gy, W): no statement possible.
5.disjoint(G1,G2) (1) exact(Gi, W) = disjoint(Ga, W).
(2)  subsume(Gy1, W) = disjoint(Ga, W).
(3) d(G1,W)andd # subsume: no statement possible.

Proof. The formal proof is provided in AppendB of this document. O
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3.3 Formal Properties and Refinement

We complete the definition of the SDC Graph with the necessary refinements for establishing the desirable
properties as identified in requiremé®t Recalling from Sectio2.3.2, these are (1) a tree structure that
allow to efficiently search the most appropriate goal template for a new, incoming goal instance, and (2) to
capture only the minimal knowledge on Web service discovery results on the goal template level.

The following first analyzes the properties of the initial SDC graph that is obtained from creating the
GG and WG mediators for a given set of goal template and Web service descriptions. Then, we present the
resolution of intersect arcs between goal templates as the means for establishing the desirable properties and
illustrate this in our running example. Finally, we show the formal properties of the refined SDC graph. For
the discussion, we apply the conventional terminology from graph theory as defirfgdjl.in [

3.3.1 Initial SDC Graph

Let us consider the following to be given: a set of goal templétes. ., G, and a set of Web services
Wi, ..., Wy,. Furthermore, let many of the goal templates be similar, and let many of the Web services are
usable for the distinct goal templates (e.qg. if they are allocated in the same application domain).

Now, let us examine the initial SDC graph that is obtained by determining the matching degrees for
goal similarity and Web service usability and then explicating this knowledge in GG and WG mediators in
accordance to DefinitidB.2. Recalling from above, an SDC graph consists of two layers: the upper one are
the goal templates that are connected by GG mediators with respect to their similarity degree; we shall refer
to this as thegoal graph. The lower layer are the Web services whose usability degree for goal templates
is explicated in WG mediators that are allocated as leaf nodes to the goal graph; we shall refer to this as the
discovery cache In the following, we focus on the properties of the goal graph. In particular, we analyze its
structure and identify the reasons why the initially obtained goal graph does not satisfy requiBeiment
providing a sophisticated knowledge structure for searching the most appropriate goal template for a new,
incoming goal instance. In this respect, we make the following observations.

Observation 1 — Types of Similarity Degrees in Goal Graph. The result of performing matchmaking in
order to determine the similarity degree of goal templates as well as the usability degree of Web services
can of course result in any of the five matching degrees. However, we do not keep knowledgtisibioat
degrees in the SDC graph: this degree neither provides useful information for inferring the usability of a
Web service between two goal templates, nor is a Web service usable for solving a goal template or any
of its instantiationsf. AppendixA). We also do not have to keep two goal templates in the goal graph
whose similarity isexact the same Web services are usable for both under the same usability dggree (
Theoremi3.1), so we just need to keep one of them.

If there are two goal templat€s andG, whose possible solutions denote a proper subset relationship
—e.g.{r}g D {7}g, —then we can either define@GGM = (G2, G, plugin) or its inversionGGM' =
(G1, Go, subsume) (cf. Definition3.3). We prefer to keep GG mediators wittsabsumesimilarity degree
because this allows to utilize the goal similarity as a pre-filter for Web service discovery on the goal template
level: if subsume(G1,G2) then all Web services that are not usablederare also not usable faj, (cf.
clause 3.11 of Theorei®.1). If the similarity degree ofj; and G is intersect then we can define the
connecting GG mediator with any direction without loosing or gaining any important information. However,
this similarity degree appears to not be very valuable for inferring the usability degree of a Web service: if
intersect(Gy,Ga), then a Web servic® is only usable for botl¢; andgG, if it can provide a solution that
is allocated in the intersection of possible solutiongpandg, (cf. clauses 4.1 - 4.12 of Theore3nl).
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usable Web services
connected via WG Mediators

‘ Web Services ’

Figure 8:Initial Structure of the Goal Graph

In conclusion, there are only two types of similarity degrees that occur in the goal gnaipbumend
intersect For the sake of comprehensibility, in the following we shall refer to a GG mediator that explicates
asubsumesimilarity degree as asrarc and to one that explicates artersectsimilarity degree as akarc
(arc = a directed edge in a graphl]). The hierarchy that is constituted lsyarcsdenotes the core of the
goal graph: the set of usable Web services for a child node in this hierarchy is a subset of the set of Web
services that are usable for its parent node. Goal templates that are conneeetsiogn occur everywhere
in the goal graph; in particular, there can be goal templates that are child nodesstarthiierarchy but
have a common solution. Figu8illustrates the structure of an initial goal graph. It is to remark that in the
discovery cache any matching degree can appear under which the target Web service is usable for solving
the source goal template (i.e. all kiisjoint). Besides, the creation of such an initial SDC graph requires
management operations; we will address this in detail in Sebtion

Observation 2 — Cycles and Concatenations of Intersect-Arcs in the Goal Graph.Two types of un-
desirable situations can occur in the initial goal graph as illustrated in FRjurhe first one is a cycle
that occur ifintersect(Gi,Gsa), intersect(Ga, Gs), andintersect(Gs,G1). Such a cycle can only occur
in a sequence of goal templates that are connected by i-arcs but not for s-aressufne(G,G2) and
subsume(Ga, G3), then alsosubsume(Gy, Gs) and thus there can not by a cyclic relation betw&engs,
andgs; we discuss this below in more detail. With such a cycle, we might run into an infinite loop when
searching for the most appropriate goal template for an incoming goal instance. This contradicts require-
ment6 and thus must be resolved.

The second construct is an acyclic concatenatioraufs, i.e. if intersect(Gy, G2) andintersect(Ga, G3)
such that-37. 7 € ({T}g, N {7}g, N {7}g,) —i.€. there is at least one common solution for each pair of
goal templates but there is no common solution for all three. In this situation, there can not be any Web
service that is usable for all three goal templates. This does not provide valuable information for inferring
the usability of a Web service for adjacent goal templates, and hence should be resolved.

Observation 3 — Disconnected Nodes in the Goal Graph.There might be goal templates that are not
connected in the goal graph. In particular, it can occur that there are several disconnected sub-graphs, i.e.
separate collections of connected goal templates. This occurs when there are goal templates that do not have
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Relationship of {T} Graph Representation

(G 0608 | (@G5

Figure 9:Examples for Cycles and I-arc Concatenations in Initial Goal Graph

any common solution - e.g. one for searching restaurants and another one for booking flight tickets. In fact,
we can expect that distinct application areas form separate sub-graphs of goal templates. Nevertheless, it can
be that the same Web service is usable for goal templates in disconnected sub-graphd.Oriigisieates

this situation. Note that this does not hamper the formal properties of the SDC graph - it merely reflects
different application contexts for which for the same Web service might be usable.

\ 4 \\
| \\ // A N
1 \ // _ FAN ‘l
{ \/~ I\ I
w
Legend: — similar(G,G,d) =™ usable(G,WS,d)

Figure 10:Disconnected Sub-Graphs in Goal Graph

The discussion reveals that the initial goal graph does not yet satisfy the requirements for serving as a
sophisticated knowledge structure for efficient goal template search. Examining the observations (1) and (2)
reveals that those deficiencies that contradict the required formal properties result from i-arcs, i.e. when the
similarity degree of two connected goal templatesiersect On the other hand, s-arcs appear to be the
most desirable goal template similarity degree as it allows to utilize the goal graph as a pre-filter for Web
service discovery on the goal template level. In conclusion, we can identify the following aspects to the
necessary for establishing the desired properties of the SDC graph in accordance to regBirement

1. remove all i-arcs such that only the knowledge on the intersection of the solutions for the connected
goal templates remains; then, cycles in the goal graph can no longer occur

2. ensure that the child nodes in the goal graph are disjoint; if this is given, only one branch needs to be
followed for finding goal templates

3. skip inferable WG mediators: if the usability of a Web service for a parent node in the goal graph can
be inferred directly from the usability degree of the Web service for a child node, then omit the WG
mediator between the Web service and the parent node
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3.3.2 Resolution of Intersect Arcs in Goal Graph

The following defines the handling and resolution of i-arcs in the goal graph, which is the central technique
for establishing the desirable formal properties of the SDC Graph. As examined above, the situations where
the similarity degree of goal templatesiigersectcause undesired properties of the goal graph, such as
cycles, deficiencies as a sophisticated knowledge structure for goal template search, and insufficient support
for inferring the usability degree of Web services among similar goal templates.

The approach is as follows. Given two goal templatesandGs such thatntersect(Gi, G2), we define
a new goal template that precisely describes the intersection of the possible solufipramd G,. We
refer to this new goal templatg g, ¢,) as anintersection goal templateFormally,G; g, g, is defined as
the logical conjunction of the functional descriptionsifandG,. We then replace the i-arc betweén
andg, in the goal graph by two s-aresibsume(Gi1, Gi(g, g,)) andsubsume(Gz, Gi(g, ¢»)) SO thatG;¢, g.)
becomes a child node ¢f, andG,. Therewith, we can remove all i-arcs from the initial SDC Graph, and
establish a hierarchy of s-arcs that does not longer reveal any undesirable properties1 Fijustates
the approach that we formally specify in the following.

i-arc in initial Goal Graph Goal Graph after Resolution

G)—©)

Relationship of {T}q

Figure 11:Resolution of Intersect Arcs in the Goal Graph

Definition 3.4 (Intersection Goal Template). Let G; be a goal template that is formally described by

Dg, = (X,9,IFg,,¢P9) with ¢P91 : [¢6" [cwre_s | = o7, and letg, be a goal template that is for-

mally described bPg, = (Z,Q, IFg,, ¢P%) with $P9 : [0, Isere s, = qbgz :

We defing; g, ¢,) as theintersection goal template @f; and G, such thaﬂ)gi(glygﬂ = (%,Q, IF, ¢Dg¢(gl,g2>)
., Dg.

with 6796192 < (85 ) pre s = 0&) A ([0 sre s,y = 0E).

This defines the intersection goal templéigg, ¢,y of two goal templatesj; and G, as the logical
conjunction of their formal functional descriptionsf.(Definition/1.2 in Sectiornl.2.2for the elements and
structure of formal functional descriptions that we apply in our model). Such an intersection goal template
can be defined independently of the similarity degree betwgemdd,; however, it only provides useful
information if the similarity degree igitersect(G, Ga).

In Definition3.4, we assume that the functional descripti@hg andDg, use the same signatureand
the same or at least compatible background ontoldgiegloreover, for constructing; g, g, it must hold
thatG, andG, define compatible input variables. This is given if there is a bijectienFg, — IFg, such
that for each input variablg;, € IF g, there exists a compatible input varialdg € IFg,. We refer to'89
for a more detailed discussion of the compatibility of functional descriptions with respect to the signature,
the background ontology, and the input variables.
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Theorem3.2 specifies the meaning of intersection goal templates. Essentially, for two goal templates
g1 andg; the intersection goal templag g, g,) formally describes the set of possible solutions that are
common forG; andG,. Recalling the formal semantics from Definitidn3 a functional descriptioDg
formally describeq7}¢ as set of all possible solutions of a goal with respect to their start- and end-states
such that € {7}¢ if 7 can be represented byainterpretation that is a model @¥;.

Theorem 3.2 (Meaning of an Intersection Goal Template)LetG; be a goal template described By, ,
let G» be a goal template described BY;,, and letg; g, g,) be the intersection goal template @f and G,
that is described by, ; ., .. Let{7}¢ be all possible solutions of a goal templaesuch thatr € {r}g
if and only ifr is represented by &-interpretation with I = Dg. It holds that:

T €{T}6 g, o) if andonlyif 7€ ({7}g, N{T}g)

Proof. A functional descriptiorD = (X, Q, IF, ¢P) describes a set of sequences of stdteswith 7 ¢
{7} if 7 can be represented by&interpretation/ such that/ is a model of¢” under an input binding
B : IF — U, formally: I, 3 = ¢P. Under the implication semantics witht : (67" sore s, = % | this
is givenifI, 3 |= ¢P™® andI, 3 = ¢ if I [£ ¢P", then we can not precisely determine whethés a
model of$? or not.

A X-interpretatiory under an input binding representsa € ({7}g,N{7}g,) ifandonlyifI, 3 = Dg1
andI, 3 |= Dg,. Such anl is also a model oDg, ,, ,  underj becauses’ %i(¢1.92) = ¢Por A 3P |
there is ax-interpretation/ under an input blndln@ such that/ ,B = Dg, andI, 3 |~ Dg,, then thlsI is
not a model ofDg, (61.62) under3 becaus@91 A false < false underl, 3; accordingly,l, 3 Dg, g, ¢
if 1,5 W~ Dg, andI B = Dg,. Thus, under all input binding8 every X-interpretation/ with 7,5 =
Dg represents a € ({7}g, N {7}g,)-

)

M)

D—I—

i(G1,92)

Resolving Undesirable Situations in the Goal Graph. Intersection goal templates serve as the central
construct for resolving undesirable situations in the initial goal graph. To achieve this, we construct the
intersection goal template for two goal templates whose similarity degnetersect and insert this into the
goal graph by replacing the i-arc with s-arcs from the original goal templates to the intersection goal template
(cf. Figure1l). This is performed iteratively until all i-arcs in the goal graph are removed. We therewith
can transform connected sub-graphs of the initial goal graph into directed trees of goal templates whose arcs
are only s-arcs without exception. We refer to thigeal treeghat satisfy all desirable properties that have
been identified in requiremeft

The following specifies the structure of goal trees that is obtained from the resolution of undesirable
situations in the initial goal graph by constructing and inserting intersection goal templates. In particular,
we address the following situations: concatenations of i-arcs, the disjoint representation of child nodes in
the goal tree, and cycles in the initial goal graph. We here specify the resolution patterns for collections of
three goal templates; however, they are generally applicable for paths in the goal graph of any length. For
programmatic realization, the resolution procedures require additional operations that need to be performed
iteratively after each construction and insertion of intersection goal templates: (1) check for i-arcs in newly
created levels of the s-arc hierarchy, and (2) remove redundant s-arcs and goal templates with the similarity
degreeexact While the following merely addresses the resulting structure of the SDC graph, we shall
specify the algorithms for the SDC graph refinement in Sediofo illustrate the resolution procedures,
we discuss them in our running example in the next seétion.

Yrelevant terms from graph theoi¥1, 2]: path= walk with no double occurring verticekength= number of visited vertices
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Proposition 3.1 (Goal Graph I-Arc Concatenation Handling). Let there be three goal templat§s, G-,
andgs with the similarity degreestersect(Gi, G2) andintersect(Ga, Gs). As implicitlydisjoint(G1, Gs),
we refer to this as a concatenation of i-arcs in the initial goal graph.
The resolution pattern denotes a 2-level goal tree such that

() the goal templates at level 1 ar€;, Go, G3

(i) the goal templates at level 2 ar€l; g, g,), Gi(g».65)

(i) G, ,6.) andGy(g, g,) are disjoint

Proposition 3.2 (Representation of Non-Disjoint Child Nodes in Goal Tree)Let there be three goal tem-
platesg,, G2, andGs with the similarity degreesubsume(Gi, G2), subsume(Gy, Gs), andintersect(Ga, G3).
This denotes a 2-level goal graph wheréinand Gs are child nodes ofj; in the s-arc hierarchyG, and
G5 are not disjoint but have a common solution.

The resolution pattern denotes a 3-level goal tree suchdhas at level 1,G, andGs are at level 2, and
Gi(G,g5) Is at level 3.

Situation Relationship of {T}q Initial Goal Graph Resulting Goal Tree
concatenation @ @ @
of i-arcs @ﬁ‘m @ @
non-disjoint G1

child nodes in
goal tree ‘ @ @

Figure 12:Resolution of Undesirable Situations in the Goal Graph

FigurelZillustrates the resulting goal trees for both situations. When resolving a concatenation of i-arcs,
the intersection goal templates at the second level describe those solutions that are common for both parent
goal templates. To represent non-disjoint child nodes in the same level in a goal tree, their i-arc is replaced
by an intersection goal template that is allocated on the next level of the goal tree. For both situations, the
original goal templates are not changed and thus still have common solutions; merely the representation of
their similarity is changed in the resulting goal tree.

The purpose of the resulting goal tree is two-fold: one the one hand, it shall enable efficient search of a
goal template; on the other hand, we want to make use of the pre-filtering functionsafitbemeimilarity
degree for Web service discovery on the goal template level. For the lattg¢i}1g}, ... g) denote the
set of usable Web servicé¥ for a goal templatj. It holds thatsubsume(G1, Ga) = {W }aten(gy) S
{W }maten(gs) (Cf. clause 3.11 of Theore®i1). Hence, in a goal tree wherein the only s-arcs occur, it thus
holds that{ W' },,,4sch(g,, ,) for every goal template at levek-1 is always a subset dfV' },,,q1c4(g,) for every
goal template at levél In consequence, the deeper a goal template is allocated in the goal tree, the smaller
is the set of Web services that are usable for solving it.

in a walk;tree= connected graph without cycldsyel= (number of edges from the root to a node in a tree) helght= length of
the path of the longest branch / maximal level in a tree
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For the search aspect, let us consider the resulting goal tree for the situation from Progasitioag-
ine that we receive a goal instanGd whose closest goal templatedgg, g.,); the purpose of finding the
closest goal template is that the lower its is allocated in the goal tree, the fewer Web services are potential
candidates for solving:/ (cf. Definition'1.5 from Sectiorl.2.3. When starting the search from level 1,
we would need to perform three matchmaking operations: determine wh@thisra proper instance of
Gi1, then the same ¥, and finally forg, g, ¢,). The same number of operations would be required when
following the branch ofj,. One could also define the resolution of i-arcs such that the child nodes in the
resulting goal tree are truly disjoint. In this example, we could define three new goal templates such that
Dg; = Dg, N °Dg,, 'Dgi(gzygg) = Dg, N\ Dg,, andDgg = Dg, N —Dg,; all three goal templates would be
disjoint and allocated at level 2 such tigatis the direct parent fog, , G;g, g,), andg; . To find G;g, g.)
as the closest goal template f61, the minimal amount of matchmaking operations is 2 (firstdprand
then forg,g, g,)), and the maximal number is 4 (first fgii, then forG,” and then forG; (or vice versa;
both are negative), and finally for thélg, ¢.))- Here, the efficiency of goal template search is dependent
on the number of child nodes on each level of the goal tree — which is artificially increased by defining three
disjoint goal templates for resolving two that have a common solution. In contrast, the computational costs
for searching goal templates in the goal tree structure as defined above is only dependent on the height of
the goal tree, which in most cases reveals a better search efficiency.

While above we have investigated the resolution of relatively easy situations, we now turn towards the
resolution of cycles in the initial goal graph. An analysis reveals that only three types of cycles can occur
in the initial goal graph: (1) if there is a cycle of i-arcs and there is no common solution for all involved
goal templates, (2) if there is a cycle of i-arcs and there is at least one common solution for all involved goal
templates, and (3) if there are three goal templates with at two i-arcs that constitute a cycle; TB&orem
shows this formally. The resolution of each type results in a specific pattern of the obtained goal tree. We
define these below along with an illustration in Figi®:

Theorem 3.3 (Types of Cycles in Initial Goal Graph). Given three goal templat&$,, G», and Gs, there
can only be three types of cycles in the initial goal graph.

Type 1:intersect(Gi, G2), intersect(Ga, G3), andintersect(Gs, G1) and—=3r. 7 € ({7}g,M{7}g,N{7}gs)
Type 2:intersect(Gi,Ga), intersect(Ga, G3), andintersect(Gs, G1) and3r. 7 € ({t}g, N{7}g, N {7}gs)
Type 3:intersect(Gy, Go), intersect(Ga, G3), andsubsume(Gs, G1).

Proof. The following implications hold:

For type 1:(1) if one of the i-arcs is missing, then the situation betwégerg,, andgs is a concatenation of
i-arcs €f. Propositiori3.1). (2) if all three i-arcs are given but3r. 7 € ({7}g, N {7}g, N {7}g,) is false,
then there is a cycle of type 2.

For type 2:(3) if all three i-arcs are given butr. 7 € ({7}g, N {7}g, N {7}g,) is false, then there is a
cycle of type 1.(4) if at least one of the arcs betweén, G2, andgs does not define aimtersectsimilarity
degree, then any possible cycle is of type 3.

For type 3:(5) if only at least one s-arc exists betweagn G», andgs, then there can be a cycle of type 1 or
2. (6) if more than one s-arc exists betwe@n G, andgs, then there is a goal tree with two non-disjoint
child nodes at level 2cf. Proposition3.2).

Clauseg1) — (6) define under which conditions a certain type of cycles is not given. As these conditions
cover all possible situations of similarity betwegn G-, andgs, the three identified cycle types are the only
possible ones that can occur in an initial goal graph. O
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Proposition 3.3 (Resolution Patterns for Cycles in Initial Goal Graph). Let there be three goal templates
G1, G2, andGs such that their similarity degrees form a cycle of type 1, type 2, or type 3.
The structural patterns of the goal trees that result from resolving the i-arcs are:
for type 1 cycle:a goal tree of height 2 such that
() the original goal template§, G-, G are allocated at level 1
(i) all three intersection goal templates are allocated at level 2
(i) all goal templates at level 2 are disjoint becausér. 7 € ({r}g, N {7}g, N {7}gs)
for type 2 cycle:a goal tree of height 3 such that
COMMENT: there can also be another sub-type: pattern = type 1 + common intersection at level 3
(i) the original goal template§, G2, G3 are allocated at level 1
(i) two of the three intersection goal templates are allocated at level 2
(iii)  the third intersection goal template is allocated at level 3; this describes the common
solutions 0iG;, G2, Gs, i.e. allT € ({7}g, N {7}g, N{7}g,)
for type 3 cycle:let the initial situation besubsume(Gs, G1), intersect(Gi, G2), andintersect(Ga, Gs).
The resulting goal tree is of height 3 such that
(i) two of the three original goal templates are allocated at level 1:
Gs (the source of theubsumearc), andg, that is only connected by i-arcs
(i) level 2 containgy, (the target of thesubsumearc), and the intersection goal templafgg, g,)
(iii) the second intersection goal templdigg, ¢,) is allocated at level 3;
this describes alt € ({r}g, N {7}g, N {7}g,) as the common solutions Gf, G2, andGs.

Situation | Relationship of {T}5 | Initial Goal Graph Resulting Goal Tree

cycle
(type 1)

cycle G

(G,
(type 2) Q‘Q,@ (12) o (25)
cycle @ @
A o 7%

Figure 13:Resolution of Cycles in the Goal Graph
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3.3.3 lllustrative Example

In order to illustrate the preceding definitions, the following illustrates the resolution of a cycle in the initial
goal graph within our best restaurant research example. We consider an example for a cycle ottype 3 (
TheorenB.3). For this, we construct three goal templates whose requested functionalities differ with respect
to the locality of the input city and the type of the requested restaurant.

Tableld shows the goal templates, their similarity degrees, and the intersection goal templates that are
relevant for discussion. For the sake of simplicity, we use the same numbering of the goal templates as
in Proposition3.3 Below, we explain the stepwise resolution of the cycle as defined above. For better
traceability, Figurél4 illustrates the structure of the goal graph in each step.

Table 4:Goal Templates, Similarity Degree, and Intersection Goal Templates in Example

original goal templates similarity degree
Gy: find best restaurant in an Austrian city intersect(Gy,G2)
Gs: find best French restaurant in any city of the woyléhtersect(Ga, G3)
Gs: find best restaurant in a European city subsume(Gs, G1)

intersection goal templates
Gi(6,,6.)- find best French restaurant in an Austrian city
Gi(g,,g,)- find best French restaurant in a European city

Relationship of {T} Initial Goal Graph

Figure 14:Example for Resolving a Cycle in the Initial Goal Graph
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We perform the resolution of i-arcs in a top-down manner — a bottom-up approach could require redun-
dant iterations. Thus, at first we resolve the i-arc betwgeandGs as the most top-level i-arc in the initial
goal graph. We obtain the intersection goal tempdatg, g,), and insert it into the goal graph (i.e. remove
the i-arc and insert to s-arcsf, Step 1 in Figuré4). We obtain a goal graph of height 2. Next, we need to
check the similarity degree between the newly inserted goal template. We observe that there is a new i-arc
betweeng, andg; g, g, (cf. Step 2). However, the most top level i-arc is the one betvgeandg,. So,
we resolve this next and obtain a goal graph of height 3 @ith, ,) at the lowest leveldf. Step 3).

Next, we address the newly created i-arc betwgeandg; g, g,). We obtain another intersection goal
template that could be inserted into the goal graph as shown in Step 4. We now have resolved all i-arcs,
so that we obtain a goal tree whose edges are s-arcs without exception; we thus omit the arc-labels in the
figure. However, when checking the similarity degree of the new intersection goal templaigang) —
the only goal template that exists at the same level —we observe that their similarity degae i§; g, ¢,
describes the common solutions@@fandg,, and the new intersection goal template describes the solutions
that are common for all three original goal templates. Hence, we do not keep the newly created intersection
goal template but merely connect the new s-areg;{g, ¢, (cf. Step 5).

As the final step, we remove redundant arcs from the goal tree. The first redundant arc is one of those
that connectj; andg;g, g,); both are s-arcs with the same source and target, so we can omit one of them.
The second one is the s-arc betw&knandg; g, ¢,). This arc is redundant because (1) we can reach the
target viag; g, g,), and (2) it may decrease the efficiency of goal template search. Imagine that we receive
a goal instance whose closest goal templag; g, g,)- When commencing the search@tand we first
follow the direct arc ta7;g, g, (for which the matchmaking is not successful), then we have to start again
from G, before reachingj;g, g,). Without the direct arc betweef, andG;g, g,), We reach the search
target with one matchmaking step less. Hence, we remove that s-arc as well and finally reach the goal tree
structure shown in Step 6 of the figure — which is the same as defined in Prop8siion

3.3.4 Formal Properties of Refined SDC Graph

We conclude the specification of the SDC graph by summarizing the refinements that have been defined
above. In particular, we address the properties that result from transforming the initial goal graph into goal
trees by the resolution of i-arcs. We also address the omittance of redundant WG mediators in the discovery
cache, which is the last open aspect from the analysis of the initial SDC graph above in S&tdon

Definition 3.5 (Structure of Refined SDC Graph). The refined SDC graph consists of two layers. The
upper one is amnconnected set of goal treegherein goal templates are connected by GG mediators such
that the only occurring similarity degree gibsume The lower layer is theliscovery cachavherein WG
mediators connect goal templates with their usable Web services. The possible usability degrees of a Web
service for solving a goal template aggact plugin, subsumeor intersect

This states that in the refined SDC graph, the initial goal graph is refined into a set of goal trees. A
goal tree is a collection of goal templates that are connected by GG mediators such that the only occurring
similarity degree issubsume Such a goal tree does not contain any cyct#s Proposition3.3) or any
other undesirable situationsf( Propositior3.1 and PropositioiB.2), thus satisfies aspects (i) and (ii) of
requiremens6. Each connected sub-graph of goal templates from the initial SDC graph is refined into a goal
tree. However, there still can be unconnected goal templates in the refined SDC graph, so that we obtain a set
of unconnected goal treesf(Figure10). One could artificially connect these by defining a goal temgjate
with ¢P% = true such that every consistent goal template becomes a child node in one goal tree. However,
this does not appear to be necessary for the application purpose of the SDC graph.
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The first application purpose of the SDC graph is to enable efficient search of the most appropriate goal
template for an new incoming goal instance. The aim of this search is to detect the goal t¢hvahetiesof
the incoming goal instana@I(G) is a proper instantiation such that out of the possible goal templaites
allocated at the deepest level in the goal tree. The reason is that the @daspecated in the goal tree, the
smaller is the set of Web services that are usabl&/fand, in consequence, the smaller is the number of
possible candidates for solvir@ (G) (cf. Definition'1.5. While we shall specify the algorithm below in
Sectiord, let us here examine the computational costs for the goal template search as an important property
of the refined SDC graph. The search is performed in a depth-first manner as discussed above: it commences
at the root of a goal tree, checks for this and every child node whéth@y) is a proper instantiation, and
terminates at the goal template for whose child nodes this is not given. In the worst case, we need to inspect
all goal templates on every level of the goal tree that is located on the path from the root node to search
targetG, as well as all child nodes @f.

Proposition 3.4 (Efficiency for Goal Template Search).LetT be a goal tree wherein the goal template

is the search target. Let let(/) denote the number of goal templates on a level of the goal treep(Get

be the path iri” from the root tog, and letn(l, p(G)) denote the number of goal templates on each level of
p(G). Letn(lg+1) denote the number of goal templates that are child nodé€siofT .

The computational costs for findiggin 7"is O(n(l, p(G)) + n(lg+1)).

Figurel5 illustrates the search for two target goal templates in a goal tree. If the ta@gt we start
from the root and then inspect all goal templates at the second level. For the third level, apayt fnem
only need to inspedfs or Gy because they are not disjoint (as they hé@ye as a common child node —
one can image this to be derived from ProposioZ). If we follow the path viaGs, we may also need to
investigateGo, while for the path viajg this step can be omitted. If the targetds, we follow the same
path for the first two levels of the goal tree. On the third level, we may first investigiatkhengy, and
finally Gs. We also need to ensure that none of the child nodé€k if a possible target. Hence, the search
terminates after determining that bdiky andG,; are not possible targets.

if target =G11:
p(G11)1 = G1,G4,Gg, G11 0r p(Gi1)2 = G1, G4, Go, G11
li, (p(G11)) = G n(l1,p(Gi1)) = 1
la, (p(G11)) = G2,G3,G4  n(l2,p(G11)) =
I3, (p(G11)) = G, Gs n(l3,p(G11)) = 2
ly, (p(G11)1)) = Gi0,G11 n(la, p(Gi1)1)) =2
ly, (p(G11)2)) = G n(ls,p(G11)2)) =1
lg11+1 =0 n(lgu-i-l) =0
costs for findingG,1: minimal =7, maximal = 8
if target =Gg:
p(Gs) = G1, G4, Gg
I, (p(Gs)) = G n(l,p(Gs)) =1
la, (p(Gs)) = G2,G3,G4  n(l2,p(Gg)) =3
I3, (p(Gs)) = G7,08,G9  n(l3,p(Gg)) =3
n(lgg+1) = Gio, G11 n(lgg+1) =2
costs for findingGs = 9

Figure 15:lllustration of Goal Template Search
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The second application purpose of the SDC graph is to serve as the basis for efficient Web service
discovery. For this, theliscovery cacheaptures knowledge on the usability of Web services for goal
templates in WG mediators that define a directed arc with the usability degree of the target Web service for
the source goal templatef( Definition'3.2). We recall from DefinitioriL.Sthat for properly performing Web
service discovery on the goal instance level at runtime, we must know the precise usability degree of a Web
service for the corresponding goal template. However, on the basis of the rules for inferring the usability
of a Web service with respect to the similarity degree of adjacent goal templates as specified in&S&ction
we can omit certain WG mediators in the SDC graph. In particular, we can omit all WG mediators at child
nodes in the goal tree whose usability degree can be inferred directly from a WG mediator with the same
target that is defined at the parent node.

Let us clarify this by the example illustrated in Figlté. Let there be a goal tree with three goal
templatesGi, G2, Gs such thatsubsume(Gi, G2) and subsume(Gi,Gs). We consider four Web services
such that each one if usable for the parent ngdender a different usability degree. Feract(G;, W1),
we can directly infer thaplugin(G,, W1 ) andplugin(Gs, Wy) (cf. clause 3.1 in Theore®.1). Hence, we
can omit the WG mediators that connétt with G and withGs. The same holds undgtugin(G;, W1),
cf. clause 3.2. However, we must explicitly define the WG mediators at child nodes in the goal tree if
the usability degree of a Web service for the parent nodellisumer intersect If subsume(G;, W3) as
illustrated in the figure, the usability degreel®f for a child node ofj; can be any of the five degrees, even
disjoint (cf. clauses 3.3 - 3.7). Also undéntersect(G;, Wy), this Web service might not be usable for a
child node ofG; (cf. clauses 3.8 - 3.10). Besides, as discussed above, undeulibemesimilarity degree
the set of usable Web services for every child node in the goal tree is a subset of the usable Web services for
the parent goal templatef( clause 3.11).

This allows to reduce the discovery cache to consists of only those WG mediators that are necessary for
enabling efficient Web service discovery on both the goal template and the goal instance level. Therewith,
the refined SDC graph finally satisfies the third aspect of require@ent

Proposition 3.5 (Minimality of Discovery Cache). LetG be a goal template such that there exists at least
oneg- that is a child node in the goal tree. For all Web services whose usability degrégifoexactor
plugin, only WG mediators witly as the source are defined but none wgthas the source.

This is the minimal tree on the usability of available Web services for the existing goal templates such that:

(i) every WG mediator that is removed disconnects the SDC graph, and
(i) any additional WG mediator is redundant.

initial discovery cache minimal discovery cache

D o —

Figure 16:0mittance of WG Mediators in Discovery Cache
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4 Web Service Discovery with SDC

This section specifies Web service discovery with the Semantic Discovery Caching technique. While we
have summarized the approach for Web service discovery in the introductti®@e¢tiornl.2), we here define

the algorithms that utilize the SDC graph for realizing an efficient Web service discovery. The operations
for management and evolution support of the SDC graph are specified in Sedti@complete algorithm

for the SDC technique that integrates discovery and management operations is provided in AGpendix

We have outlined in the introduction that the author’s work presents a refinement of the Web service dis-
covery framework that has been proposed for WSMfOSKectiorl.1). This distinguishes three operations:
(1) the formulation of a client desire as a goal, (2) the discovery of usable Web services for solving goals
on an abstract level, and (3) the refinement of discovery results for consuming a real world service. In this
work, we specify all three operations such that each one uses the knowledge kept in the SDC graph to the
maximal extent. We therewith satisfy requiremémin the integration of the SDC technique into an overall
architecture for Semantic Web services, and realize an efficient and scalable Web service discovery process
with respect to requiremen8and4. lllustrated in Figurél?, the operations are defined as follows.

1. Goal Formulation: this is concerned with the formulation of the objective that a client wants to achieve
as a goal description. For this, the client browses the goal templates existing in the SDC graph,
and chooses one for creating a goal instance. When the goal instance is received by the system, we
internally assign it to the closest goal template in order to minimize the search space for Web service
discovery. This operation is performed at runtime, i.e. when a client specifies a new objective and, for
automated solving, submits this to the system in form of a goal instance.

2. Web Service Discovery on the Goal Template Levelthis determines the usability degree of the avail-
able Web services for goal templates by matchmaking of their formal functional descriptions. The
result is captured as the discovery cache in the SDC graph. This operation is performed at design time
— respectively orthogonal to runtime — i.e. whenever a goal template or a Web service description is
added, modified, or removed.

3. Web Service Discovery on the Goal Instance Levelthis determines the usability of Web service for
solving a goal instance. For this, the matchmaker checks whether the functional descriptions of the
corresponding goal template and the Web service are satisfiable under the input binding that is defined
in the goal instance. This operation is performed at runtime. The corresponding goal template is the
one determined by the goal formulation procedure; for matchmaking, only those Web services need
to be taken into account that are declared as usable for that goal template in the SDC graph.

In the following, we specify each operation in detail. For human understandability, we specify the
algorithms in Java-style pseudo code; this reflects their realization in the planned prototype implementation.
We also define the semantic matchmaking procedures that are related to each discovery operation. We
specify these in a first-order logic framework on the basis of the formal functional descriptions and the
approach for semantic matchmaking as outlined in the introduatio®éctionl.2). Moreover, we specify
the algorithms for aefined SDC graph — i.e. its goal graph consists of goal trees waithsumeas the
only occurring similarity degree, and the discovery cache does not contain any redundant WG mediators
(cf. Definition3.5) — and in a stable environment (i.e. no updates or changes of the goal template and Web
service descriptions take place). These aspects are ensured by the integration of the respective management
and evolution algorithmsc{. Sectior5) into the overall SDC algorithm that is specified in Apper@ix
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Figure 17:Operations for Web Service Discovery with SDC

4.1 Goal Instance Formulation and Goal Template Discovery

We commence with the goal formulation procedure. This covers the creation of a goal instance that describes
the concrete objective that the client wants to achieve, and the assignment of this goal instance to the closest
existing goal template. The aim of the goal formulation procedure is to declare a goal teghplatine
corresponding one for a newly created goal instai¢e= (G, 5) such thaig is located as deep in the goal

tree as possible whil@ is still a proper instantiation @j. The reason is that the lowéris allocated in the

goal tree, the fewer Web service are usablef@nd hence are possible candidatesddr The following

first explains the goal formulation procedure in our framework, and then specifies the matchmaking and
algorithm for search the most proper goal template in the SDC graph.

Let us consider a scenario from our running example. A client wants to find the best restaurant in Vienna
(the Austrian capital). Let us assume that there are some goal templates for finding the best restaurant in
a city that is provided as input. Let the goal templates differ with respect to the locality of the input city,
so that the SDC graph contains the goal tree shown in Fii8réhe root node is7; that describes the
objective of finding best restaurant in any city of the world, the second level is differentiates continents,
and the third level distinguishes countries that are located in continents. The figure also illustrates the steps
for goal formulation: at first the client browses the goal tree and chooses a goal tegplate appears
to be suitable for describing the objective. Then, the client creates a goal ingtdnee (G, 3) for the
chosen goal template. Imagine that in this example the client chésesG, (for Europe), and defines
B = {city| Vienna} as the input binding. However, the most appropriate goal templgte(tzest restaurant
in Austrian cities). Hence, as the final step, we need to search for the most appropriate goal template and,
for further processing, declare this to be the corresponding goal template for the goal instance.

The first two steps of the goal formulation procedure are not SDC-specific, but are required for any
system that realizes goal-based Web service usage. For technical realization, the SDC graph browsing can
best be supported by a graphical user interface. One of the most promising tools for this is WSMT, the
graphical user interface of the WSMX system that provides adequate browsing support for repositories of
WSMO elements (ontologies, Web services, goals, mediai®@k) For the second step of defining a goal
instance for a chosen goal template, form-based editors for defining concrete values for the inputs required
in chosen goal template appear to be a sophisticated solution. Such graphical support for goal instance
creation by clients are provided by related system implementation such ag]I&RSWF [43].
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_ 1. browses me——) goal tree world
Client
2. creates goal instance with:
- goal template: G2 — continent

- input city: Vienna

3. automated search for
closest goal template: — Country
- result: G5

Figure 18:lllustration of Goal Formulation Procedure

In the context of SDC, we thus concentrate on the third step of finding the closest goal tethfuate
a given goal instanc&l = (G., 3). We shall refer to this automated operationgyaal template search
Essentially, it commences at the goal templatehat has been chosen for goal formulation by the client,
and tests whethe® [ is a proper instantiation of the child nodes@f. This is repeated in a depth-first
manner until the closest goal templ&tdias been found. The result is a revision of the corresponding goal
template for the goal instance such that = (G., 3) — GI' = (G, 3). The following first defines required
matchmaking, and then specifies the algorithm.

4.1.1 Matchmaking for Goal Template Search

The matchmaking required for goal template search is to determine whether the goal idsiasefned
by the client is a proper instantiation of a goal templ@terhis is given if the preconditiop?™® of Dg as
the functional description df is satisfiable under the input bindiptthat is defined irG1.

To formally define this, we recall the definition of goal templates and goal instances in our framework
from Sectionl.2. A goal template describes an objective by a functional description of the form a functional
descriptionDg = (%,9Q, IF, ¢P9). Therein,IF = (iy,...,i,) are the input variables that occur as free
variables in the preconditiopP” and the effect:*”, andp?s = [qbp"e]x%re_,% = ¢ defines the impli-
cation semantics. An input binding : (i, ...,i,) — U4 is a total function that assigns concrete values
of the universé/ 4 to the IF-variables ¢f. Definition/1.2). We consider all functional descriptions to be
consistenti.e. there must be an input bindiggunder which there exists at least ariénterpretation/ that
is amodel ofD, i.e. 31, 3. I, 3 = ¢P. If this is not given, then a Web service implementation that provides
the functionality described b® is not realizable18]; in consequence, there cannot be any Web service that
is usable for a goal template with an inconsistent functional description.

A goal instance=1 = (G, ) is created by defining an input bindirgyfor functional descriptiorDg
of a goal templat€/. We call 3 completefor Dg if it defines a concrete value assignment for at least each
IF-variable inDg. For example, ifl[F' = (i1, 2,13), thens = {i1|v1,i2|ve, i3|vs} IS complete because it
defines a concrete value for each of the three input variables. It may also contain more value assignments
(e.g. alsois|vy). Given a complete input binding, we can instantiate the functional description of a goal
template by replacing every occurrence of Hll-variables inDg with the concrete values defined ih
From this, we can obtain an instantiated functional descrig#ij)s that formally describes the objective
that is formulated in the goal instande?<]; does not contain any free variables, so that its truth value for
this formula can be determined under evErnterpretation.

A goal instance5I = (G, 3) properly instantiates a goal templajeif 3 is complete forDg and if
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[Dglg is satisfiable. This means thdtmust assign a concrete value for at least evéryariable inDg

— otherwise the truth value ¢Dg]z might can not be determined — and there must beiaterpretation

I that is a model foppPs under. Then, thisl represents a sequence of states (so, ..., s,) thatis a
solution forG under the input binding defined inG 1, and thusr is also a solution fo671. Becauség is
consistent (see above), with this definition of proper instantiation it is ensured that the possible solution for a
goal instancé>1(G) are always a subset of those for its corresponding goal templatér}.g;g) € {7}g

(cf. Definition/1.1).

Definition 4.1 (Goal Instantiation). Let GI be a goal instance that defines an input bindihg-etG be a
goal template that has a functional descriptiDg = (3, Q, IFg, ¢79) with ¢P9 = [¢p7"|gpre_y, = X
Let [ngg]ﬁ denote the formula that is derived by replacing all occurrences of elféfyariable in ¢ by
the concrete values that are assignedsin

We say thatz I properly instantiates7, denoted by the predicatestantiates¢ 7, G), if and only if:

(i) Bis complete foDg, and
(i) [pP9]s is satisfiable.

This defines matchmaking condition for determining whether a goal instance is a proper instantiation of
a goal template. We illustrate this in our running example below in the context of the goal template search
algorithm. It is to note that ifJ is complete for a goal templatg then it is also complete for every goal
templateG, that is a child node ofj; in the goal tree. This holds because of the matchmaking condition
for the subsumesimilarity degree that implicitly requires the compatibility of the-variables ofDg, and
Dg,: Q4 = VB. P91 < ¢P% (cf. Tableld). If there is a3 such thafDg,]s is satisfiable thers must
be complete foDg,; if subsume(Gi,G1), then alsoDg,]s must be satisfiable and therefgfemust be
complete forDg, .

Proposition 4.1 (Transitive Completeness of Input Bindings in a Goal Tree)Letg;, G; be goal templates
such thatsubsume(G;, G;). An input binding3 is complete for a functional descriptidn = (3, Q, IF, ¢P)
with IF = (iy,...,1,) if 3 assigns a concrete value for at least every IF.

It holds that: (3 is complete foDg, if and only if 3 is complete foDg, .

4.1.2 Algorithm for Goal Template Search

We now can define the algorithm for goal template search. For a newly defined goal inGtanbis
performs a depth-first search for the goal tempf{atehereofGI denotes a proper instantiation so thas
allocated deepest in the goal tree. The procedure of goal formulation as illustrated above is an approximation
towards a real world setting, assuming that the client selects a goal template at least from the correct goal
tree in the SDC graph. We here specify the goal template search algorithm for the more general case: finding
of the closest template for a goal instance for which we do not know a corresponding goal template.

Listing 1 below provides the algorithm for this. Theain part defines the overall control for the
goalTemplateSearcmethod. Initially, thetarget (i.e. the goal template that we search) is defined to be
empty. At first, we invoke théindRootNodanethod that searches for a goal template that is a root node
of one of the goal trees in the SDC graph. A root node is a goal template that does not have any parents:
root(G) < —3Ga. subsume(Ga, G); isolated goal templates are also considered as root nodes — merely their
respective goal tree is of height 1. The search tests iteratively for all root nodes if the incoming goal instance
is a proper instantiation of the goal template; this is givem#tantiates(GI,G) holds for the currently
inspected goal templatef( Definition/4.1). By definition, the similarity of each two root goal templates is
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disjoint— otherwise the goal templates would be connected in the SDC graph. Hence, the halting condition
of theforall loop in thefindRootNodenethod is reached if a matching root goal template has been found. If
the incoming goal instana@1 is not a proper instantiation of any root goal template, then the result of the
goal template search is empty, meaning thHatis not a proper instantiation of any existing goal template.

If we have found a root goal template wheréaf is a proper instantiation, this is the intermeditteet
of the search. We then search the respective goal tree for the closest goal template, which is performed by
thefindChildNodemethod. This tests whethét] is a proper instantiation of any of the child nodes of the
current target; if yes, this child node is the intermedtatget and thefindChildNodemethod is iteratively
invoked for the newtarget The halting condition in thelsepart of theforall loop returns the curremarget
as the search result if there does not exists any child node wh@deisfa proper instantiation; the halting
condition outside théorall loop returns the root goal template as the search result.

We therewith realize a depth-first search whose computational complexity we have already discussed
above in Propositio3.4. Note that the iteration in thfindChildNodemethod allows to skip unnecessary
matchmaking steps for non-disjoint goal templafesandG. on the same level of the goal tree: regardless
of which one is investigates at first, the iteration will directly proceed with examining the next level of the
goal where the intersection goal templétg;, ,) is allocated ¢f. Propositior3.2)

/I type declarations
Gl := goalinstance;
G1,G2 := goaltemplate;
target := goaltemplate;
/I main
goalTemplateSearch(Gl);
target = null ;
findRootNode(Gl);
if (! target = null) then
findChildNode(target);
return target;
/I find root of goal tree
findRootNode(GI){
forall (root(G)) {
if instantiates (GI,G) then
target = G;
return target;

}

return target;

/I find child node in goal tree
findChildNode(G1) {
forall (subsume(G1,G2)) {
if instantiates (GI,G2) then
target = G2;
findChildNode(target);
else
return target;

}

return target;

}

Listing 1: Goal Template Search Algorithm

2Syntax for the pseudo code used for algorithm specifications:
:= is a data type declaratiomame(input)is the name and the input value of a methéatall(condition) defines a loop that is
iterated for all objects for which the condition is satisfied until the halting condition is readh@dndition) then (action) else
(action) defines a conventional guarded actiogturn(value)is the halting condition that returns the valueill denotes that the
value of an object is empty; defines a value assignment for an objédefines the negation of the subsequent condition.
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For illustration, let us recall the example from Fig:& If we have already given a corresponding goal
template within the definition of the incoming goal instance (i.e. as in the above procedure), we can (1) skip
the findRootNodemethod, and (2) commence tfiadChildNodemethod directly from the already known
goal template. This allows to obtain a better efficiency at runtime.

In the above example, the goal instaxi¢Ecreated by the client defings= { city|vienna}, and it speci-
fiesG, as the initial corresponding goal templafe.defines/F' = {7z}, the preconditioR?™¢ = city(?z)A
locatedIn(?xz, europe), and the effecy = V?y. out(?y) < restaurant(?y) A locatedIn(?y, ?x) A
—(3?z.restaurant(?z) A locatedIn(?z, 7x) A better(?z,7y)). GI is a proper instantiation @j, because
0 satisfiespP™¢ and the output objedl is the best restaurant in Vienna as requestedte®get= G, for the
first iteration of thefindChildNodemethod. Imagine that thierall loop first choosegs that is for finding
the best restaurant in a German city witti¢ = city(?z) A locatedIn(?x, germany). GI is not a proper
instantiation ofGs becausé&/?y. locatedIn(?y, austria) = —locatedIn(?y, germany). Hence, the inter-
mediate target remains to 6. Next, we tryGs that definesp?’”¢ = city(?z) A locatedIn(?z, austria)
with the same input variable as all other goal templates in the goal tree. ObviGUsk/a proper instantia-
tion of this goal template. Hence, the intermediatgetis changed tgj5, and thefindChildNodemethod is
invoked again. Becausg, does not have any child nodes in the goal tree, the outer halting condition holds
and the result of the searchgs — which is the closest goal template 1Gr .

4.2 Web Service Discovery — Goal Template Level

We now turn towards Web service discovery. This section defines the matchmaking and algorithm for
discovery on the goal template level that is performed at design time, respectively orthogonal to raitime (
Figurel7); we address discovery on the goal instance level below in Se¢tion

The aim of the algorithms is to realize an efficient and scalable procedure for Web service discovery on
the goal template levet{. requirement8 and4). We therefore make extensive use of the inference rules for
usability degrees as defined in Theor@rt(cf. Section3.2). We here specify the algorithm for determining
the usability degree of all usable Web services for a new goal template that is inserted in the SDC graph. The
result of this operation constitutes the discovery cache for the new goal template. As we shall discuss below
in detail, this algorithm contains all methods that are relevant for Web service discovery on the goal template
level during the evolution of the SDC graptf.(Section5). The following first explains the matchmaking
for determining the usability degree of a Web service for a goal template, and then specifies the algorithm
for discovering all usable Web services for a new goal template.

4.2.1 Matchmaking for Web Service Usability Degree Determination

Web service discovery on the goal template level is concerned with determining the usability degree of Web
services for a specific goal template. The usability degree provides sufficiently rich information for our
discovery approach, as it allows to perform efficient Web service discovery on the goal instance level at
runtime €f. Definition1.5). Hence, this is the only information stored in the discovery cache of the SDC
graph €f. Definition3.2).

The usability degree of a Web servitdé for a goal templat; is determined by matchmaking of their
functional description®y, andDg, as defined in Sectioh.2.2 Relevant for the following discussion,
Table5 recalls the definition of the usability degrees and shows the logical relationship between them. For
technical realization of a matchmaker, the conditions for each degree as defined here can be implemented
straight forward in a inference engine for the chosen specification language — e.g. as proof obligations for a
first-order logic theorem prover as done 44].
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Table 5:Definition and Relationship of Usability Degrees
Degree Definition Formal Relationships
exactG, W): Qu = V3. ¢P9 < ¢Pw
plugin(G, W):  Qu | V3. ¢P9 = ¢PW
subsume@, W): Qu V3. ¢Pd « ¢pPw
intersect@G, W):  Qu = 38. ¢P9 A ¢PW
disjoint(G, W): Q4 = —38. ¢P9 A ¢PW

plugin A subsume= exact
plugin = intersect
subsume=- intersect
intersect= — disjoint

The matching conditions for the degrees are not precise in the sense that if the condition for a degree it
satisfied, the actual relationsHiny andDg can maybe also be expressed as a different degree. For example,
if plugin(G, W), then maybe alseract(G, W) holds —in the case th@y, andDg are logically equivalent.
For our application purpose, we want to dispose this ambiguity: we must know the precise usability degree in
order to beneficially apply the inference rules as well as for realizing an efficient runtime discovery. The right
column of Table5 imposes the following preference ordet:act > plugin, subsume > intersect. We
always prefer the degree with the higher preference because the higher the preference, the more beneficially
we can deal with the usability degrees among adjacent goal templates in the SDC graph.

To achieve this, we do not need to modify the matchmaking conditions — we merely need to define a
suitable control algorithm for invoking the matchmaker. Listfxghows our solution for this. Initially, we
set the usability degree thisjoint We first check whether the condition for thrigin degree is satisfied; if
yes, we update the usability degregtogin. Then, we do the same for tsabsumelegree. If the conditions
for both are satisfied — the information is kept in boolean constants — then we update the usability degree to
exact If this is not given, we check the condition for tirdersectdegree and update the usability degree
accordingly. ThenatchmakingUsabilitynethod returns the determined degree; in case that the Web service
is not usable for the goal template, the resulting degree rerdajusnt. Although this is just a minor issue
towards an efficient Web service discovery, this algorithm requires maximal 3 matchmaking operations and
hence is more efficient than respective algorithms defined in related work<2@})g. [

/I type declarations
G := goaltemplate;
W := webservice;
d := usabilityDegree;
plugin, subsume := boolean;
/I main
matchmakingUsability(G,W){
plugin = false;
subsume = false;
d = disjoint ;
if ( plugin(G,W) ) then {
plugin = true;
d = plugin; }
if ( subsume(G,W) ) then {
subsume = true;
d = subsume; }
if ( (plugin = true) and (subsume = true)) then {
d = exact; }
else {
if ( intersect(G,W) ) then d = intersect; }
return d;

}

Listing 2: Algorithm for Unambiguous Usability Degree Determination
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Another relevant aspect is that only the minimal knowledge needed to perform the matchmaking is
loaded into the matchmaker. As discussed in the context of requir@hiehtSection2.2.2), this is an es-
sential pre-requisite for maintaining the scalability of the discovery engine under a large amount of available
Web services. To guarantee this, for every invocation ofnlaéchmakingUsabilitynethod we only load
the minimal required knowledge into the matchmaker. This is the functional descrifipié the goal
template andy of the Web service, and the background ontologies that are used andDyy,. These
can be several distinct ontologies — i€y, ..., 2, — and they might be heterogeneous. We consider all
mismatches between the ontologies to be resdbefdrethe matchmaker is invoked. This can be achieved
by respective data level mediation techniques, e.g. those developed in the context of the WSMO mediation
framework R6]. Moreover, we can expect to make use of the work from Francois Scharffe on an algo-
rithm for providing a global view on an integrated ontology for a particular application purpose as proposed
in [31]. Let Q¢ be such an integrated, global ontology for all background knowledge used Tgthe
andDy, we merely need to extend this with the additions for dynamic symbols and then utilize this as the
minimal relevant background knowledge for the matchmaking.

4.2.2 Algorithm for Discovering All Usable Web Services for a New Goal Template

We now define the algorithm for SDC-enabled Web service discovery for a new goal template that has been
inserted into the SDC graph. This covers all aspects relevant for discovery on the goal template level whereof
parts can be reused in other situations, e.g. if an existing one is modified or removed (we shall address this
in detail in the context of SDC graph evolution managemeinectior5).

We consider the following situation as the context of the goal template discovery algorithm. There is a
refined SDC graph ¢f. Definition/3.5) given so that (1) there are existing goal templates that are organized
in a set of goal trees wherein the only occurring similarity degresiliisumeand (2) the discovery cache
of the SDC graph is minimized, i.e. WG mediators for child nodes in a goal tree whose usability degree is
directly inferrable from the parent node are omitted. A new goal temglaig is defined and has already
been inserted into the goal graph (i.e.: the GG mediators that co@ipggtto its neighbors in the SDC
graph are defined, and all possibly occurring i-arcs have already been resolved). So, we have a refined SDC
graph wherein there is a new goal templgte,, for which there does not yet exists a discovery cache.

The purpose of the Web service discovery algorithm that we specify here is to detect all Web services
that are usable for the new goal templéte,, along with the respective usability degree. The aim is to
make extensive use of the inference rules for determining usability degrees in the SDC graph as defined in
Theorem3.1 (cf. Section3.2). The new goal templaté,,..., can be allocated at three different position in
the SDC graph. We need to differentiate the Web service discovery for each possible position:

1. G, is a new child node in an existing goal treeg,,.., is allocated in an existing goal tree at any
position but not as the root node. We shall denote this situatiehidé(G,..,) such thag,,.,, has at
least one parenthild(Gpew) : 3G. subsume(G, Gpew)-

Here, we know that only those Web services can be usabi@.forthat are usable for its parents (the

afore mentioned filter functionality of theubsumesimilarity degree). For any Web servi¢g that

is usable for a parent @,,.,, under theexactor plugin usability degree, we can directly infer that

its usability degree is iplugin(Gnew, W) (cf. clauses 3.1 and 3.2 of Theor@d). However, we do

not need to inspect these Web services in our algorithm, because the respective WG mediators will be
removed afterwards in order to maintain the minimality of the discovery cahProposition3.5).

For the Web services that are usable for a paregt,pf under thesubsumer intersectdegree, we

can apply the respective inference rules from clauses 3.3 - 3.10 in Th&alem
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2. Ghew IS @ New root node of an existing goal tree:G,..,, is a root node of an existing goal tree
so that it only has outgoing s-arcs. We shall denote this situatio@$G,,..,) such thatg,..,
does not have any parent but one or more child nodest(G,c.) : VG. ~subsume(G, Gpew) N
3Gs. subsume(Gpew, G2).
In this situation, every Web service that is usable for any child nodg,qf is usable foiG,,.,,. For
this, we can make use of the inference rules undeplingin similarity degreef. clauses 2.1 - 2.8 of
Theoremni3.1). However, there can usable be Web services that are usalglg fpbut not for any of
its child nodes¢f. clause 2.9 of Theore®.1). Hence, we also need to perform matchmaking for all
other available Web services. Redundant WG mediators that might be created in this operation must
be removed afterwards (we shall cover this later in Se@)on

3. Gnew is New disconnected node in the SDC graphthere does not exists any goal template in the
SDC graph that has a common solution with..,, so thatG,,.., appears as a disconnected node in the
SDC graph. We shall denote this situationdasconnected(Gpew) such thadisconnected(Grew) :

VG. disjoint(Gnew, G). Here, we can not make beneficial use of any inference rules. Thus, we need
to perform matchmaking with all other available Web services.

Listing 3 shows the algorithm that covers all three situations. The result of the main ntidcogtery(G)
is a set of triplesl, sqpitity (G, W) that constitutes the discovery cache for the goal template that the algorithm
is invoked with. The operator denotes the addition of an element to the discovery cache. The method
childNodeDiscovery(Gperforms Web service discovery for the first situation identified above. It considers
all parent nodes of the new goal template, and determines the usability degree for every Web service under
consideration of the inference rules for t@bsumeimilarity degree. As discussed above, it omits all Web
services that are usable under éxactor plugindegree. The methadotNodeDiscovery(&erforms Web
service discovery for the second situation. It firstinspects the Web services that are usable for all child nodes
of the new goal template, thereby considering the inference rules fpiuge similarity degree. Secondly,
it performs matchmaking for all Web services that are not usable for any child node. For this, the operator
in checks whether an element is existing in a set, and the matladchmakingUsability(G,Wipvokes the
algorithm specified above in Listin2} For the third situation, matchmaking is performed for all available
Web services.

This algorithm performs the minimal number of matchmaking operations that is needed for determining
the usability degree of Web services that are usable for a newly defined goal template. This is performed
orthogonal to runtime, so that the computational efficiency of algorithm does not influence the runtime effi-
ciency of the overall discovery procedure. We hence omit a computational costs analysis of this algorithm.

/I type declarations
G,G2 := goaltemplate;
W := webservice;
d := usabilityDegree;
discoverycache := {d(G,W)};
/I main
discovery(G){
discoverycache = {};
if child (G) then childNodeDiscovery(G);
if root(G) then rootNodeDiscovery(G);
if disconnected(G) then {
forall  (W){
matchmakingUsability(G,W);
if (! d= disjoint) then discoverycache = discoverycache + d(G,W);
b}

return discoverycache; }
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/I discovery for G if it is a child node in an existing goal tree
childNodeDiscovery(G){
forall ( G2 and subsume(G2,G)) {
forall ( W and subsume(G2,wW) ) {
matchmakingUsability(G,W);
if (! d= disjoint) then
discoverycache = discoverycache + d(G,W);

}
forall ( W and intersect(G2,W) ) {
if ( plugin(G,W) ) then d = plugin;
if ( intersect(G,W)) then d = intersect;
discoverycache = discoverycache + d(G,W);
}
}

return discoverycache;

}

/I discovery for G if it is a root node of an existing goal tree
rootNodeDiscovery(G){
forall ( G2 and subsume(G,G2)) {
forall ( W and exact(G2,W) ) {
d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and subsume(G2,wW) ) {
d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and plugin(G2,W) ) {
plugin, subsume :=boolean;
d = intersect;
if ( plugin(G,W) ) then {
plugin = true;
d = plugin; }
if ( subsume(G,W) ) then {
subsume = true;
d = subsume; }
if ( (plugin = true) and (subsume = true)) then {
d = exact; }
discoverycache = discoverycache + d(G,W);

}

forall ( W and intersect(G2,W) ) {
if ( subsume(G,W) ) then d = plugin;
if ( intersect(G,W) ) then d = intersect;
discoverycache = discoverycache + d(G,W);

}
}

forall ( W and (W in discoverycache) {
matchmakingUsability(G,W);
if (! d= disjoint) then
discoverycache = discoverycache + d(G,W);
}

return discoverycache;

}

45

Listing 3: Algorithm for Web Service Discovery for a new Goal Template
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4.3 Web Service Discovery — Goal Instance Level

The final operation in the SDC-enabled Web service discovery framework is the discovery on the goal
instance level. Performed at runtime, the purpose is to determine those Web services that are actually usable
for a given goal instance that represents a concrete client objective. For this, we perform matchmaking on
the goal instance level for those Web services that are usable for the corresponding goal template. As soon as
a usable Web service has been detected, the subsequent steps for resolving the client request are performed.
The following recalls the matchmaking technique for discovery on the goal instance level, then specifies the
algorithm for runtime Web service discovery in the SDC framework, and finally analyzes the computational
efficiency of the algorithm.

4.3.1 Matchmaking and Procedure

The central matchmaking technique for runtime Web service discovery is to determine whether a Web
service is usable for solving the concrete objective described in a goal instance. This is given if the execution
of a Web service provides a solution for the goal instance when it is invoked with the concrete input values
that are defined in the goal instance. We briefly recall the formal matchmaking approach for this as explained
in the introduction €f. Sectionl.2.3.

A goal instancez1 = (G, 3) defines an input binding for the functional descriptio®g of its cor-
responding goal templatg. Given a3, we can instantiate the functional descriptions by replacing every
occurrence of eacliF-variable with the respective value defineddn We obtain[¢?9] 3 as the instanti-
ated functional description of the goal template; in fact this formally describes the concrete objective that
is represented id:I. Accordingly, [¢P"]; describes the subset of possible solutions of the Web service
W when it is invoked with the concrete input values define@.irBecause of the formal relationship of a
goal instance and its corresponding goal template, we have defined a matchmaking approach that requires
the minimal number of matchmaking operations for determining the usability of a Web service for solving
a goal instance. Relevant in our context, we recall this from Definitién

Let Dg describe the requested functionality in a goal templatd_et GI1(G) be a goal instance of that
defines an input binding. Let W be a Web service, and |8y, be a functional description such that
W =4 Dw. W is usable for solving=1(G) if and only if:

() exact( Dqg,Dw) or
(i) plugin( D¢, Dw) or
(i) subsume( D¢, Dw) and A Qa A [pP]g is satisfiable, or

(iv) intersect( Dg,Dw) and AQuA [pP9]5 A [¢PW]s is satisfiable.

Essentially, this defines that if a Web servigeis usable for the corresponding goal template under the
exactor plugin degree, then it is also usable for the goal instance. If the usability degi&efof the goal
template issubsumer intersect then we need to perform additional matchmaking on the instantiated func-
tional descriptions in order to determine the usability¥ffor solving the goal instance. Moreover, only
those Web services that are usable for the goal template can be usable for the goal instance while no others
can be ¢f. Definition/1.1). The matching conditions under teabsumendintersectusability degrees can
be implemented as a conventional satisfiability test in the chosen reasoner. For our first-order logic approach,
we have defined this as a proof obligation of the fat@. output(O, [¢P9]5) A output(O, [¢pPW]s): this
tests whether there existainterpretation that is a common model of the instantiated functional descrip-
tions and defines a common output objed][
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Above, we have recalled the matchmaking technique that allows to determine whether a Web service is
usable for solving a goal instance. However, the matchmaking alone does not yet satisfy all the requirements
for runtime discovery that we have identified in Sect® Mo achieve this, we integrate the matchmaking in
the overall discovery procedure as illustrated in Figle

At first, we perform the goal template search algorithm specified above in Sdctiamorder to find
the closest goal templat for the goal instancé& 1 = (G., 3) that the client has defined. We obtain a
revision of the goal instano&1 = (G, 3) such thatG is a proper goal template f@¥! that is located the
deepest in the goal tree. The number of Web services that are usalésfarinimal in comparison to all
other existing goal templates where&gf is a proper instantiation. Thus, we ensure that the search space for
matchmaking the minimal and therewith satisfy requirer@a the computational efficiency. Secondly, we
realize the interleaved Web service discovery from requireif:iewhenever the matchmaking has detected
a usable Web service for the goal instance, the subsequent reasoning steps for automatically solving the goal
instance are invoked; the search continues orthogonal to runtime. Thirdly, with respect to requifement
on the scalability, we only load the minimal knowledge into the matchmaker for each single matchmaking
operation (the same as explained above for matchmaking on the goal templatefl&Settiorid.2).

sSDC for all W usable for G

1. browses
/’ Graph

Goal Template
Search

A 4

revised: GI = (G,& /_
(G.5) ./ Goal Instance
rWscovery
2. creates Goal Instance

Gl = (Gc,B) 3. if usarllyjlit:/lr:]c:etected

4. repeat until (3)

orthogonal to runtime

\ 4
further processing

Figure 19:Runtime Operations for SDC-enabled Web Service Discovery

4.3.2 Algorithm for Runtime Web Service Discovery

Listing/4 provides the algorithm for the integrated runtime Web service discovery as explained above. The
main methodliscovery(Glfirst invokes thegoalTemplateSearchlgorithm that we have specified in List-
ing!1 (cf. Section4.l). This returngj as the most appropriate goal template whereof the goal instahce
(the one for whichdiscovery(Gl)s invoked) is a proper instantiation. We then define= (G, j3).

The first subroutine isookup(G)that is only invoked if the corresponding goal template is allocated
as a child node in the SDC graph (see possible positions of goal templates above). This finds usable Web
services by inspecting the omitted WG mediators in the SDC graph. Recalling from Prop8dificih Sec-
tion'3.3.4, WG mediators whose usability degree can be directly inferred are omitted in the SDC graph in
order to maintain the minimality of the discovery cache. In particular, all WG mediators that connect a child
node in a goal tree to a Web service that is usable undesxthetor plugin degree for a parent node. For
example, ifsubsume(Gy, G2) andplugin(Gy, W), then we only store the ald/GM; = (G1, W, plugin)
but omitWGMs = (Ga, W, plugin) becauséVG.M, can be directly inferred fromVGM;. This omit-
tance of WG mediators is iteratively applied throughout a goal tree. Thus, non-redundant WG mediators are
always allocated at the highest possible level in a goal tree —i.e. at the root node in the most general case.
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It holds that if a Web servic® is usable for a goal templagg under theexactor plugindegree, then it
is always usable under thdugin degree for every child nod&Gs. plugin(Gs, W) « subsume(Gi,G2) A
(exact(G1, W)V plugin(Gi, W), cf. clauses 3.1 and 3.2 of Theor@i. Coincidently, if a Web servicd’
is usable under thelugin degree for a goal templatethat is referenced in a goal instanGé((G, ), then
we know thati¥ is usable for solving~ I without the need of invoking a matchmaker.

These relationships are utilized within the methookup(G)to efficiently detect usable Web services
for the given goal instance without matchmaking. It commences at the goal template that is referenced in
the goal instance description, and checks if there is a Web service that is usable uredarctoe plugin
degree for any of its parent nodes. As soon as such a Web service has been detected, this is returned as the
result of the overall algorithm. This is repeated in an inverse depth-first manner: it is iteratively invoked for
each parent node before considering another parent node at the same level. This ensure to find usable Web
services via omitted WG mediators with the minimal computational costs.

The second methogloallnstanceMatching(Glperforms matchmaking on the goal instance level. This
is invoked whenevelookup(G)is not usable or if it did not return a usable Web service. As explained
above, we know without matchmaking that a Web servicés usable forGI = (G, () if exact(G, W) or
exact(G, W). Under the other two usability degrees, we need to perform matchmaking. For this, the method
satisfiable(W,inputdsts the additional matching conditionsifbsume(G, W), andsatisfiable(G,W,inputs)
tests the one for the casewftersect(G, W). If the latter is not given, then there does not exists any Web
service that can solve the goal instance.

/I type declarations

Gl := goalinstance;

inputs := inputbinding;

G := goaltemplate;

W := webservice;

/I main

discovery(Gl) {
G = goalTemplateSearch(Gl);
Gl = (G,inputs);
lookup(G);
goallnstanceMatching(Gl);

/I usability lookup for inferable usability degrees
lookup(G) {
if ( child(G)) then {
forall ( G2 and subsume(G2,G)) {
forall ( W and ( exact(G2,W) or plugin(G2,W))) {
return W;

}
lookup(G2);

/I goal instance level matchmaking
goallnstanceMatching(Gl) {
forall ( W and exact(G,W) or plugin(G,W)) {
return W; }
forall ( W and subsume(G,W) ) {
if ( satisfiable (W,inputs) ) then
return W; }
forall ( W and intersect(G,W) ) {
if ( satisfiable (G,W,inputs) ) then
return W,
else
return systemout = 'goal instance can not be solved’;

b}

Listing 4: Algorithm for Runtime Web Service Discovery
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With respect to the importance of this algorithm for the use of the SDC-enabled Web service discovery
in real-world applications, we illustrate it in our running example. For this, we recall the scenario discussed
above in the context of goal formulation and discuss the two situations shown in 2€ur&he goal
instanceG T requests to find the best restaurant in Vienna. There are three goal templates for finding the best
restaurants in cities with different locality restrictiorg; for Europe,Gs for Germany, andjs for Austria.
Obviously, and as discussed above, the closest goal templégesis that the goal instance is defined as
GI = (Gs, {i1| Vienna}).

As the first situation, let there be a Web servite that allows to find the best restaurant in any city of
the world (left hand side in the figure). We easily see that its usability degrég fsmplugin and thus the
same forGs; andGg (as both are child nodes 6b). Here, the WG mediators to connééy with G5 or with
Gg are omitted. In this situation, we can filid; to be usable for the goal instance by tbekup(G)method:
in the first iteration, it considers the level whejgis located at. Because therell§ as a Web service that
is usable under thglugindegree, we know that it is usable for solviGg. As said above, no matchmaking
is needed in this method.

In the second situation, let there by a different Web serliigefor searching the best Italian restaurant
in a European city. The usability degreeld?, for all three goal templates iatersect it only provides the
best restaurant if, by accident, the best restaurant in the input city is of type leéljaklere, thdookup(G)
method will not find a usable Web service because it there does not exists any Web service that is usable
under theexactor plugin degree for any parent node @f§. When executing thgoallnstanceMatching(Gl)
method, we enter thiorall loop for theintersectdegree. If we assume that the best restaurant in Vienna is
not of type Italian, then the additional matching condition 3 to be usable fot=1 is not satisfiedIV,
would provide the best Italian restaurant in Vienna — this is not identical to the best restaurant in Vienna that
is requested by 1.

Europe : Gl = find best restaurant G2) Europe
i in Vienna 1
....................... -

G5h | AG6
Germany Austria Germany Austria
W, W,
finds best restaurant finds best italian in
In any city of the world European city

Figure 20:lllustrative Example for Runtime Web Service Discovery

4.3.3 Computational Efficiency Analysis

The runtime Web service discovery defines the complete procedure that is processed for SDC-enabled Web
service discovery at runtime. In fact, the increase in computational efficiency for Web service discovery
that is aspirated with SDC technique is primarily dependent on the efficiency of the runtime Web service
discovery. With respect to this, we conclude the specification with a computational cost analysis of the
algorithm specified in Listing.
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As we have shown in the example discussion above, the algorithm can be very efficient. In particular, if
there is a Web service that is usable underekactor plugin degree for the corresponding goal template,
then it can determine the usability of Web service for solving a goal instance without the need of invocation
a matchmaker. However, in order to express the computational costs in terms of the Big-O-notation, we
must consider the worst case scenario. There are two such scenarios: (1) if there does not exists any usable
Web service for solving the goal instance, or (2) if the usability degree of the only Web services that are
usable for the corresponding goal templatsubsumer intersect

In both situations, thgoallnstanceMatching(Glnethod needs to perform matchmaking for the addi-
tional conditions; in the worst case, every Web service that is usable under eithebtuner theintersect
degree must be inspected. Moreover, if the corresponding goal template is located as a child node in the
SDC graph, then thimokup(G)method will inspect every path from the corresponding goal template up to
the root node without success. However, discovery witHdbkup(G)method as well as for Web services
under theexactor plugin degree does not require any matchmaking. This can be realized with conventional
technologies — e.g. in a database system that allows to process large amounts of such simple lookup oper-
ations in a time range of milliseconds. This is not the case for discovery steps that require matchmaking:
although the actual matchmaking can (in theory) be performed fast, the invocation and communication with
the matchmaker requires much time. Because of this, for our analysis we only consider the operations that
require matchmaking while neglecting the lookup operations.

Analyzing the two worst case scenarios, we observe that the computational costgoélimstance-
Matching(Gl)method is proportional to the number of Web services that are usalgjeat is correspond-
ing goal template for the goal instan€d = (G, 3). If there is a Web service at is usable fpunder the
exactor plugindegree, then the algorithm does not need to perform matchmaking. If the only Web services
for G are usable under thrmubsumeor theintersectdegree, then matchmaking needs to be performed for
them. Hence, whediW'},,q.n(g) IS the set of Web services that is usable §orthen we can express the
computational complexity of thgoallnstanceMatching(Glinethod as the size of this sefV },,,41cn(g) |-
We then can express the efficiency of the overall runtime discovery algorithm by extending this with the
complexity of the goal template search algoritheh Propositiori3.4).

Proposition 4.2 (Efficiency of Runtime Web Service Discovery)LetGI = (G, 3) be a goal instance that
is described by its corresponding goal templgtand an input bindings. LetG be an element of a refined
SDC graph. The computational costs of Web service discovery fis

O((n(l,p(9)) + nllg+1) ) + W bimaten(g)|) with:
(i) O(n(l,p(G)) +n(lg+1)) is the computational complexity for findiggwith
-n(l,p(G)) is the number of goal templates on each level of the path
from the root node of the goal tree ¢b
-n(lg+1) is the number of goal templates that are child node§ of
(i) {W }naten(g)l is the number of Web services that are usablegfor

This defines the maximal computational costs for finding a Web service for a goal instance at runtime.
The elements of the computational complexity are dependent of each other: the lower the corresponding
goal template is allocated in the goal tree, the longer the goal template search can take — but the lower is
the number of Web services. Furthermore, whenever there is a Web service that is usable usdmstthe
or plugindegree, no matchmaking is required for discovery at the goal instance level. We shall discuss the
efficiency increase that is achievable with SDC-enabled Web service discovery in the context of a extensive
applicability study.
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5 SDC Graph Maintenance

This section completes the specification of the SDC technique with the operations and algorithms for man-
agement and evolution of the SDC graph. We except the SDC technique to work in dynamic environments
wherein goals and Web services are continuously created, removed, or modified. The SDC graph needs to
support this and should stay operational in the dynamic environment. We therefore distinguish three aspects
relevant for the maintenance of the SDC graph:

1. iterative creation of the SDC graph: this is concerned with the creation of an SDC graph for given
goal templates and Web services. We realize an iterative procedure that commences with a single goal
template and then successively adds other or new goal templates. This must ensure that the result
always reveals the properties of a refined SDC graph, i.e. that it is a set of goal treeshgtimeas
the only occurring similarity degree and with a minimal discovery cachéfinition'3.5).

2. evolution support: this covers the operations for removal or updates of goal templates, and the
addition, removal, or update of Web service descriptions. These operations are necessary to maintain
the operational functionality of the SDC technique in its dynamic environment.

3. advanced management:this is concerned with techniques for increasing the quality of the SDC-
enabled Web service discovery. In particular, we discuss possibilities for automatically creating new
goal templates that provide the backbone of the SDC technique. While the former two aspects are
mandatory, the advanced management technique are optional extensions.

The following specifies the techniques and algorithms for each aspect. All of these operations are
performed at design time, respectively orthogonal to runtime (i.e. only if a goal template or a Web service
description is added, removed, or updated). Because this does not influence the runtime efficiency of SDC-
enabled Web service discovery, we omit a computational cost analysis of the algorithms specified here. In
order to maintain the consistency of the SDC graph, we define the overall control of the SDC algorithms
such that it disallows parallel execution of operatiorfs AppendixC).

5.1 Iterative Creation of the SDC Graph

We commence with the first aspect on the creation of the SDC graph. The aim is to ensure that the resulting
SDC graph always as exposes the propertiesefiredSDC graph, i.e. that the goal templates are organized

as a set of goal trees witubsumes the only occurring similarity degree and the discovery cache does not
contain any redundant WG mediators. (Definition 3.5). The reason is the algorithms for Web service
discovery specified in Sectiaghonly work properly on the basis of such a refined SDC graph.

To achieve this with minimal computational costs, we specify the algorithm to subsequently build up
the SDC graph and to resolve undesirable situations en-route. This means that we start with one goal
template and then subsequently add other existing ones, respectively newly created goal templates. In each
iteration, we first compute the goal graph and then add the discovery cache. During the constructing of the
goal graph, we resolve all possibly occurring intersection arcs between goal templates. As discussed above
(Section3.3.2), such i-arcs are the reason for undesirable situations in the SDC graph (cycles, insufficient
information, etc.), and their resolution allows to create the goal graph to become a set of goal trees. The
following first defines the algorithms for constructing such a refined goal graph, then for constructing the
minimal discovery cache, and finally illustrates the algorithms in our running example. We here concentrate
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on the functional correctness of the distinct operations; the overall algorithm that integrates all operations is
provided in Appendi:C.

5.1.1 Algorithm for Goal Template Insertion

The following specifies the operations for the iterative creation of the SDC graph. For this, we define the
overall procedure for inserting a new goal template into the SDC graph. To ensure that the constructed
goal graph exposes the desired properties of a refined SDC graph, the sub-routines resolve all potentially
occurring i-arcs in the goal graph, and remove redundant edges are resolved during the creation procedure.
The creation commences with an empty SDC graph (i.e. no goal templates are stored). Then, the
goal template insertion algorithm is iteratively invoked for all existing goal templates, respectively when a
new one is added. The matchmaking technique required for creating the goal graph is the determination
of the similarity degree between goal templatefs Section3.1.1). For this, we perform matchmaking of
the formal functional descriptions of goal templates with the matching conditions as defined irBTable
the technical realization is similar to the determination of Web service usability degfe&ettion4.2).
In order to minimize the computational costs of the SDC graph management algorithms, we only apply
matchmaking when necessary.
The complete algorithm for inserting a new goal template becomes complicated because we must take
all possible situations into consideration. We thus discuss each method of the algorithm separately.

Overall Procedure for Goal Template Insertion. We commence with the overall control procedure for
the insertion of a new goal templafe..,. Listing/5 shows the algorithm for this. We define the following
data types that are relevant for this operation. gbalStoreis the set of all existing goal templates, a
goalTreeis the set of s-arcs that connect all goal templates in a goal tree, agddh@raphis the set of all
goal templates in the goal store together with all existing goal treesdiBheveryCacheaptures the WG
mediators that connect usable Web services to the goal templates in the goal graph. All these elements are
kept in a persistent memory (e.g. a data base). The funptisition) internally keeps the position of a
goal templateg in the goal graph. This function can only have 2 valuesit denotes thag is either the
root node of a goal tree, or it is disconnected in the goal grelpild denotes thad is located at any position
but not as the root node in a goal tree.

The overall procedure for the insertion of a few goal templ&tg, is as follows. Initially — when there
is no goal template stored — the new template is added and defined to be a root node. If there are already
elements in the gaol store, the insertion commences with the investigation of the existing goal templates
whose position igoot. We then distinguish the insertion actions for the distinct similarity degrees. If this
is exactbetweeng,..,, and an existing root node, then we do not &jg,,; for the similarity degreglugin,
subsumeor intersect the insertion is handled by sub-routines that we shall discuss below in more detail.
If the similarity degree of7,..., with all existing root nodes idisjoint, we addg,.., as a disconnected root
node in the goal graph. We then have insedgd, at the appropriate position in the goal graph. As the
second step, we create the discovery cachgfgy, by performing Web service discovery.

/I type declarations

G,G2 := goaltemplate;

goalStore := {goaltemplate};

goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
/I function declarations

position (goaltemplate) := (root | child);
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/I main
insert (G){
if ( goalStore != {} ) then {
forall ( G2 and position(G2) = root) {
if ( exact(G2,G)) then return goalStore;
if ( plugin(G2,G) ) then rootNodelnsertion(G,G2);
if ( subsume(G2,G) ) then childNodelnsertion{G,G2};
if ( intersect(G2,G) ) then {
position (G) = root;
iArcResolution{G,G2}; }
else {
position (G) = root;
return goalStore = goalStore + G;
I

discoveryCacheCreation(G);

}

Listing 5: Algorithm for Goal Template Insertion

Insertion of a New Root Node. We now specify the methods for inserting a new goal template into an
existing goal graph. We commence with the insertiodgf,, as a new root node of an existing goal tree.
This is given if the similarity degree betweéh.,, and an existing root node [gugin. In this situation, we
must replace the existing root node &y.., and define the necessary s-arcs of the goal tree.

Figure21 shows the possible allocation 6f..,, after the insertion: in case (&}, becomes the new
root node of a goal tree that only had one root node beforehand,; this also covers the cagg.yihecomes
the parent of a before disconnected goal template. As casg,(hh) becomes the common root node of two
goal trees that were separated beforehand. Here, the prior root nodes are disjoint, and thus the child nodes
in the each goal tree are disjoint. For instance, imagine that in the figusfor finding the best restaurant
in a European cityg, for an American city, and,.,, is for any city of the world. In the remaining two
possibilities,G,..., becomes a new root node of an existing goal tree that has had two or more root nodes
before. Such a goal tree can only occur as the result from resolving an i-arc: in the figure, the similarity
degree betweeg; andg; is intersect andGs denotes the intersection goal templaté (Section3.3.2).
Grew Will only become a new root node only if it is a parent node of at least one of the prior root nodes, i.e.
if and only if eitherplugin(Gi, Gnew) OF plugin(Ga, Grew) in the figure. If this is given for one of the prior
root nodes, theg .., replaces this one; this is case (c). Then, the similarity degree betiggrwith the
other existing root node can only Ipdugin or intersect in the former cas€,.., replaces both prior root
nodes (i.e. situation (d)); in the latter case, the i-arc betwken and the other root node must be resolved
(we discuss the resolution of i-arcs below).

O (™ O
() () ONOINONO.
I NOIOXOIOINeG 0!

b)

(a) ( (c) (d)

Figure 21:Possible Situations for New Root Node Insertion

The principles discussed for the four cases are the same when we consider more complex goal graphs,
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i.e. with more nodes and edges. Besides, the lower levels of existing goal trees are not chénged if
becomes a new root node; thus we do not need to investigate them. For the latter cases (c) and (d), every
goal tree that as more than one root node must have an intersection goal template as an element, and, because
of this, all its root nodes are non-disjoint. Therewith, FigRteshows the only possibilities for the insertion

of G,ew @s a new root node in the goal graph.

Listing 6 shows the algorithm for the goal template insertion in these situations. It is relatively simple:
essentially, we only need to investigate all goal templates that are currently declared to be root nodes, replace
the current one witlg,,.,,, and add the new s-arc into the goal graph (insteadfin(Goiqroot s Grnew) We
store the inverse GG mediatotbsume(Gnew, Goldroot), Cf. Definition'3.3). All potential cases discussed
above are handled by the methmtNodelnsertionGecause it is invoked as a sub-routine of thiall
loop over all root nodes in Listing (it also inherits the type declarations). For case (a), the prior root
node whereog,,.,, becomes the new parent node will be investigated at some point fartdieloop while
no other root node with a similarity other thalisjoint exists. In case (b), the root node of the second,
beforehand separated goal tree will be replaced,hy, (and accordingly for all other goal trees that will
be joint undelg,,.,,). The same will happen in case (d). In case (c)fdrall loop over all root nodes will
eventually detect the other root nodes of the respective goal tree and resolve the occurring i-arcs. As the
result of the insertion, the metheoootNodelnsertionGeturns the updated goal graph.

rootNodelnsertion{G,G2} {
goalStore = goalStore + G;
position (G2) = child;
position (G) = root;
goalTree = goalTree + s(G,G2);
return goalGraph;

}

Listing 6: Algorithm for Insertion of a new Root Node

Insertion of a New Child Node in a Goal Tree. Next, we specify the algorithm for insertiaf,.,, as
a new child node into a goal graph. This situation is given if the similarity degree be@ggrand an
existing root nod&; is subsumeHere,G is a root node of the goal tree whergip,.,, shall be inserted as a
new child node, and we have to successively traverse this goal tree in order to properlg,ipsert
Listing[7 below shows the algorithm for this that handles all possibly occurring situations as illustrated
in Figure22. In case (a)g,.., becomes a new, disjoint child node at the lowest level of an existing goal tree.
This also covers the situation whép.,, becomes a child node of a goal template that has been disconnected
in the goal graph beforehand. For this, we merely need to add the new s-arc to the goal graph. The other
situations are handled by tlerall loop of thechildNodelnsertiormethod that investigates the child nodes
of the current root node. If the similarity degree betwékp,, and the a child node iexact we do not
add G, to the SDC graph. If the similarity degreeptugin, theng,.,, becomes an intermediate parent
in the existing goal graph (cases (b) and (c); these are successively determined throughout the iterations
of theforall loop). In this situation, the s-arcs between the current parent and its prior child nodes become
redundant, thus we remove the respective s-afcSeéctiori3.3.9. In case (d), the similarity degree between
Gnew and the currently inspected child nodesisbsume Here, we can inspect the next lower level for the
goal tree in a depth-first manner. For this, we invokedfiitdlNodelnsertioomethod forG,,.., and the current
node. As the last possible situation, the similarity degree betWgen and the currently inspected child
node isintersect In this case, we invoke thércResolutionrmethod forg,,.., and the currently inspected
child node in order to resolve the occurring i-arc.
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Figure 22:Possible Situations for Insertion of a New Child Node

childNodelnsertion{G,G2}{
goalStore = goalStore + G;
position (G) = child;
goalTree = goalTree + s(G2,G);
forall ( G3 and s(G2,G3) in goalGraph ) {
if ( exact(G3,G))then {
goalStore = goalStore — G;
goalTree = goalTree — s(G2,G);
return goalGraph; }
if ( plugin(G3,G) ) then {
goalTree = goalTree — s(G2,G);
goalTree = goalTree + s(G2,G) + s(G,G3);
goalTree = goalTree — s(G2,G3); }
if ( subsume(G3,G) ) then {
goalTree = goalTree — s(G2,G);
childNodelnsertion{G,G3}; }
if ( intersect(G3,G))then {
goalTree = goalTree — s(G2,G);
iArcResolution{G,G3}; }

return goalGraph;

}

Listing 7: Algorithm for Insertion of a new Child Node in a Goal Tree

En-Route Resolution of Intersection Arcs in the Goal Graph. The next sub-routine of the goal tem-
plate insertion algorithm is concerned with the insertiogjgf,, if its similarity degree with the currently
inspected node igtersect As discussed above, the occurrence of i-arcs causes undesirable situations in
the goal graph. The aim of the sub-routine for insertion a new goal template undeteitsectsimilarity
degree is to resolve all occurring i-arcs during the insertion procedure. For explaining the algorithm for this,
we briefly recall the approach for i-arc resolution as specified in detail in Sé2Boh

An i-arc occurs if the similarity degree between two goal templatandgs is intersect If we would
keep such i-arcs in the goal graph, there could occur cycles that hamper the goal template search as well
as other undesirable situations like concatenations of i-arcs or non-disjoint child nodes in a goal tree that
hamper the operational efficiency of SDC-enabled Web service discovery. The approach for resolving i-
arcs is to define a sol-calledtersection goal templat§; g, ¢.); its functional description is the conjunc-
tion of the original goal templates, so that its possible solutions are exactly those that are conginon to
andG,. The similarity degree betwedJ g, ¢,y and either of the original goal templatessisbsumei.e.
subsume(G1,Gi(g, g,)) andsubsume(Ga, G, g,))- Because of this, we do not store the i-arc but only
the two new s-arcs so théfg, g,y becomes a child node of both andg,. However, the insertion of an
intersection goal template results in new relationships in the goal graph that need to be handled.
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The approach for handling the insertion of a new goal tem@ate, under theintersectsimilarity
degree is that we stepwise resolve each occurring i-arc along with possible implications that can result from
this. Listing8 shows the algorithm for this. In the above algorithms, the metAozResolution(G1,G2)
is invoked for two goal templates: the first onedgs.., as the new goal template that shall be inserted,
and another ong for with the similarity degree witlgj,,.., is intersect At first, we addg,..,, as well as
new intersection goal templa&g,,.., g,) into the goal store along with the respective s-arcs, and perform
Web service discovery fa¥;g,...,.¢,)- Then, we need to handle the implications that may result from this
insertion. From the discussion in Secti®3.2, we observe that such implications can only occur at the level
of the goal tree wher§;g,.. ., ¢,) has been inserted. In particular, any similarity degree is possible between
the inserted intersection goal template and a before existing child node of its parerdis.(.endgs).

In order to ensure that the goal graph maintains its desired properties (as a tree of goal template with
s-arcs as the only occurring edge type), we need to resolve undesired similarity on the level where the new
intersection goal template has been inserted. This is done dyrideloop of theiArcResolutiormethod
that iteratively checks the similarity degree betwég, .. ¢,) and all of the child nodes @, andG.

If the similarity degree igxact then we do not stor§;g,,. ., g,) but merely re-direct the new s-arcs to the
currently inspected child node. If the similarity degreelisgin, theng;g,.... ¢,) becomes an intermediate
parent of the currently inspected node; as the opposite situajgy, ,.¢,) becomes a child node of the
currently inspected node if their similarity degreeigosumelf the degree isntersect then we resolve the
new i-arc by invoking théArcResolutiormethod withG; g, ... ¢,) and the currently inspected goal template.
We keep the initially created goal graph only if the similarity degre€,@f,.., ¢,) and all child nodes of
Gnew andg, is disjoint

/I function declarations
intersectionGoalTemplate(goaltemplate,goaltemplate) := goaltemplate;
/I main
iArcResolution(G1,G2) {
iG1_G2 = intersectionGoalTemplate(G1,G2);
goalStore = goalStore + G1 +iG1_G2;
goalTree = goalTree + s(G1,iG1.G2) + s(G2,iG1_G2);
discoveryCacheCreation(iG1_G2);
forall (G3and ( (s(G1,G3) or s(G2,G3)) in goalGraph) and G3!=iG1.G2) {
if ( exact(G3,iG1.G2))then {
goalStore = goalStore — iG1_G2;
goalTree = goalTree — s(G1,iG1.G2) — s(G2,iG1.G2);
if (! (s(G1,G3)in goalGraph))then {
goalTree = goalTree + s(G1,G3); }
if (! (s(G2,G3)in goalGraph) ) then {
goalTree = goalTree + s(G2,G3); } }
if ( plugin(G3,iG1.G2)) then {
goalTree = goalTree — s(G1,G3) — s(G2,G3);
goalTree = goalTree + s(iG1.G2,G3); }
if ( subsume(G3, iG1.-G2) ) then {
if ( s(G1,G3)in goalGraph ) then {
goalTree = goalTree — s(G1,G3);
goalTree = goalTree + s(iG1-G2,G3); }
if ( s(G2,G3)in goalGraph ) then {
goalTree = goalTree — s(G2,G3);
goalTree = goalTree + s(iG1.G2,G3); } }
if ( intersect(G3,iG1.G2) ) then
iArcResolution(iG1_G2, G3);

return goalGraph();

}

Listing 8: Algorithm for Dynamic Resolution of Intersection Arcs in the Goal Tree
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The main merit of this algorithm is that it prevents the emergence of all undesirable situations in the
goal graph because all i-arcs are resolved at the time when they occur during the insertion of a new goal
template. Moreover, this algorithm resolves every undesirable situation that can occur due to the existence
of i-arcs into the pattern that we have defined in Sec82 We omit the formal proof here and refer to
the respective discussion for the resolution of cyctdsPropositior3.3), for concatenations of i-arcsf(
Propositiori3.1), and the representation of non-disjoint child in the initial goal gragphRroposition3.2).

We shall demonstrate the algorithm in our running example below in Segtloh

Discovery Cache Creation. Above we have specified the algorithms for inserting a goal template such
that the resulting goal graph exposes the desirable properties of a refined SDC graph. To complete the SDC
graph creation, we need to determine the Web services that are usable for the newly inserted goal template.
For this, we perform Web service discovery on the goal template level as specified in 3eZtion

After the insertion of a new goal templaig.,, into the goal graph, thesert(G)method from Listin¢
invokes thediscoveryCacheCreation(Gppecified in Listing9, this performs Web service discovery for
Grew and ensures that the resulting discovery cache is minimal, i.e. that it does not contain any redundant
WG mediators ¢f. Proposition3.5). Because we have stored knowledge about the positidh,of in
the goal graph, we can directly invoke the respective methods from the Web service discovery algorithm
specified in Listing3 (cf. Section4.2). If G,..,, has been inserted as a new child node into the goal graph,
thenchildNodeDiscovery(Glletermines the usable Web services. With respect to the inference rules from
Theorem3.1 (cf. Section3.2), this only considers Web services that are usable for a parent nodgs,of
under thesubsumeor intersectdegree; under thexactor plugin degree, the WG mediators f6r,.,, are
omitted in the SDC graph. i§,..., is a new root node or if it is disconnected in the goal graph, then the
rootNodeDiscovery(Ginethod performs the Web service discovery. In order to maintain the minimality
of the discovery cache, we must remove redundant WG mediators that may result from this operation. An
existing WG mediator from a child node 6f,.,, to W is redundant ifi’’ has been discovered to be usable
for G,..., Under theexactor plugin degree. Finally, we can removk,.,, in case that no Web service has
been found that can be used to sofig,,. Therewith, we obtain a minimal discovery cache for the SDC
graph, and for each goal template there is at least one usable Web service.

/I function declaration
disccoveryCache(G) := {d(G,webservice)};
/I main
discoveryCacheCreation(G) {
if ( position(G) = child ) then
childNodeDiscovery(G);
else {
rootNodeDiscovery(G);
forall (G2 and (s(G,G2) in goalGraph) ) {
if (( (d(G2,W) = (exact or plugin) ) and d(G,W) ) in discoverycache ) then
discoverycache = discoverycache — d(G,W);

}
if ( disccoveryCache(G) = {} ) then remove(G);
return discoverycache;

}

Listing 9: Algorithm for Discovery Cache Creation

In the preceding elaborations we have shown that the goal insertion algorithm ensures that after every
run the resulting SDC graph exposes the desirable properties of a refined SDCajrdpéfiqition 3.5).
This is essential because the Web service discovery operations specified in 8axtlpnvork efficiently
on a SDC graph with these properties.
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Proposition 5.1 (Properties of Iteratively Constructed SDC Graph). The SDC graph that results from
an execution of the goal template insertion algorithm always exposes the properties of a refined SDC graph:
(i) the goal graph is aset of unconnected goal treegherein the only occurring similarity degree
is subsumend all occurring i-arcs are properly resolved, and
(i) the discovery cache is minimal such that there are no redundant WG mediators.

5.1.2 Example

The iterative goal insertion is one of the central algorithms of the SDC technique. Because of this, we
illustrate the overall procedure within our running example for searching the best restaurant in a city. We
consider the iterative insertion of three goal templatgsfor finding the best restaurant in a city located

in country that is member of the European Unign,for a German city, ands for finding the best Italian
restaurant in any city of the world. Furthermore, we discuss the discovery cache creation for a Web service
W for finding the best restaurant in a European city. Remember that the set of European countries is a
superset of member countries of the European Union (e.g. Switzerland and Norway are geographically
located in Europe but are not members of the EU). Fi@B#lustrates the setting as well as steps for the
iterative goal template insertion.

Relationship of {T}

best Italian in
city of world

Germany

Usability Degree of W
plugin(G,,W)
plugin(G,,W)
intersect(G,,W)

Legend:

Goal Template
Web service

s-arc in goal graph

P 480

arc in discovery cache
with usability degree

Figure 23:Example for Iterative SDC Graph Creation
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We commence with the insertion 6f. The SDC graph is empty at this point, so thatitheert method
from Listing 5 will allocate G; as a single root node in the goal graph. Then, we perform Web service
discovery forG;, which determines the usability degreeldf for G; to be plugin and adds the respec-
tive WG mediator. This completes the first insertion and results in a SDC graph as shown in step (1) of
the figure. Next, we insed>. Theinsert method will findG, and determine the similarity degree to be
subsume(G1, G2) and invoke thechildNodelnsertiorfrom Listing7. As there are no further nodes in the
goal graphg- is allocated as a new child node @f. For Web service discovery, tliisccoveryCacheCre-
ation method from Listing® will not add a new WG mediator because the usability degree bet@eand
W is plugin. Thus, the insertion af results in the SDC graph shown in step 2.

When we now insertjs, the insert method will find the similarity degree df3 and G, as the root
node to bantersect cf. step 3, and thus invoke thArcResolutionalgorithm from Listing8. This creates
the intersection goal templatg g, g,), and inserts this into the goal graph. Following Definit# (cf.
Section3.3.2), an intersection goal template is defined as the conjunction of the functional descriptions
of the original goal templates. This means that h&yg, ¢,) describes the objective of finding the best
restaurant in a city in the European Union if and only if the best restaurant in this city is of type Italian —
not to find the best Italian restaurant in a city of an EU member country. Nevertheless, the following Web
service discovery for the intersection goal template will determine the usability degi€efof G; g, g.)
top beintersect(this performed before thierall loop in theiArcResolutioralgorithm,cf. Listing/8). Step 4
in the figure shows the intermediate SDC graph after this operation.

Now, we enter thdorall loop of theiArcResolutionalgorithm in order to resolve possible undesired
implications from the insertion @; g, g,). Indeed, we will find the similarity degree betwegpg, ¢,) and
G» to beintersect see step 5. Hence, tiwrcResolutiormethod is invoked again for resolving the new i-
arc. This creates another intersection goal temglate ¢, g,), inserts this into the goal graph, and performs
Web service discovery that determines the usability degréé fafr G; g, g, g,) t0 also bentersect As there
are no other nodes on the same leveliag, ¢, g,), theiArcResolutioralgorithm terminates and returns the
SDC graph shown as step 6 of the figure. However, the insertion operatigg fonot yet completed: as
the last step, thexsert method invokes thdisccoveryCacheCreatidior G3. The position ofGs has been
set toroot, and hence theootNodeDiscoverynethod is used that will determine the usability degre&/of
for Gs to beintersect This completes the insertion operation &rthat results in the SDC graph shown as
step 7 in the figure.

5.2 Evolution in Dynamic Environment

We now turn towards the maintenance of the SDC graph. In this section we define the operations for
evolution of the SDC graph, that is when goal template or Web service descriptions are added, removed, or
updated. The algorithms for handling such changes in the environment are mandatory in order to maintain
the operational reliability of the SDC technique in its dynamic environment. The following first discusses
the removal and updating of goal templates that are already existing in an SDC graph, and then discusses
changes to the available Web services.

5.2.1 Goal Template Removal and Update

We have already covered the insertion of new goal templates as the foundational operation for creating the
SDC graph above. Hence, we here merely need to specify the algorithms for handling the deletion or an
update of a goal description from the SDC graph.
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Such changes on existing goal templates can occur in the process of maintaining the SDC graph during
the lifetime of the system. They can only be performed for original goal templates but not for intersection
goal templates because these are automatically generated during the SDC graph creation. Moreover, changes
on existing goal templates may seriously derogate the quality of SDC-enabled Web service discovery as
they provide the foundation of the SDC graph. Because of this, removal and in particular updates of goal
templates should only be performed if they are absolute necessary in the application context. Nevertheless,
we must support them in such a way that the properties of the resulting SDC graph are maintained after the
removal or update of a goal template.

Goal Template Removal. This is concerned with removing an existing goal template from the SDC graph.
Possible scenarios for this are the clearing of the SDC graph in the context of an application scénario (
Sectior5.3.9, or the removal of a goal template if there does not exists any usable Web service for solving
it (e.g. in Listing9). Independent of the reason why a goal template is removed, the properties of the SDC
graph must be maintained after a goal template removal.

Listing 10 shows the algorithm for removing a single goal template from an SDC graph such that the
properties of the SDC graph are maintained. &gt be the goal template that shall be removed. In general,
we only need to consider the impacts on the direct neighbotk,pfthat can result from its deletion. We
therefore must distinguish three cases: (1¢,if, is a parent of an intersection goal template, (2) if the
position ofG,.,, on the SDC graph isoot, and (3) if the position ofj,.,,, is child. The proper handling of
the latter two cases requires that case (1) is not given. Hence, we first check whgthera parent of an
intersection goal template; in this case, we first remove the intersection goal template and thenggmove
(the firstif -clause in Listingl0); this is independent of the position Gf,,,.

We then require two methods for the removal of a goal template. The first anetidodeRemoval
that handles the removal &f.,, in case (2). It first removes all outgoing s-arcs, so fat becomes
disconnected while the similarity relationship between all other goal templates remains. Secondly, we must
adjust the discovery cache. In order to maintain the minimality of the discovery cache, we re-direct those
WG mediators that start frorg,.,,, and defineexactor plugin as the usability degree of the target Web
service such that a new WG mediator is defined for each child nogdg,pfo the target Web service with
the usability degreplugin. Therewith, we re-materialize the previously omitted WG mediators. Then, we
can remove all WG mediators that stgyt,, without loosing relevant knowledge. For case (3), i.65,if,
is a child node in a goal tree, we redirect the outgoing a-ar¢s,Qfto each parent node ¢f.,,,. This also
covers the case §,,, has been an intersection goal template with two or more parents (i.e. the first removal
step in case (1)). The discovery cache handling is the same as lioatiNodeRemovahethod explained
above. Finally, we removég,,,, from the goal store and obtain the updated SDC graph that still captures the
relationship of the remaining goal templates in the goal graph and has a minimal discovery cache.

/I type declarations

G,G2,G3 := goaltemplate;

goalStore := {goaltemplate};

goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);

/I function declarations

position (goaltemplate) := (root | child);
outgoingGGArcs(G) := {s(G,goaltemplate)};
incomingGGArcs(G) := {s(goaltemplate,G)};
disccoveryCache(G) := {d(G,webservice)};
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/I main
remove(G) {
if ( G2and (s(G,G2) in goalGraph) and G3 and (s(G3,G2) in goalGraph) ) then {
remove(G2);
remove(G);

}

if ( position(G) = root ) then {
rootNodeRemoval(G); }

else {
childNodeRemoval(G);

goalStore = goalStore — G;
return sdcGraph;
}
/I removing a root node
rootNodeRemoval(G) {
goalTree = goalTree — outgoingGGArcs(G);
forall ( G2 and (s(G,G2) in goalGraph) ) {
if ( Wand (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {
d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }
}
discoveryCache = discoveryCache — discoveryCache(G);
return sdcGraph;
}
/I removing a child node
childNodeRemoval(G) {
forall ( G2 and (s(G,G2) in goalGraph) ) {
forall ( G3 and (s(G3,G) in goalGraph) ) {
goalTree = goalTree + s(G3,G2); }
if ( Wand (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {
d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }
}
goalTree = goalTree — outgoingGGArcs(G);
return sdcGraph;

}

Listing 10: Algorithm for Removal of a Goal Template from the SDC Graph

Goal Template Update. This is concerned with the update of the definition of a goal template that exists

in the SDC graph. A possible scenario for such an update is the weakening or strengthening of the objective
description (e.g. in our running example, if the locality constraint for the input city is changed from “Eu-
ropean Union"to “Europe”, respectively vice versa). This may result from refinement operations on a goal
template that has not been solvable by any available Web service before; techniques for such goal refine-
ments are presented i, [38]. Another possibility for the need of a goal template update is if the existing
goal template definition is inconsistent or inappropriate in the application context. The straight forward so-
lution for supporting such goal template updates would be do remove the old version and then insert the new
version of the description. However, in certain cases we can omit the execution of the removal and insertion
operation (which both are computational expensive).

In general, the update of a goal template results in a change of the goal description. We can express
this change in terms of the similarity degree between the old and the new version of the goal template. If
the similarity degree isxact we merely replace the old version of the goal template with the new one. We
do not need to perform any changes in the SDC graph because the position of the updated goal template
in the goal graph as well as its usable Web services will be the same after the update. Furthermore, we
can efficiently handle two other situations: (1) if the updated goal template is a single root node in the goal
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graph and the similarity degree between the old and the new versphngis, and (2) if the updated goal
template is a child node at the lowest level of a goal tree with only one parent and the similarity degree
between the old and the new versiorsigosumeln both cases, the position of the updated goal template in
the goal tree will remain the same; we thus merely replace the old version with the new one. However, we
must perform a Web service discovery for the new version because there might be more usable Web services
(case (1)), respectively fewer (case (2)). In all other situations, we perform the default update operation that
first removes the old version (calling thremovemethod from Listingl0) and then inserts the new version
with the goal template insertion algorithm from ListiBg

Listing 11 shows the algorithm for handling updates of goal templates in the goal graph as explained.
Therein, theupdate(G1,G2jakes two goal templates as input: the first one denotes the old version of the
updated goal template, and the second one is the new version.

/I type declarations
G,G2,G3,G4,G5 = goaltemplate;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);
/I function declarations
position (goaltemplate) := (root | child);
singleRoot(G) := boolean;
lowestChildWithSingleParent(G) := boolean;
/I main
update(G1,G2) {
if ( exact(G1,G2) ) then {
goalStore = goalStore — G1,
goalStore = goalStore + G2;

}
if ( position(G1) = root and (s(G1,G3) in goalGraph ) and ! (s(G4,G3) in goalGraph) )
then singleRoot(G1) = true;
else singleRoot(G1) = false;
if ( position(G1) = child and ! (s(G1,G3) in goalGraph) and (s(G4,G3) in goalGraph) and ! (s(G5,G3) in goalGraph) )
then lowestChildWithSingleParent(G1) = true;
else lowestChildWithSingleParent(G1) = false;
if ( (singleRoot(G1) and plugin(G1,G2) ) or (lowestChildWithSingleParent(G1) and subsume(G1,G2)) ) then {
position (G2) = position(G1);
goalStore = goalStore — G1,
goalStore = goalStore + G2;
discoveryCacheCreation(G2);

else {
remove(G1);
insert(G2);

return sdcGraph;

}

Listing 11: Algorithm for Update of a Goal Template in the SDC Graph

5.2.2 Changes on Available Web Services

The second aspect for the maintenance of the SDC graph during the life time of the system is the handling
of changes on the available Web services. Such changes occur if a Web service provider publishes a new
Web service, removes an existing Web service from the registry, or provides an updated description for an
existing Web service. Of course, the discovery cache of the SDC graph must reflect the currently available
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Web service in order to provide useful discovery results. For this, the following specifies the operations
for the insertion, removal, and update of Web service descriptions. We recall that the SDC-enabled Web
service discovery component is decoupled from the Web service registry in the overall system architecture;
the maintenance operations for the SDC graph specified here are invoked when a respective change occurs
in the Web service registref, Figure6 in Sectiori2.4).

Web Service Insertion. This handles the insertion of the a new Web service that has been deployed into
the repository. LetV,,.,, be this new Web service. To properly incorporate this into the SDC graph, we
merely need to adW,,.,, to discovery cache — that is, to define the minimal number of new WG mediators
that describe the usability degreeldf,.,, for every goal template that exists in the goal graph.

Listing 12 shows the algorithm for this. We start with inspecting the usability degré®,gf, for all
goal templates whose positionrizot. If W,,.,, is usable for a root node, we proceed with determining its
usability degree for the child nodes in the goal graph. The sub rochiitdNodeWSInsertiodoes this in a
depth-first manner, thereby taking the inference rules from The8r#mto account.

/I type declarations
G,G2,G3,G4,G5 = goaltemplate;
W := webservice;
goalStore := {goaltemplate};
goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);
/I main
insert (W) {
forall (G and position(G) = root) {
matchmakingUsability(G,W);
if (! d= disjoint) then {
discoverycache = discoverycache + d(G,W);
childNodeWsSiInsertion(G,W);
}

return discoverycache;
}
1
childNodeWSiInsertion(G,W) {
if ( (d(G,W) = exact) or (d(G,W) = plugin) or (d(G,W) = disjoint) ) then return discoverycache;
else {
forall ( G2 and (s(G,G2) in goalGraph) ) {
if ( d(G,W) =subsume ) then {
matchmakingUsability(G2,W);
if (! d= disjoint) then
discoverycache = discoverycache + d(G2,W);

}

if ( d(G,W) =intersect ) then {
if ( plugin(G2,W) ) then d = plugin;
if ( intersect(G2,W)) then d = intersect;
discoverycache = discoverycache + d(G2,W);

childNodeWsSlInsertion(G2,W);
}

return discoverycache;

}

Listing 12: Algorithm for Insertion of a Web Service Description
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Web Service Removal. When a Web servicl,.,,, is removed from the registry, it is no longer available for
solving a goal and hence must be removed from the SDC graph. The algorithm for this is straight forward:
we delete all WG mediators whose targeilis,,. As an additional step, we can afterwards remove those
goal templates for whichV,.,, has been the only usable Web service — because then there does no longer
exists a Web service that can be used to solve this goal template or any of its instantiations. 14sting
provides the algorithm for this; we here omit the type declarations as they are the same as above.

/I function declarations

discoveryCache(W) := {d(goaltemplate,W)}

/I main

remove(W) {
discoveryCache(W) = {d(G,W)};
discoverycache = discoverycache — discoveryCache(W);
return discoverycache;

/I optional removal of goal templates
removeGAfterWSDeletion(W) {
discoveryCache(W) = {d(G,W)};
forall (G and (d(G,W) in discoveryCache(W)) ) {
remove(G); }
return sdcGraph;

}

Listing 13: Algorithm for Deletion of a Web Service Description

Web Service Update. The final operation handles the change of the description of a Web s&fvibat
is an element of the SDC graph. This occurs when the functionality providédl liy changed, or as a
correction of the description df. Similar to the update of goal templates discussed above, the straight
forward solution for this is to remove the old version and then add the new version of the Web service
description. However, here there is also a situation that can be handled more efficiently.

If the description update result in a matching degriegyin (W4, Whew) —i.€. that the new functional-
ity completely covers the old one — and the usability degréd’gf; for a root node~,...; in the goal graph
has beerexactor plugin, then the usability degree &¥,,.., for G,,,: and all its child nodes remains the
same. We also do not need to add additional WG mediators for the child nodgs,pfs these would be
redundant. This might be a quite regular situation in real world settings, e.g., if in our running example the
provider extends the locality coverage of a best-restaurant-search Web service from the member states of
the European Union to all countries located in Europe. In all other situations, the potential impacts of the
update are too complex to be handled individually so that we apply the default update procedure.

update(W1,wW2) {
if ( plugin(W1,W2) ) then {
forall (G and position(G) = root ) {
if ( (d(G,W1) = exact) or (d(G,W1) = plugin) ) then {
forall ( d(G,W1) in discoverycache ) {
discoverycache = discoverycache + d(G,W2);
discoverycache = discoverycache — d(G,W1);
return discoverycache;
Fr3
else {
remove(W1);
insert(W2);

Listing 14: Algorithms for Deletion and Update of a Web Service Description
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To conclude, we observe that the algorithms specified above ensure that the SDC graph maintains its
formal properties under any possible change that can occur in during its life time (i.e. the goal graph as
a set of goal trees and a minimal discovery cache). This is essential because therewith the SDC-enabled
Web service discovery stays operational in its dynamically evolving environment. We therewith satisfy
requiremenB — which has been the only remaining one from those discussed in S8ction

Proposition 5.2 (Properties of Evolving SDC Graph). The algorithms for the insertion, removal, and
updating of goal templates and Web services ensure that the SDC graph exposes the properties of a refined
SDC graph at any point in time. This ensures the operational reliability of the SDC-enabled Web service
discovery in its dynamically evolving environment.

5.3 Advanced Management

The preceding elaborations have defined the mandatory algorithms for creation and maintenance of the
SDC graph in its dynamic environment. We now discuss possible extensions for increasing the quality of
the SDC technology. The following addresses ontology-based learning of goal templates, in the integration
of selection and ranking techniques of usable Web services, and the maintenance of the SDC graph in an
application context. These advanced management techniques for the SDC graph are optional extensions,
meaning that they are not mandatory in order to maintain the operational reliability of SDC-enabled Web
service discovery. We thus abandon the definition of algorithms but merely discuss the obtainable benefits.

5.3.1 Goal Template Learning

The first possibility is the automated learning of additional goal templates on the basis of the background
ontology. Goal templates are the backbone of the SDC graph, serving as the indexing structure of available
Web services and as the basis for goal formulation by clients. The more goal templates exists that can be
organized into a fine grained goal tree, the better becomes the quality of the SDC graph for both its purposes.
This quality can be enforced by automated generation of additional goal templates, in particular of new goal
templates that establish a more fine grained goal graph.

Let us illustrate this in our running example. Imagine that there exists a goal tergpléte finding
the best restaurant in a Germany city. The background ontdlbdistinguishes the two dimensions of
the geographic locality of a city and the type of the restaurant. On the basis of the locality taxonomy
described irf2, we can generate a hew goal templdsefor finding the best best restaurant in a European
city. When inserting this into the SDC grag@y, becomes a parent node®f because their similarity degree
is subsume(Ga, G1). Therewith, we have artificially expanded the SDC graph so that now searches for the
best restaurant throughout Europe is supported, and we can make use of the properties of goal trees for
SDC-enabled Web service discovery as discussed above. This procedure can of course be repeated for every
dimension of the description @f;, e.g. for other countries in Europe as well as for the distinct restaurant
types. So, we can eventually generate an extensive goal tree whose elements cover every possible goal
instance of the best restaurant search that can be expressed by the domain knowledge destribed in
step further, we can also generate the goal template from a concrete goal instance. For example, if a client
specifies a goal instance for finding the best restaurant in Berlin (and “Berlin”is specified to be an instance
of city with respect td?), we can generalize this towards the goal templatédrom above by lifting the
instance declaration to its corresponding concept in the domain ontology. Then, we can commence with the
generation of the extensive goal tree as explained above. These operations would be performed at design
time, and thus do not hamper the run time efficiency of the SDC-enabled Web service discovery.
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This technique applies the idea of ontology learning and especially concept extr2djioripwever,
respective techniques like taxonomy extraction need to be adopted into the context of goal-based Web ser-
vice usage. Therein, the foundational principle is that the application context (i.e. client requests formalized
as goals) is explicitly separated from the functionalities provided by Web seni€ks Ih general, the
functional description of a goal can consist of an arbitrary number of predicates. Each of these predicates
denotes one dimension for which new, semantically similar goal templates can be created. Nevertheless, the
ontology-based generation of more extensive goal trees appears to be a suitable technique for increasing the
guality of SDC-enabled Web service discovery.

5.3.2 Integration with Non-Functional Discovery

A second possibility is the integration with non-functional discovery aspects. Because of the primary focus
on functional usability of a Web service for solving a goal, our framework allocates the testing of quality-of-
service requirements and behavioral compatibility after the functional Web service discoivetig(res
in Section2.1). However, these aspects are relevant for the usability of a Web service. Thus, we could
integrate them into the SDC graph in order to increase its quality as a pre-filter for Web service discovery.
Essentially, there are two possibilities that can result non-functional discovery: (1) that a Web service is
not usable for solving a goal, and (2) a ranking of the set of usable Web services. The first case occurs when
the Web service violates some quality requirements specified in the goal description (e.g. the use of a trusted
payment method), or if not resolvable behavioral mismatches occur. This can be handled by removing the
Web service from the discovery cache for the goal template, respectively to not consider the Web service
as a potential candidate for solving a goal instance. For the second case, we can incorporate the result of a
Web service ranking component by organizing the usable Web services for a goal template accordingly. For
example, let there be five Web services that are functionally usable for a goal tegpéatd let these be
stored in the SDC graph as a $ét;, Wo, W5, Wy, W5 }. We then perform a ranking the Web services in
this set with respect to the requirementgjinLet this return the preference ord@i’s, Wy, Wi, Ws, Ws).
We can store this as an ordered list in the SDC graph, and for a new goal instance we inspect the candidates
in the sequence of this ordering. With such an integration, the SDC graph captures Web service discovery
results for all aspects that are considered to be relevant for the usability of a Web service for solving a goal.
However, the constituting aspect of the SDC graph remains the functional usability.

5.3.3 SGC Graph Clearing

The final aspect to be discussed here is the maintenance of the SDC graph for a specific application. In
particular, we here refer to maintenance of the goal templates in the SDC graph; the consistency with
the available Web services is automatically maintained by the algorithms for changes in the Web service
repository €f. Sectior5.2.2). Changes on existing goal templates may become necessary if a goal template

is not solvable by the available Web services, or if the objective described in a goal templates is no longer
relevant for the application context (e.g. buying a no computer model that is not available any more). We
expect such maintenance operations to be performed manually. The consistency of the SDC graph is ensured
by the respective algorithms for goal template removal and updafteSectionr5.2.). As discussed above,

such maintenance operations may derogate the quality of the SDC-enabled Web service discovery.

The SDC graph is stored in a persistent memory, and only loaded patrtially into the working memory at
runtime. Because of this, the size of the SDC graph is not critical for the operational reliability at runtime.
This is an essential difference between SDC and caching techniques in other areas wherein cache clearing
is critical, e.g. in caching techniques for Web trafd€].
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6 Summary and Future Work

This technical report has specified the Semantic Discovery Caching technique, short SDC. This captures
Web service discovery results on the goal template level, and utilizes this knowledge to enable efficient Web
service discovery for concrete goal instances at runtime.

We have recalled the approach for Web service discovery on formal functional descriptions that has been
presented in early works. Extending the Web service discovery approach defined in the WSMO framework,
this distinguishes goal templates as generic objective descriptions and goal instances that describe a concrete
client objective by instantiating a goal template with concrete inputs. The purpose of the SDC technique is
to reduce the search space for Web service discovery. Its central construct is the SDC graph that organizes
existing goal templates in tree structures. Therein, the possible solutions of a goal template that is a child
node always denote a subset of those for its parent node. On the basis of this, efficient runtime Web service
discovery can be realized.

The central aspects that have discussed in detail in this report are:

e discussion of the requirements for the SDC technique, in particular the terminology clarification (ef-
ficiency and scalability), the requirements on the SDC graph, and the technical integration of SDC-
enabled Web service discovery into semantically enabled SOA systérse¢tior2)

¢ the definition of the SDC graplef, Section3), including itselementggoal templates, Web services,
and mediators as directed arcs), the notiogazl similaritydescribed as the matching degree between
functional descriptions of goal templates, and the concejntefsection goal templatesnd their
usage for resolving undesirable situations in the SDC graph

¢ the iterative creation of an SDC graph such that it exposes the following properties:

1. itsinner nodes are goal templates that are organized is trees wherein the only occurring similarity
degree isubsumeand

2. its leaf nodes are Web services that are connected by the minimal number of arcs such that the
usability degree of each Web service for every goal template is captured

e algorithms that maintain the structure of the SDC graph in its dynamic environment, i.e. for adding,
removing, and updating goal templates as well as Web service descriptions

e algorithms for SDC-enabled Web service discovery at runtime, including the goal formulation process
and the determination of the usability of a Web service for a goal instance.

This report merely presents the detailed specification of the SDC-enabled Web service discovery. As the
next steps in this research, the SDC technique will be implemented as a component in the WSMX system
(the WSMO reference implementation), and, on the basis of this, its applicability for real world scenarios
will be evaluated. We shall also discuss related work in more detail and therewith explicate the research
contributions of the presented approach.
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APPENDIX

A Matching Degrees Overview

The following provides a concise overview of the matching degrees definition, defined over functional de-
scriptions as specified in Secti@rR.2.

In the SGC technique, we use the matchmaking degrees not only for denoting the usability of a Web
service for solving a goal template but also for denoting the degree of similarity of goal templates. With
respect to this, Tablé provides a concise overview of the degree definitions, Tékbelains their meaning
for the usability of Web services, and Ta@explains their meaning for the similarity of goal templates.

Table 6:Definition of Matching Degrees fdp;, D,

Definition

Denotation B:IF — U Meaning Visualization
D= E0IF0 0 | 6P = (e, = ¢ | fr{ThiFa Dy, 0=,0 =2,
Dy = (X,Q,IF, (]5@2) Qu=QU ][DQ}EPDT]:HED and{r}2 =4 D2

) . P
f d v if / of'\gyﬁ’o\‘
exactD1,Ds) | Qule v o e P | TR (T NS

e e, D,
if 7 € {7} then /om0 A

plugin(Dy, D3)

QA = V8. ¢P1 = o2

TE€ {1}

subsume(D,, Ds)

O = V3. ¢P1 < ¢P

if 7 € {7}2then
Te{th

intersect(D1, D5)

Qa 36 6P A P2

there is ar such that
Te{r}h andr € {7}

‘:\ (6

o

o/
0 N\+—0) (00
D,

D,

there is nor such that

disjoint(Dy, D) 7€ {r}andr € {r}2

Q4 | —38. ¢P1 A G2

Because of their matching conditions, there is a formally relationship between the matching degrees. In
particular, it holds that:

plugin = intersect
plugin A subsume= exact

(i) - disjoint=-intersect (iii)

(i) subsume= intersect (iv)

With respect to this, we can define an order to the matching degrees such that
exact > plugin, subsume > intersect

To properly separate the distinct situations, we apply a strict use of the matching degrees by always
using the degree with the highest ordering.
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7

Table 7:Meaning of Matching Degrees for the Usability of a Web service for solving a Goal

exactD¢q, Dw)

W can be used for solving any goal instar€é(g)

plugin(Dg, Dw)

all possible solutions fo§ can be provided byV but there can exista € {7}w
such thatr ¢ {r}¢. As every possible input binding for G that defined foiGI(G)
triggers such an execution &F that {7}y 3 € {7}g, under this degre®” can be
used for solving any goal instance @f

subsumeDq, Dw)

all executions o#¥ can satisfyg, but there are possible solutions fathat cannot be
provided bylWW. In consequence, fdi’ to be usable for a goal instan€& (G), it has
to hold that{7}z7(g) € {7}w. Thisis given if the input binding defined forG1(G)
allows to invokelV.

intersect(Dq, Dw)

under this degree there are possible solutiongjftrat cannot be provided by, as
well as executions of¥ that do not solve;. Hence, forlV to be usable for a goal
instanceGI(G), it has to hold that the input binding defined forGI(G) instantiates
G inaway such thaft}qrg) € {7}ws)-

disjoint(D¢, Dw)

W can not be used for solving or any of its instantiations.

Table 8:Meaning of Matching Degrees for Semantic Similarity of Goals

exactDg, , Da,)

Both goals are semantically equivalent. Henceathat satisfyGG, also satisfyGo
and vice versa. All Web services that are usabledgrare also usablé&'s under the
same usability degree.

plugin(D¢,, Da,)

Eachr that satisfiess; also satisfie€s,. Hence, all Web services usable 1@ are
also usable fof75 but not vice versa.

subsumeQ¢,, Dg,)

Eachr that satisfies7, also satisfiegs,. Hence, all Web services usable f@s are
also usable fof7; but not vice versa.

intersect(Dg, , Dg,)

There is at least onethat resolves both goals. A Web service that can providerth
is hence usable for both goals.

disjoint(Dg, , Dg,)

A 7 that resolves both goals does not exists. We can not make any statement b
the Web services usable for solving the goals.

3

is

etween



74 DERI TR 2007-02-03

B Proof of Theorem3.1: Inference Rules for Usability Degrees

The following provides the proof for theoregl in Section3.2 that defines the inference rules for deter-

mining the usability degree of a Web servidéfor a goal templat&, on the basis of the similarity degree

betweerg, and another goal templagg and the usability degree &F for G;. For each of the five possible

similarity degree, it distinguishes the possible usability degre&g &dr G,. To proof the theorem, we need

to show that the enlisted inferable usability degrees fdiofor G, are correct and the only possible ones.
We use the following symbolg7; is the goal template for which the usability degree of a Web service

W is known, andg, is the goal template for which the usability degreelfshall be determinedDg,

is the functional description of; that formally describes all its possible solutiofs}g,, Dg, the one

of G, describing the set of solutior{g}¢g,, and Dy a functional description such th&t =4 Dy, i.e.

Dw formally describeg 7}y as the set of all possible executionsldf. All functional descriptions are

defined as a 4-tupl® = (X, Q, IF, ¢P), cf. Definition[1.2, with implication semantics such that =

[qSPTe]Ezge_}ED = ¢ (cf. Definition1.3). We further use the definitions from Appen@tion the matching

degrees ¢f. Tablel6), and their meaning for the usability of a Web service for a goal template and its

corresponding goal instanced.(Table7), respectively the meaning for denoting the similarity degree of

goal templatescf. Table8). To properly separate the distinct situations, we apply a strict use of the matching

degrees by always using the degree with the highest orderiaguet > plugin, subsume > intersect.

Proof. We commence with the first part emact(Gy, G2 ). Thisis defined a@ 4 |= V3. P91 < ¢P9, such
that for all possible input binding$it holds thatr € {7}g, ifand only if 7 € {7}, sothat{r}g, = {7}¢,.
Because of this equivalence, it trivially holds that the usability degree of a Web sé&¥visghe same for
G and forGs.

We now discuss the second part that is concerned withlthein (G, G2) similarity degree. This is
formally defined ag)4 |= V3. P91 = ¢P9%, so that{r}g, C {r}g, and ifr € {r}g, thent € {r}g,.
The following holds under this similarity degree:

(1) Each Web servic&V that is usable fof, is also usable fogs: if 3. 7 € ({r}g, N {7}w) then also
Ir. 7 € ({r}g, N {7}w) becausgr}g, C {7}g,. Thus, whenever the usability degreel®f for G; is
eitherexact plugin, subsumeor intersect— each of these satisfies the basic matching condition of the goal
template level ¢f. Definition/1.1) — then the usability degree & for G, can not balisjoint. This applies
to clauses 2.1 t0 2.8.

(2) exact(Gi, W) defines thaf{r}g, = {7}w. Under the assumption that netact(G;,G>) (handled
above), it holds thafr}g, C {7}g,. Hence{r}g, D {7}w, so thatsubsume (G2, W) is a possible usability
degree ofi’ for G,. There can not be anywith 7 € {7}y andr ¢ {7}g, such thatntersect(G,, W) can
not hold; alsodisjoint(G2, W) can not hold because ¢f). This shows clause 2.1.

(3) subsume(Gy, W) defines tha{}g, O {7}w. Under the assumption that netact(G,Gs), it holds
that{7}w C {7}g, C {7}g,, S0 that the only possible usability degreddffor G, is subsume(Ga, W).

(4) plugin(G1, W) defines tha{r}g, C {7}w. Here, the usability degree &F for G, can be eitheexact

if {r}g, = {7}w, pluginif {r}g, C {7}w, subsuméf {7}, D {7}w, orintersectf there exists a such
thatr € {7}y andr & {7}¢,; it can not bedisjointbecause of1). This shows clauses 2.3 - 2.6.

(5) intersect(Gi, W) defines thaBr € ({r}g, N {7}w), so that alsadr € ({r}g, N {7}w) because
of {7}g, C {7}g,. Hence,intersect(G2, W) is one possible usability degree Bf for G,. It can also
be subsume(Ga, W) if {T}g, D {7}w. It can not beexactor plugin because then it would hold that
T € ({r}g, € {r}w) — which contradicts the matching condition fottersect(Gi, W). This proves
clauses 2.7 - 2.8.
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(6) disjoint(Gi, W) defines that-3r € ({7}g, N {7}w ). Under this similarity degree, we only know that
W can not provide any solution f@f,. However,lW' might be able to provide a solution f@ such that
ar € {t}w N ({r}g, N {7}g,), but we can not infer the usability degree of sucdor G,. This relates
to clause 2.9.

Next, we discuss the third part for the similarity degs@dsume (G, G2). This is formally defined as
Q4 | VB. 9P <= ¢P%, so that{r}g, D {r}¢, and ifr € {7}g, thent € {7}g,. The following holds
under this similarity degree:

(1) if exact(G1, W) such tha{r}g, = {7}w and under the assumption ratact(G1, G2) (handled above),
it holds that{r}w D {7}g,. Hence, the only possible usability degreeBffor G; is plugin(Ga, W); it
can not beexact subsumeor intersectbecausg 7}y = {7}g, D {7}g,, and notdisjoint because every
possible solution fog, can be provided by¥". Similar, if plugin(Gi, W) then{r}w 2 {7}g, D {7}g, SO
that the only possible usability degreeldf for Gs is plugin(Gz, W). This proves clauses 3.1 and 3.2.

(2) subsume(Gy, W) defines thafr}g, 2 {7}w. Because{r}y can be any subset dfr}g,, here all
five usability degrees are possible fdf and G». In particular,1¥ can be not usable fag, if —37 €
({7}g, N {7}w). This relates to clauses 3.3 - 3.7.

(3) intersect(G1, W) defines thaBiry € ({r}g, N {7}w) but there can be & € {7}g, butm & {7}w
as well as a3 ¢ {r}g, butms € {r}w. The possible degrees under whith is usable forG, are
plugin(Ga, W) if {T}g, C {7}w, orintersect(Go, W) if 37 € ({7}g, N {7}w). W might also be not
usable, i.edisjoint(Ga, W), if the condition for thentersectdegree is not satisfied. However, the usability
can neither besubsumeand hence noéxactbecause this would requifer}y C {7}g, € Gi — which
contradicts the condition afitersect(G1, W) undersubsume(Gi, G2). This proves clauses 3.8 - 3.10.
(4) if disjoint(G1, W) then alsadisjoint(G2, W) because it/ can not provide & € {7}, then it also
can not provide & € {7}g, with {7}g, D {7}g,. This proves clause 3.11.

We now turn towards the fourth part on the similarity deghelersect(Gi, Go). Its matching condition
isQ4 | 36. ¢P91 A ¢P9%, so thaBr, € ({T}g, N {7}g,) but there can be & € {r}g, butm ¢ {7}g, as
well as ars ¢ {7}g, butms € {r}g,. Here, the following holds:

(1) if exzact(G1, W) such tha{r}g, = {7}w and under the assumption ratact(G:, G2) (handled above),
the only possible usability degree Bf for G, is intersect(Ga, W) becausér.t € ({r}g, N {7}g,) and
{r}g, = {7}w. This proves clause 4.1.

(2) if plugin(G,, W) such that{r}g, C {7}w, then the only possible usability degreesiffor G, are
plugin(Ga, W) if {T}g, C {7}w or intersect(Gi, W) otherwise. It can not beubsume(G2, W) and
hence notexact(G2, W) because this would requider}g, 2 {7}w which contradicts{r}g, C {7}w
underintersect(Gi, G2) because there existsrasuch that € {7}g, butm & {7}g,. This proves clauses
4.2 and 4.3.

(3) if subsume(Gy, W) suchthafr}g, O {7}w, thenW can be usable fa¥, under thesubsumelegree if
{r}g, 2 {7}w, or under thentersectdegree if there is a such that- € {7} butr € {r}g,; otherwise,
W is not usable so thatisjoint(Gs, W). However, the usability degree @f for G, can not bepluginand
hence noexactbecause this would require tht}g, C {7}w which contradictsubsume(G, W) under
the intersect similarity degree. This proves clauses 4.3 - 4.6.

(4) under theintersectdegree for both the similarity af; and G, as well as for the usability oft” for
G, all five usability degrees are possible féf andG,. In particular,)/W- might not be usable fog@, if
—3r € ({r}g, N{7}w). This relates to clauses 4.7 - 4.11.

(5) disjoint(G1, W) defines that-3r € ({r}g, N {7}w). However, W might be able to provide a solution
for Go such thaBir € {r}w N ({7}g, N {7}g, ), but we can not infer the usability degree of sucl&or
Go. This relates to clause 4.12.
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We finally discuss the implications of similarity degrés;joint(G1,Go. This defines tha@g; andG,)
do not have a common solution with the condit@n = —38. P9 A ¢P%. If the usability of T for
G is eithersubsumer exact then{r}g, 2 {7}w. Asdisjoint(G1,G>) defines tha{r}g, N {7}g, = 0,
W can not be usable in these cases. This proves clauses 5.1 and 5.2. For all other usability dégrees of
for G1, we can not make any statement about the usability’dbr G,: regardless whethefugin(Gi, W)
or intersect(Gi, W) or disjoint(G1, W), there might always be a such thatr € ({r}g, N {7}w). In
particular,)/’ might be usable fog; if it is not usable forG;. This relates to clause 5.3 and completes the
proof. O
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C Complete SDC Algorithm

This appendix provides all algorithms that have been specified in this report in a concise manner, including
the algorithms for creation and maintenance of the SDC grefptséctions), and those for SDC-enabled
Web service discovenct. Sectiorb).

Table 9:Syntax for Pseudo Code used in Algorithm Definitions
= data type declaration
= value assignment

null denotes that the value of an object is empty

and, or logical operators that connect conditions

! defines the negation of the subsequent condition

{e} set with elements of type

ein {e} denotes that is an element of a set

name(input,...) name and the input value of a method
name(input) denotes a function
forall(condition) loop that is iterated for all objects for which the conditipn

is satisfied until the halting condition is reached
if (condition) then (action) defines a conventional guarded action
else (action)
return(value) the halting condition that returns the value

/I type declarations

G,G2,G3,G4,G5 = goaltemplate;

Gl = goalinstance;

W := webservice;

goalStore := {goaltemplate};

goalTree := {s(goaltemplate,goaltemplate)};
goalGraph := (goalStore,{goalTree});
discoveryCache := {d(goaltemplate,webservice)};
sdcGraph := (goalGraph,discoveryCache);

/I function declaration for supported entry points
action := ( new | remove | update )
item := ( goaltemplate | goalinstance | webservice );
event(action,item) := boolean;
/I main control
SDCcontrol {
if ( event(new,Gl)) then discovery(Gl) ;
if ( event(new,G) ) then insert(G);
if ( event(remove,G) ) then remove(G);
if ( event(update,G) ) then update(G);
if ( event(new,W) ) then insert(W);
if ( event(remove,W) ) then remove(W);
if ( event(update,W) ) then update(W);
}

%%%%%% %% %% %% %% % %% %% %% %% % %% %% % %% %0
% runtime Web service discovery for a new goal instance
%9%% % %% %% % %% % %% % %% %% %% %% %% % %% % %% %0
discovery(Gl) {
G = goalTemplateSearch(Gl);
Gl = (G,inputs);
lookup(G);
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goallnstanceMatching(Gl);

/I finding the most appropriate goal template
target := goaltemplate;
goalTemplateSearch(Gl);
target = null ;
findRootNode(Gl);
if (! target = null) then
findChildNode(target);
return target;
/I find root of goal tree
findRootNode(GI){
forall (root(G)) {
if instantiates (GI,G) then
target = G;
return target;

}

return target;

/I find child node in goal tree
findChildNode(G1) {
forall (subsume(G1,G2)) {
if instantiates (GI,G2) then
target = G2;
findChildNode(target);
else
return target;

}

return target;

/I usability lookup for inferable usability degrees
lookup(G) {
if ( child(G)) then {
forall ( G2 and subsume(G2,G) ) {
forall ( W and ( exact(G2,W) or plugin(G2,W))) {
return W;

}
lookup(G2);

/I goal instance level matchmaking
goallnstanceMatching(Gl) {
forall ( W and exact(G,W) or plugin(G,W)) {
return W; }
forall ( W and subsume(G,W) ) {
if ( satisfiable (W,inputs) ) then
return W; }
forall ( W and intersect(G,W) ) {
if ( satisfiable (G,W,inputs) ) then
return W,
else
return systemout = 'goal instance can not be solved’;
b}

%%%%%%%6%% %% %% %% %% %% %% %% % %% %% % %% %
% insertion of a new goal template

% (for iterative SDC graph creation)

%%%%%%% %% %% %% %% %% % %% %% %% %% %% %% %%
/I function declarations

position (goaltemplate) := (root | child);

intersectionGoalTemplate(goaltemplate,goaltemplate) := goaltemplate;

disccoveryCache(G) := {d(G,webservice)};
/I main
insert (G){

if ( goalStore != {}) then {

DERI TR 2007-02-03
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forall ( G2 and position(G2) = root) {
if ( exact(G2,G)) then return goalStore;
if ( plugin(G2,G) ) then rootNodelnsertion(G,G2);
if ( subsume(G2,G) ) then childNodelnsertion{G,G2};
if ( intersect(G2,G) ) then {
position (G) = root;
iArcResolution{G,G2}; }
else {
position (G) = root;
return goalStore = goalStore + G;

discoveryCacheCreation(G);

/I inserting a new goal template as a root node
rootNodelnsertion{G,G2} {
goalStore = goalStore + G;
position (G2) = child;
position (G) = root;
goalTree = goalTree + s(G,G2);
return goalGraph;
}
/I inserting a new goal template as a child node
childNodelnsertion{G,G2}{
goalStore = goalStore + G;
position (G) = child;
goalTree = goalTree + s(G2,G);
forall ( G3and s(G2,G3) in goalGraph ) {
if ( exact(G3,G))then {
goalStore = goalStore — G;
goalTree = goalTree — s(G2,G);
return goalGraph; }
if ( plugin(G3,G) ) then {
goalTree = goalTree — s(G2,G);
goalTree = goalTree + s(G2,G) + s(G,G3);
goalTree = goalTree — s(G2,G3); }
if ( subsume(G3,G) ) then {
goalTree = goalTree — s(G2,G);
childNodelnsertion{G,G3}; }
if ( intersect(G3,G))then {
goalTree = goalTree — s(G2,G);
iArcResolution{G,G3}; }
}

return goalGraph;

/I en—route resolution of i—arcs
iArcResolution(G1,G2) {
iG1_G2 = intersectionGoalTemplate(G1,G2);
goalStore = goalStore + G1 +iG1_G2;
goalTree = goalTree + s(G1,iG1.G2) + s(G2,iG1_G2);
discoveryCacheCreation(iG1_G2);

forall (G3 and ((s(G1,G3) or s(G2,G3)) in goalGraph) and G3 !1=iG1.G2) {

if ( exact(G3,iG1.G2) ) then {
goalStore = goalStore — iG1.-G2;
goalTree = goalTree — s(G1,iG1.G2) — s(G2,iG1.G2);
if (! (s(G1,G3)in goalGraph))then {
goalTree = goalTree + s(G1,G3); }
if (! (s(G2,G3)in goalGraph) ) then {
goalTree = goalTree + s(G2,G3); } }
if ( plugin(G3,iG1.G2)) then {
goalTree = goalTree — s(G1,G3) — s(G2,G3);
goalTree = goalTree + s(iG1.G2,G3); }
if ( subsume(G3, iG1-G2) ) then {
if ( s(G1,G3)in goalGraph ) then {
goalTree = goalTree — s(G1,G3);
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goalTree = goalTree + s(iG1.G2,G3); }
if ( s(G2,G3)in goalGraph ) then {
goalTree = goalTree — s(G2,G3);
goalTree = goalTree + s(iG1.G2,G3); } }
if ( intersect(G3, iG1.G2) ) then
iArcResolution(iG1_-G2, G3);

return goalGraph();

/I discovery cache creation (= Web service discovery for a goal template)
discoveryCacheCreation(G) {
if ( position(G) = child ) then
childNodeDiscovery(G);
else {
rootNodeDiscovery(G);
forall (G2 and (s(G,G2) in goalGraph) ) {
if (( (d(G2,W) = (exact or plugin) ) and d(G,W) ) in discoverycache ) then
discoverycache = discoverycache — d(G,W);

}
if ( disccoveryCache(G) = {} ) then remove(G);
return discoverycache;
}
/I discovery for G if it is a child node in an existing goal tree
childNodeDiscovery(G){
forall ( G2 and subsume(G2,G) ) {
forall ( W and subsume(G2,W)) {
matchmakingUsability(G,W);
if (! d= disjoint) then
discoverycache = discoverycache + d(G,W);

}
forall ( W and intersect(G2,W) ) {
if ( plugin(G,W) ) then d = plugin;
if ( intersect(G,W) ) then d = intersect;
discoverycache = discoverycache + d(G,W);
}
}

return discoverycache;

/I discovery for G if it is a root node of an existing goal tree
rootNodeDiscovery(G){
forall ( G2 and subsume(G,G2) ) {
forall ( W and exact(G2,W) ) {
d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall (W and subsume(G2,W)) {
d = subsume;
discoverycache = discoverycache + d(G,W);

}
forall ( W and plugin(G2,W) ) {
plugin, subsume := boolean;
d = intersect;
if ( plugin(G,W) ) then {
plugin = true;
d = plugin; }
if ( subsume(G,W) ) then {
subsume = true;
d = subsume; }
if ( (plugin =true) and (subsume = true)) then {
d = exact; }
discoverycache = discoverycache + d(G,W);

}
forall ( W and intersect(G2,W) ) {
if ( subsume(G,W) ) then d = plugin;
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if ( intersect(G,W) ) then d = intersect;
discoverycache = discoverycache + d(G,W);
}
}

forall ( W and /(W in discoverycache) {
matchmakingUsability(G,W);
if (! d= disjoint) then
discoverycache = discoverycache + d(G,W);
}

return discoverycache;

}

%%%%% % %% % %% % %% % %% % %% % %% % %% % %% % %%
% removal of a goal template
%%%%% % %% % %% % %% % %% % %% % %% % %% % %% % %%
/I function declarations
position (goaltemplate) := (root | child);
outgoingGGArcs(G) := {s(G,goaltemplate)};
incomingGGArcs(G) := {s(goaltemplate,G)};
disccoveryCache(G) := {d(G,webservice)};
/I main
remove(G) {
if ( G2and (s(G,G2) in goalGraph) and G3 and (s(G3,G2) in goalGraph) ) then {
remove(G2);
remove(G);

if ( position(G) = root ) then {
rootNodeRemoval(G); }

else {
childNodeRemoval(G);

goalStore = goalStore — G;
return sdcGraph;
}
/' removing a root node
rootNodeRemoval(G) {
goalTree = goalTree — outgoingGGArcs(G);
forall ( G2 and (s(G,G2) in goalGraph) ) {
if ( Wand (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {
d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }
}
discoveryCache = discoveryCache — discoveryCache(G);
return sdcGraph;
b
/I removing a child node
childNodeRemoval(G) {
forall ( G2 and (s(G,G2) in goalGraph) ) {
forall ( G3and (s(G3,G) in goalGraph) ) {
goalTree = goalTree + s(G3,G2); }
if ( Wand (d1(G,W) in discoveryCache(G)) and (d1 = exact or d1 = plugin) ) then {
d2 = plugin;
discoveryCache = discoveryCache + d2(G2,W); }
}
goalTree = goalTree — outgoingGGArcs(G);
return sdcGraph;

}

%%%%6%%% % %% %% % %% %% %% % %% %% %% % %% %% %
% update of a goal template

%%%%% %% % %% %% % %% %% %% % %% %% %% % %% %% %
/I function declarations

81
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position (goaltemplate) := (root | child);
singleRoot(G) := boolean;
lowestChildWithSingleParent(G) := boolean;
/I main
update(G1,G2) {
if ( exact(G1,G2) ) then {
goalStore = goalStore — G1;
goalStore = goalStore + G2;

if ( position(G1) = root and (s(G1,G3) in goalGraph ) and ! (s(G4,G3) in goalGraph) )
then singleRoot(G1) = true;
else singleRoot(G1) = false;
if ( position(G1) = child and ! (s(G1,G3) in goalGraph) and (s(G4,G3) in goalGraph) and ! (s(G5,G3) in goalGraph) )
then lowestChildWithSingleParent(G1) = true;
else lowestChildWithSingleParent(G1) = false;
if ( (singleRoot(G1) and plugin(G1,G2) ) or (lowestChildWithSingleParent(G1) and subsume(G1,G2)) ) then {
position (G2) = position(G1);
goalStore = goalStore — G1;
goalStore = goalStore + G2;
discoveryCacheCreation(G2);

else {
remove(G1);
insert(G2);

return sdcGraph;

}

%%%%%% %6 %% %% %% %% %% %% %% %% % %% %% % %% %0
% insertion of a new Web service
%%%%%%%6%% %% %% %% % %% %% %% %% %% %% % %% %0
insert (W) {
forall (G and position(G) = root) {
matchmakingUsability(G,W);
if (! d= disjoint) then {
discoverycache = discoverycache + d(G,W);
childNodeWsSiInsertion(G,W);
}

return discoverycache;

}
I

childNodeWsSiInsertion(G,W) {
if ( (d(G,W) = exact) or (d(G,W) = plugin) or (d(G,W) = disjoint) ) then return
else {
forall ( G2 and (s(G,G2) in goalGraph) ) {
if ( d(G,W) =subsume ) then {
matchmakingUsability(G2,W);
if (! d= disjoint) then
discoverycache = discoverycache + d(G2,W);

discoverycache;

if ( d(G,W) =intersect ) then {
if ( plugin(G2,W) ) then d = plugin;
if ( intersect(G2,W)) then d = intersect;
discoverycache = discoverycache + d(G2,W);

childNodeWsSiInsertion(G2,W);
}

return discoverycache;

}

9%0%%%%%%%0% %% %% %% %% %% %% % %% %% %% %% %%
% removal of a Web service
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%%%%% % %% % %% % %% % %% % %% % %% % %% % %% % %%
/I function declarations
discoveryCache(W) := {d(goaltemplate,W)}
/I main
remove(W) {
discoveryCache(W) = {d(G,W)};
discoverycache = discoverycache — discoveryCache(W);
return discoverycache;

/I optional removal of goal templates
removeGAfterWSDeletion(W) {
discoveryCache(W) = {d(G,W)};
forall (G and (d(G,W) in discoveryCache(W)) ) {
remove(G); }
return sdcGraph;

}

%%%%%%%%%%6% % %% % %% %% %% %% %% % %% % %% %0

% update of a Web service

%%%%0%%%6%% %% % %% % %% %% %% %% % %% %% % %% %

update(W1,W2) {

if ( plugin(W1,W2))then {
forall (G and position(G) = root ) {
if ( (d(G,W1) = exact) or (d(G,W1) = plugin) ) then {
forall ( d(G,W1) in discoverycache ) {

discoverycache = discoverycache + d(G,W2);
discoverycache = discoverycache — d(G,W1);
return discoverycache;

IS

else {
remove(W1);
insert (W2);
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