A Caching Mechanism for
Semantic Web Service Discovery

Michael Stollberg, Martin Hepp, and Jorg Hoffmann

Digital Enterprise Research Institute (DERI),
University of Innsbruck, Austria
{firstname.lastname} @deri.org

Abstract. The discovery of suitable Web services for a given task is one
of the central operations in Service-oriented Architectures (SOA), and
research on Semantic Web services (SWS) aims at automating this step.
For the large amount of available Web services that can be expected
in real-world settings, the computational costs of automated discovery
based on semantic matchmaking become important. To make a discovery
engine a reliable software component, we must thus aim at minimizing
both the mean and the variance of the duration of the discovery task.
For this, we present an extension for discovery engines in SWS environ-
ments that exploits structural knowledge and previous discovery results
for reducing the search space of consequent discovery operations. Our
prototype implementation shows significant improvements when applied
to the Stanford SWS Challenge scenario and dataset.

1 Introduction

Web service discovery is the process of finding suitable Web services for a given
task, denoting one of the central operations in Service-oriented Architectures
(SOA). There is already substantial work in the field Semantic Web services
(SWS) on automating Web service discovery by semantic matchmaking, mostly
focussing on the retrieval performance (e.g. [14/1T/13/9]).

However, the computational performance of semantically enabled discovery
and the practical consequences for SWS environments have not received a lot of
attention so far. Considering the increasing amount of available Web services,
this becomes in particular relevant for employing a discovery engine as a heavily
used component in systems for dynamic Web service composition or semanti-
cally enabled business process management (e.g. [19/8]). For this, we consider the
following characteristics for judging the computational reliability of a discovery
engine: efficiency as the time required for finding a suitable Web service, scala-
bility as the ability to deal with a large search space of available Web services,
and stability as a low variance of the execution time of several invocations.

This paper presents a technique that addresses this challenge by adapting the
concept of caching to Web service discovery. It captures knowledge on discovery
results for generic descriptions of objectives to be achieved, and exploits this for
optimizing Web service discovery for concrete requests at runtime.

Discovery

Goal Templates

<¢——— Web Services

(design time)
Y prhegend - — ==y
Goal Cache : data store :
Formulation (SDC Graph)] I
== I=ag
} i | |
| = |
Di 1 process]
Goal Instance ————— |sct¢_)very Web Service ! :
(runtime) | —datafows |

—_————————

Fig. 1. Overview of Web Service Discovery Framework

We refer to this as Semantic Discovery Caching (SDC). Figure [1l shows the
basic idea as a dataflow diagram. There are three core conceptual entities: Web
services that have a formal description, goal templates as generic objective de-
scriptions that are stored in the system, and goal instances that describe concrete
requests by instantiating a goal template with concrete inputs. At design time,
Web services for goal templates are discovered. The result is captured in a spe-
cial knowledge structure called the SDC graph. At runtime, a concrete client
request is formulated as a goal instance for which suitable Web services need to
be discovered. As the expectably most frequent operation in SOA applications,
we optimize this by exploiting the SDC graph in order to reduce the search space
and minimize the number of necessary matchmaking operations.

The paper is structured as follows. Section 2/ briefly describes our approach for
semantically enabled Web service discovery as presented in earlier works [18/17].
Then, Section (3l specifies the Semantic Discovery Caching technique. Section |4
presents the evaluation, and discusses the relevance and specifics of our approach.
Section |5 positions it within related work, and Section |6 concludes the paper.
We use the shipment scenario from the Stanford SWS Challenge as a running
example, a widely recognized initiative for demonstration and comparison of
semantically enabled discovery techniques (http://www.sws-challenge.org).
A detailed technical report on this work is provided in [16].

2 Foundations of the Discovery Framework

As the basis for the subsequent sections, the following summarizes our approach
for semantically enabled Web service discovery as presented in earlier works.
We follow the goal-driven approach for Semantic Web services as promoted
by the WSMO framework [5]. In contrast to an invocation request for a Web
service, a goal describes a client objective with respect to the problem that shall
be solved while abstracting from technical details on Web service invocation.
The aim is to facilitate problem-oriented Web service usage: the client merely
specifies the objective to be achieved as a goal, and the system automatically
discovers, composes, and executes suitable Web services for solving this [1§].

http://www.sws-challenge.org�

The distinction of goal templates and goal instances allows to ease the goal
formulation by clients, and it facilities the two-phase Web service discovery as
outlined above. For this, we have defined a formal model that considers a state-
based model of the world that Web services operate in, and provides precise
definitions of goals, Web services, and the necessary matchmaking techniques.
We here recall the central aspects; the full model is defined in [17].

2.1 'Web Services, Goals, and Functional Descriptions

We consider functional aspects as the primary aspect for discovery: if a Web
service does not provide the functionality for solving a goal, then it is not usable
and other, non-functional aspects are irrelevant. The relevant parts of goal and
Web service descriptions for discovery by semantic matchmaking are the formally
described requested and the provided functionalities.

In our state-based model, a particular execution of a Web service W denotes a
sequence of states 7 = (so, . . ., Sm), i.e. a change of the world from a start state s
to an end state s,,. In consequence, the overall functionality provided by W is the
set of all possible executions of W, denoted by {7}y . Analogously, we understand
a particular solution of a goal as a sequence of states from the initial state into
a state of the world wherein the objective is solved. A functional description D
formally describes the possible executions of a Web service — respectively the
possible solutions for a goal — with respect to the start- and end states.

We define D over a signature Y, and use ontologies {2 as the background
knowledge. D consists of a set of input variables IN = {i1,...,4,}, a precondition
#P¢ that constrains the possible start states, and an effect ¢ that constrains
the possible end states. To properly describe the dependency of the start- and end
states, IN occur as free variables in both ¢?"¢ and ¢ ; the predicate out denotes
the outputs. The formal meaning of D is defined as an implication semantics
between the precondition and the effect. We say that a Web service W provides
the functionality described by D, denoted by W = D, if and only if for all
7 € {7}w holds that if sy |= ¢P™® then s, = ¢ . In order to deal with functional
descriptions in terms of model-theoretic semantics, we present this as a FOL
formula ¢? of the form ¢P™¢ = ¢, Then, W |= D is given if and only if every
7 € {7}w is represented by a X-interpretation that is a model of ¢P.

Analogously, the functional description D¢ of a goal template G formally
describes the set {7} as the state sequences that are possible solutions for G.
Goal templates are generic objective descriptions that are kept in the system.
At runtime, a concrete client request is formulated as a goal instance that in-
stantiates a goal template with concrete inputs. We define a goal instance as a
pair GI(G) = (G, 8) with G as the corresponding goal template, and an input
binding 8 : {i1,...,in} — U as a total function that assigns objects of U to
each IN-variable of D¢g. This 3 is subsequently used to invoke a Web service
in order to solve GI(G). We say that GI(G) is a consistent instantiation of its
corresponding goal template, denoted by GI(G) = G, if ¢P¢ is satisfiable under
the input binding 3. A usable Web service for GI(G) can only be found if this
is given. Moreover, it holds that if GI(G) = G then {T}q¢1(q) € {T}a-

Table 1. Examples for Functional Descriptions of Goals and Web Services

Goal Template G
“ship a package of any weight in Europe”

Web Service W

“shipment in Germany, max 50 kg”

£2: location & shipment ontology
IN: {7s,7r,7p,7w}
@P"¢: person(?s) Ain(?s, europe)
A person(?r) Ain(?r, europe)
A package(?p) A weight(?p, Tw)
A mazW eight(?w, heavy).
T 70, 7price. out(?0) < (
shipmentOrder(?o, 7p)
A sender(?p,?s) Areceiver(?p, r)

A costs(?o, Tprice)).

£2: location & shipment ontology

IN: {7s,7r,7p,7w}

@P"¢: person(?s) Ain(?s, germany)
A person(?r) Ain(?r, germany)
A package(?p) A weight(?p, Tw)
A maxWeight(?w, 50).

o 70, price. out(?0) < (
shipmentOrder(?o, 7p)
A sender(?p,?s) A receiver(?p, r)
A costs(?o, Tprice)).

Table [1] shows examples for functional descriptions in our running example.
Using classical first-order logic as the specification language, the preconditions
define conditions on the required inputs, and the effects state that the output is
a shipment order with respect to the input values

2.2 Semantic Matchmaking

The matchmaking techniques for Web service discovery are defined on the basis
of the functional descriptions explained above. We consider a Web service W to
be usable for a goal template G if there exists at least one execution of W that is
also a solution for G, i.e. if 37. 7 € {T}¢ N {7}w. We express the usability of W
for G in terms of matching degrees as defined in Table 2. Four degrees — ezact,
plugin, subsume, intersect — denote different situations wherein W is usable for
solving G; the disjoint degree denotes that this is not given. We always use the
highest possible degree as it holds that (1) plugin A subsume < exact, (2) plugin
= intersect, (3) subsume = intersect, and (4) — intersect < disjoint.
Analogously, we consider a Web service W to be usable for a goal instance
GI(G) if W can provide a solution for GI(G) when it is invoked with the input
binding [defined in GI(G). Formally, this is given if union of the formulae
U {[pP<]s, [#PW]} is satisfiable. This means that under consideration of the
domain knowledge {2 and under the input binding S defined in GI(G) there
must be a Y-interpretation that represents a solution for the corresponding goal
template G as well as a possible execution of the Web service W. However, we

! (a) We consider Web services to provide deterministic functionalities, i.e. that the
end-state of an execution is completely dependent on the start-state and the pro-
vided inputs; this is a pre-requisite for precise discovery by semantic matchmaking.
(b) We consider all functional descriptions D to be consistent, i.e. that ¢* is sat-
isfiable under an input binding (3. Otherwise, a Web service W |= D would not
realizable, and there would not be any solution for a goal. The full model further
considers dynamic symbols that are changed during executions.

Table 2. Definition of Matching Degrees for D¢, Dw

Denotation Definition Meaning
€ if and only if
exact(Dg, Dw) 2 V6. pP¢ & pPw 4 {TT}Z (7w Y
plugin(Dg, D) 2 E=Vp. ¢P¢ = ¢Pw | if 7 € {r}c then 7 € {T}w
subsume(Dg,Dw) | 2 VG ¢P¢ <= ¢Pw | if 7 € {r}w then 7 € {7}c

. there is a 7 such that
intersect(Dg, Dw) | 2 = 33. ¢Pe N pPW TE€{r}c and 7 € {7}w

there is no 7 such that
TE€{r}c and 7 € {T}w

disjoint(Dg, Dw) | 2 = —38. $Pc A pPw

can simplify the determination of the usability of W for GI(G) on the basis of
the usability degree of W for the corresponding goal template G as follows.

Definition 1. Let GI(G) = (G, 3) be a goal instance with GI(G) E G. Let W
be a Web service, and let Dy be a functional description such that W |= Dy .
W is usable for solving GI(G) if and only if:

(i) ezact (Dg, Dw) or

(i) plugin(Dg, Dw) or

(iii) subsume (Dg,Dw) and 2 A [¢PW]s is satisfiable, or

(iv) intersect (Dg, Dw) and 2 A [¢P]5 A [pPW |5 is satisfiable.

This states that only those Web services that are usable for the corresponding
goal template G are potentially usable for the goal instance GI(G). If a Web
service W is usable for G under the exact or plugin degree, then it is also
usable for any goal instance of G because {7}cr(¢) € {7}¢ € {7}w. Under
the subsume degree, all executions of W are solutions of G but not vice versa.
Table (1] above is an example for this. Consider a goal instance that defines g =
{?s|paris, Tr|vienna, ?p|aPackage, Tw|3.1}: although this properly instantiates
the goal template, 8 does not allow to invoke the Web service (which is restricted
to Germany); thus, it is not usable here. Under the intersect degree, the complete
matching condition explained above must be checked at runtime.

3 Semantic Discovery Caching

We now turn towards the caching mechanism for Web service discovery. Working
on the formal model explained above, the aim is to improve the computational re-
liability of Web service discovery for goal instances that is performed at runtime.
We commence with the design principles, then provide the formal definition, and
finally explain the optimization for the runtime discovery process.

3.1 Overview

The idea is to reduce the search space and minimize the necessary matchmaking
operations for Web service discovery by exploiting the formal relationships be-
tween goal templates, goal instances, and Web services. The central element for

this is the SDC graph that organizes goal templates in a subsumption hierarchy
with respect to their semantic similarity, and captures the minimal knowledge
on the functional usability of the available Web services for the goal templates.

Two goal templates G; and G; are considered to be similar if they have at
least one common solution. Then, mostly the same Web services are usable for
them. We express this in terms of similarity degrees d(G;,G;) that denote the
matching degree between the functional descriptions D¢, and Dg,. Formally,
these degrees are defined analog to Table 2| (¢f. Section 2.2). In order to enable
efficient search, we define the SDC graph such that the only occurring similarity
degree is subsume(G;, G;). If this is given, then (1) the solutions for the child
G, are a subset of those for the parent G;, and thus (2) the Web services that
are usable for G; are a subset of those usable for G;.

In consequence, the SDC graph is a directed acyclic graph that consists of two
layers. The upper one is the goal graph that defines the subsumption hierarchy
of goal templates by directed arcs. The lower layer is the usability cache that
explicates the usability of each available Web service W for every goal template
G by directed arcs that are annotated with the usability degree d(G,W). The
discovery operations use this knowledge structure by inference rules of the form
d(Gi, Gj) Nd(G, W) = d(G;, W) that result from the formal definitions.

Figure 2 illustrates the SDC graph for our running example along with the
most relevant inference rules. There are three goal templates: G for package
shipment in Europe, G5 for Switzerland, and G3 for Germany. Their similarity
degrees are subsume(G1,G3) and subsume(G1,G3), which is explicated in the
goal graph. Consider some Web services, e.g. Wj for package shipment in Europe,
Wy in the whole world, W3 in the European Union, and Wy in the Common-
wealth. Their usability degree for each goal template is explicated in the usability
cache, whereby redundant arcs are omitted. We shall explain the creation of the
SDC graph as well as its usage for optimizing the discovery process below.

Structure of SDC Graph Inference Rules for subsume(G;, G;)

(1) exact(Gi, W) = plugin(G;, W).

(2) plugin(G;, W) = plugin(G;, W).

(3) subsume(G;, W) = exact(G;, W)V
plugin(G;, W)V
subsume(Gj, W)V
intersect(G;, W)V
disjoint(G;, W).

(4) intersect(Gi, W) = plugin(G;, W)V

i intersect(G;, W)V

: disjoint(G;, W).

' (5) disjoint(G;, W) = disjoint(G;, W).

Goal Template |:| Web Service
sy gOal graph arc == = ysability arc §

Fig. 2. Example of a SDC Graph and Inference Rules

3.2 Definition

The following provides the formal definition of the SDC graph and explains the
algorithms for ensuring that the properties are maintained at all times.

Definition 2. Let d(G;,G;) denote the similarity degree of goal templates G;
and G, and let d(G, W) denote the usability degree of a Web service W for a
goal template G. Given a set G of goal templates and a set W of Web services,
the SDC' graph is a directed acyclic graph (Vg U Viy, Egim U Eyse) such that:
(i) Vg :=GUG! is the set of inner vertices where:

-G ={Gy,...,G,} are the goal templates; and

-gl.= {GI | Gi,Gj € g,d(Gi,Gj) = intersect, Gl = G; N Gj} is the

set of intersected goal templates from G

(ii) Viy = {W1,..., Wy} is the set of leaf vertices representing Web services
(111) Esim = {(Gs,G;) | Gi, G; € Vg} is the set of directed arcs where:

- d(G;, Gj) = subsume; and

- not ezists G € Vg s.t. d(G;,G) = subsume, d(G,G;) = subsume.
(1) Eyse :={(G,W) | G € Vg, W € Vin} is set of directed arcs where:

- d(G, W) € {exact, plugin, subsume, intersect}; and

- not exists G; € Vg s.t. d(G;,G) = subsume, d(G;, W) € {exact, plugin}.

This defines the structure of a SDC graph as outlined above. Two refinements are
necessary to obtain this from an initial set of goal templates and Web services.

The first one ensures that the only similarity degree that occurs in the SDC
graph is subsume(G;,G;), cf. clause (iii). This denotes that G; is a functional
specialization of G; such that {7}g, C {T}g,. In consequence, only those Web
services that are usable for G; can be usable for G; because if {T}q, N{7}w =0
then also {7}q, N{7}w = 0, cf. rule (5) in Figure 2. With this as its constituting
element, the SDC graph provides an index structure for efficient search of goal
templates and Web services as explained above. The other possible similarity
degrees are handled as follows: if exact(G;, G;), only one goal template is kept
while the other one is redundant; if plugin(G;, G;) then we store the opponent
arc (G, G;). If disjoint(G;,G;), then both are kept as disconnected nodes in
the SDC graph. Effectively, each of its connected subgraphs covers a problem
domain, e.g. one for the shipment scenario and another one for flight ticketing.

The only critical similarity degree is intersect(G;, G;), denoting that G; and
G; have a common solution but there are also exclusive solutions for each. This
can cause cycles in the SDC graph which hamper its search properties. To avoid
this, we create an intersection goal template G! (G}, G;) whose solutions are ex-
actly those that are common to G; and G, cf. clause (i). Formally, G’ is defined
as the conjunction of the functional descriptions of the original goal templates,
ie. d)DGI‘Gi*GJ') = ¢Pci A ¢PC so that {Yar@ciq;) = {7}a, N{T}c,. Because
of this, it holds that subsume(G;, G'(G;,G;)) and subsume(G;, G'(G;, Gj)).
Thus, G! becomes a child node of both G; and G; in the goal graph. This is ap-
plied for every occurring intersect similarity degree so that eventually all similar
goal templates are organized in a subsumption hierarchy and no cycles occur in

the SDC graph. Intersection goal templates are only used as logical constructs;
their functional descriptions do not have to be materialized.

The second refinement ensures the minimality of the usability cache, cf. clause
(iv). For optimizing the discovery operations, we must know the usability degree
of every Web service for each goal template. However, in order to avoid redun-
dancy, we omit arcs for which the precise usability degree can be inferred from
the SDC graph. It holds that if subsume(G;, G;), then the usability degree of a
Web service W for the child G; is always plugin if W is usable for the parent G;
under the degrees ezact or plugin because {7}w D {7}q, D {7}g,. Thus, the
arc (G, W) is not explicated in the SDC graph. In the above example, the Web
services W7 and Wy are usable under the plugin degree for both G5 and G3; this
can be inferred from the usability cache arcs of Gy (c¢f. rules (1) and (2) in Fig-
ure(2). Therewith, E,s. is the minimal set of arcs that are necessary to explicate
the usability degrees of the available Web services for each goal template.

In our implementation, the creation of a SDC graph is realized by the sub-
sequent addition of goal templates. Applying the refinements explained above,
a new goal template is first inserted at the right position in the goal graph and
then the usability cache is created for it. The removal or modification of goal
templates are manual maintenance operations; respective algorithms are ensure
that the properties of the SDC graph are maintained. Analogous algorithms are
provided for the addition, removal, and modification of Web services. These are
automatically triggered by changes in the Web service repository.?

3.3 Runtime Discovery Optimization

We now explain the usage of the SDC graph for optimizing the runtime discovery
process, i.e. for finding a Web service that is usable for solving a goal instance.
We consider this as the most frequent operation in real-world SOA applications,
while changes on goal templates and Web services are significantly less frequent
maintenance operations. The optimization is achieved by (1) reducing the search
space as only the Web services that are usable the corresponding goal template
need to be inspected, and (2) minimizing the number of necessary matchmaking
operations by first inspecting Web services for which no matchmaking is required
at runtime. Listing 1! illustrates the algorithm for this.

input: GI(G);

if (! consistentlnstantiation (GI(G))) then fail ;

if (lookup(G)) then return W;

while (subsume(G,G’) and consistentInstantiation (GI(G’))) do {
replace (G,G');
if (lookup(G’)) then return W; }

if (otherWS(G)) then return W;

else fail ;

Listing 1. Algorithm for SDC-enabled Runtime Discovery

2 The SDC prototype is open source software available from the SDC homepage
at members.deri.at/~michaels/software/sdc/. It is realized as a discovery com-
ponent in the WSMX system (the WSMO reference implementation, www. wsmx . org)).
We use VAMPIRE for matchmaking, a FOL automated theorem prover.

members.deri.at/~michaels/software/sdc/�
www.wsmx.org�

The input is a goal instance GI(G) = (G, 3) for which a usable Web service
shall be found. At first, we need to ensure that this is a consistent instantiation
of its corresponding goal template Gj if this is not given, a usable Web service
can not be found. Then, we try to find a usable Web service by lookup. This
searches in the SDC graph for a Web service W that is usable for G under the
exact or the plugin degree; this W is usable for solving GI(G) without the need
of matchmaking at runtime (cf. Definition 1 Section 2.2). If this is successful,
W is returned and the discovery is completed successfully.

Otherwise, we continue with refining the goal instance in order to reduce the
search space. For this, we successively replace the corresponding goal template G
by the child node G’ for which the goal instance still is a consistent instantiation.
In the example from Figure 2| let GI(G;1) be a goal instance for shipping a
package from Munich to Berlin that instantiates G for package shipment within
Europe. This is also a proper instantiation of G3 for shipment within Germany;
hence, we refine the goal instance to GI(G3). In the SDC Graph, all children of
G are disjoint — those for which there is no intersection goal template — so that
there can only be one G’ with subsume(G,G’) and GI(G) = G'. If there is an
intersection goal template G! and GI(G) = GY, this is found by following the
path via either of its parents. We thus can search downwards in the goal graph
until finding the lowest possible G’: for this, the number of usable Web services
is minimal. In each refinement step we invoke the lookup procedure because the
probability of success is the higher the lower G’ is allocated in the goal graph.

As the last option for finding a usable Web service, we inspect those ones
that are usable for the (possibly refined) corresponding goal template under
the degrees subsume and intersect; this requires matchmaking at runtime (cf.
Definition [I). As soon as a usable Web service is detected, it is returned as the
discovery result Otherwise, a Web service for solving GI(G) does not exist.

This algorithm finds one Web service that is usable for a goal instance un-
der functional aspects. Of course other aspects are also relevant for discovery.
Most prominent in literature are selection and ranking techniques: the former
reduces the set of suitable Web services with respect to quality-of-service criteria
(e.g. [20]); the latter provides a preference order for the Web services (e.g. [12]).
Under the reasonable premise of performing selection and ranking after func-
tional discovery, the SDC technique provides a sufficient optimization technique
for integrated discovery engines: the bottleneck is the number of available Web
services, which is only relevant for the first processing step. The above algorithm
can easily be modified to return the set of all functionally usable Web services.

4 Evaluation

In order to evaluate the performance gain achievable with the SDC technique, we
have compared the our prototype implementation with a not-optimized discovery
engine for goal instances that applies the same matchmaking techniques. The
following explains the test set-up and methodology, summarizes the results, and
discusses the impact of our observations.

4.1 Methodology

The aim of this evaluation is to quantify the effect of the SDC technique on the
duration of realistic discovery tasks over larger sets of available Web services
that can be expected in real-world settings. We therefore compare the SDC-
enabled runtime discovery with a naive discovery engine for goal instances. We
will discuss the relationship to other optimization techniques in Section 5.

For the comparison, we use the original data set from the Stanford SWS
challenge shipment scenario that already served as the running example above.
Based on real-world services, this challenge defines five Web services for package
shipment from the USA to different destination countries, and several examples
of client requests. We map this to our framework such that goal templates are
generic objective descriptions for package shipment, and the individual requests
are described as goal instances. The formal functional descriptions of goals and
Web services are analog to Table [1, c¢f. Section 2.1. The root goal template of
the resulting SDC graph describes the objective of shipping a package of any
weight from and to anywhere in the world. The more detailed levels of the goal
graph are concerned with shipment between continents, the next levels between
countries, and the lowest levels differentiate the weight classes. At the top of the
goal graph, the most common usability degree for the Web services is subsume;
this changes to plugin at the lower levels.

On this basis, we define ten goal instances for which a usable Web service
is to be found. These are modeled such that each part of the SDC-enabled
runtime discovery algorithm is covered (cf. Section 3.3). The comparison engine
is a naive runtime discoverer that does not apply any optimization techniques.
It retrieves the available Web services in a random order, and performs the
basic matchmaking to determine their usability for a goal instance as defined in
Section 2.2 It uses the same matchmaking techniques and infrastructure as the
SDC-enabled engine. For comparing the behavior of the engines, we perform Web
service discovery for each goal instance with different numbers of available Web
services. Among these are always the five Web services defined in the scenario
that are potentially usable for the tested goal instance; all others are not.

4.2 Results

For the analysis, each comparison test has been run 50 times and the results are
prepared in the following statistical standard notations: the arithmetic mean p
as the average value, the median T that denotes the value in the middle of the 50
test runs, and the standard deviation o as a measurement for the value spread
among the test runs. Table |3 shows a fragment of the augmented data of all test
runs for all ten goal instances; the original data is provided in [16].%

3 The comparison has been performed as a JUnit test for Java 5.0 in Eclipse 3.2; the
test machine was a standard laptop with a 2 GHz Intel processor and 1 GB of RAM.
For this use case, the average time for a single matchmaking operation has been 115
msec, and 15 msec for the discovery-by-lookup procedure.

10

Table 3. Comparison Test Statistics (all values in seconds)

no. of . S Standard
WS Engine | Mean u| Median z Deviation o
10 SDC 0.28 0.27 0.03 (11.74 %)
naive 0.41 0.39 0.21 (51.71 %)
100 SDC 0.29 0.28 0.03 (11.53 %)
naive 3.96 3.68 2.55 (64.48 %)
1000 SDC 0.29 0.29 0.04 (14.79 %)
naive 37.69 33.22 26.28 (69.70 %)
2000 SDC 0.31 0.29 0.05 (18.03 %)
naive 72.96 65.55 52.13 (71.45 %)

From this we can observe the following differences between the compared
engines with respect to the three quality criteria for reliability: the SDC-enabled
discovery is in average faster than the naive engine, even for smaller numbers of
Web services (efficiency); the time required by the SDC-engine is independent of
the number of available Web services while it grows proportionally for the naive
engine (scalability); over several invocations, the SDC-engine varies a lot less
than the naive engine (stability). The high variation of the naive engine results
from the randomized order under which the available Web services are examined.
In this particular use case, the SDC optimization is mainly achieved by the pre-
filtering via goal templates; the refinement step in the discovery algorithm reveals
its potential when there are more usable Web services.

This indicates that the SDC technique helps to satisfy the requirements for
using a Web service discovery engine as a reliable component in large SOA
systems. Future-oriented works for Web service composition or business process
management envision that the actual Web services for execution are dynamically
discovered at runtime in order to provide better flexibility and allow compensa-
tion (e.g. [19/8]). Considering that compositions or processes can be complex and
may consist of several Web services, the absolute overhead and the predictability
of the discovery engine becomes a pre-requisite for realizing such technologies.

4.3 Discussion

For the applicability of the SDC technique in real-world applications not only the
performance but also the appropriateness of the conceptual model is relevant.
To verify the our approach in this respect, we have examined its applicability
for the SOA system maintained by the US-based telecommunication provider
Verizon. This contains nearly 4000 Web services that provide basic functionalities
for managing customer, product and order information; they differ in the specific
usage conditions (e.g. in- and outputs, data formats, etc.). These are used by
more than 600 applications that integrate the Web services into their software.
The main challenges reported by the system providers is the precision of the
discovery technique and the management of changes in the system. The former

11

can be increased by discovery techniques with semantic matchmaking. The latter
results from the currently hard-wired invocation of the Web services by the client
applications. To overcome this, the usage tasks could be formulated in terms of
goals for which the actual Web services are discovered at runtime. Moreover,
the tasks are very similar because most of the client applications work in the
telecommunication domain. Thus, the relevant goal templates can be organized
in a subsumption hierarchy so that the SDC technique can reveal its potential.

Another central aspect is the creation of goal templates as the central ele-
ment of the SDC graph. While an initial goal template of a problem domain
must be defined manually, it possible to generate further ones on basis of the
used domain ontologies. In our running example, the ontologies define several
continents, countries, and weight classes. Given a goal template for package ship-
ment in Europe, we can generate goal templates for shipment in each European
country, for other continents, and so on. Eventually, we can generate all goal
templates that can be expressed by the domain ontologies. These naturally are
semantically similar, and thus will constitute a very fine-grained subsumption
hierarchy in the resulting SDC graph. This enhances the achievable performance
increase for Web service discovery: the more semantically similar goal templates
are in the SDC graph, the higher is its effectiveness for reducing the search space
and minimizing the number of necessary matchmaking operations.

5 Related Work

Although there is a wealth of work on Semantic Web services and semantically
enabled Web service discovery, we are not aware of any work that addresses the
performance challenge for discovery in a similar way. The following outlines the
foundations of our approach and positions it within related works.

The concept of goals as an abstraction layer for facilitating problem-oriented
client-system interaction has initially been developed in Al technologies like BDI
agents and cognitive architectures. Inspired by the works on UPML [6], our ap-
proach has been developed in the spirit of the WSMO framework that promotes
a goal-driven approach for Semantic Web services [5], and the IRS system that
provides a goal-based broker for Web service usage [2]. We have integrated these
approaches, and extended them with a sufficiently rich formalization and the
caching mechanism for Web service discovery.

Discovery and Semantic Matchmaking. This has been subject to many
research works that provide valuable insights on several aspects, e.g. on the ar-
chitectural allocation in SWS systems [15], the quality criteria of discovery [13J9],
and semantic matchmaking for different logical languages [11/14/10]. Our con-
tribution towards this end is the two-phase Web service discovery with precise
formal semantics and adequate matchmaking techniques ([17], ¢f. Section [2).

Web Service Clustering. Other, not goal-based approaches aim at reduc-
ing the search space for discovery by indexing Web service repositories. Keyword-
based categorization as already supported by UDDI is imprecise in comparison
to the SDC graph: it can not be ensured that the classification scheme properly

12

reflects the functionalities provided by Web services. More sophisticated solu-
tions perform clustering on the basis of formal descriptions. E.g. [4] creates a
search tree on based so-called interval constraints that describe Web services.
These are significantly less expressive than our functional descriptions. Besides,
although a logarithmic search time may be achieved (if the tree is balanced), still
matchmaking is required for each new incoming request. The SDC technique can
detect usable Web services without invoking a matchmaker.

Caching. Caching techniques are a well-established means for performance
optimization applied in several areas of computing, among others also for in-
creasing the efficiency of reasoning techniques (e.g. [1J3]). Respective studies
show that caching can achieve the highest efficiency increase if there are many
similar requests [7]. This complies with the design of our approach: the SDC
graph provides the cache structure for Web service discovery, and the more sim-
ilar goals and Web services exists, the higher is the achievable optimization.

6 Conclusions

This paper has presented a novel approach for enhancing the computational
performance of Web service discovery by applying the concept of caching. We
capture the minimal knowledge on the functional usability of available Web
services for goal templates as generic, formal objective descriptions. At runtime,
a concrete client request is formulated as a goal instance that instantiates a goal
template with concrete inputs. The captured knowledge is used for optimizing
the detection of usable Web services. The approach is based on a profound
formal model for semantically enabled discovery. An evaluation with real-world
data shows that our technique can help in the realization of scalable and reliable
automated discovery engines, which becomes important for their employment as
a heavily used component in larger, semantically enabled SOA systems. For the
future, we plan to adopt the model to other specification languages and further
integrate the caching mechanism into Semantic Web services environments.

Acknowledgements. The work presented in this paper has been supported by
the European Commission under the projects SUPER (FP6-026850), SWING
(FP6-26514), and MUSING (FP6-027097), and by the Austrian BMVIT/FFG
under the FIT-IT project myOntology (Grant no. 812515/9284). The authors
thank Holger Lausen, Stijn Heymans, and Dieter Fensel for fruitful discussions,
and Michael Brodie (Verizon Chief Scientist) for the provision of information.

References

1. O. L. Astrachan and M. E. Stickel. Caching and Lemmaizing in Model Elimination
Theorem Provers. In Proc. of the 11th International Conference on Automated
Deduction (CADE-11), 1992.

2. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and
C. Pedrinaci. IRS-IIT — A Broker for Semantic Web Services based Applica-
tions. In Proc. of the 5th International Semantic Web Conference (ISWC 2006),
Athens(GA), USA, 2006.

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Clayton, J. G. Cleary, B. Pfahringer, and M. Utting. Tabling Structures for
Bottom-Up Logic Programming. In Proc. of 12th International Workshop on Logic
Based Program Synthesis and Tranformation, Madrid, Spain, 2002.

I. Constantinescu, W. Binder, and B. Faltings. Flexible and Efficient Matchmaking
and Ranking in Service Directories. In Proc. of the 3rd International Conference
on Web Services (ICWS 2005), Florida, USA, 2005.

. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and

J. Domigue. Enabling Semantic Web Services. The Web Service Modeling Ontology.
Springer, Berlin, Heidelberg, 2006.

D. Fensel et al. The Unified Problem Solving Method Development Language
UPML. Knowledge and Information Systems Journal (KAIS), 5(1), 2003.

P. Godfrey and J. Gryz. Semantic Query Caching for Heterogeneous Databases.
In Proc. of 4th Knowledge Representation Meets Databases Workshop (KRDB) at
VLDB’97, Athens, Greece, 1997.

M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel. Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Business
Process Management. In Proc. of the IEEE ICEBE 2005, Beijing, China, 2005.
U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in
the WSMO Framework. In J. Cardoses, editor, Semantic Web: Theory, Tools and
Applications. Idea Publishing Group, 2006.

M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
Logical Framework for Web Service Discovery. In Proc. of the ISWC 2004 workshop
on Semantic Web Services: Preparing to Meet the World of Business Applications,
Hiroshima, Japan, 2004.

L. Li and I. Horrocks. A Software Fframework for Matchmaking based on Semantic
Web Technology. In Proceedings of the 12th International Conference on the World
Wide Web, Budapest, Hungary, 2003.

H. Lu. Semantic Web Services Discovery and Ranking. In Proc. of the ACM
International Conference on Web Intelligence(WI 2005), Compiegne, France, 2005.
T. Di Noia, E. Di Sciascio, F. Donini, and M. Mongiello. A System for Principled
Matchmaking in an Electronic Marketplace. In Proc. of the 12th International
Conference on the World Wide Web (WWW?’03), Budapest, Hungary, 2003.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web
Services Capabilities. In Proc. of the 1st International Semantic Web Conference,
Sardinia, Italy, 2002.

C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the
2nd International Semantic Web Conference (ISWC 2004), 2004.

M. Stollberg and Martin Hepp. Semantic Discovery Caching: Prototype & Use
Case Evaluation. Technical Report DERI-2007-03-27, DERI, 2007.

M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-phase Web Service
Discovery based on Rich Functional Descriptions. In Proc. 4th European Semantic
Web Conference (ESWC 2007), Innsbruck, Austria, 2007.

M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. In
Proc. of the 2nd International Conference on Internet and Web Applications and
Services (ICIW 2007), Mauritius, 2007.

P. Traverso and M. Pistore. Automatic Composition of Semantic Web Services
into Executable Processes. In Proc. 3rd International Semantic Web Conference
(ISWC 2004), Hiroshima, Japan, 2004.

L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-Based Service Selection and Rank-
ing with Trust and Reputation Management. In Proc. of the OTM Confederated
International Conferences CooplS, DOA, and ODBASE 2005, Cyprus, 2005.

14

