
DERI Galway
University Road
Galway, Ireland

www.deri.ie

DERI Innsbruck
Technikerstrasse 21a

Innsbruck, Austria
www.deri.at

DERI Korea
Yeonggun-Dong, Chongno-Gu

Seoul, Korea
korea.deri.org

DERI Stanford
Serra Mall

Stanford, USA
www.deri.us

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

SEMANTIC WEB SERVICE

DISCOVERY

Michael Stollberg Uwe Keller

DERI TECHNICAL REPORT2006-10-20

OCTOBER2006

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

DERI TECHNICAL REPORT

DERI TECHNICAL REPORT2006-10-20, OCTOBER2006

MATCHMAKING FOR GOAL TEMPLATES AND GOAL INSTANCES ON

RICH FUNCTIONAL DESCRIPTIONS

Michael Stollberg1 Uwe Keller1

Abstract. As a central reasoning task in service-oriented architectures, discovery is concerned with
detecting Web services that are usable for solving a given request. The emerging concept of Seman-
tic Web services strives towards automation of the complete Web service usage process. Existing
approaches for Web service discovery in this field work on confined descriptions of Web services
and requests. This limits the achievable accuracy of discovery results. Exploiting the full poten-
tial of semantically enabled Web service discovery, this paper presents a discovery framework that
works on sufficiently rich descriptions of the functionality provided by Web services and requested
by clients in a state-based model of the world. We differentiate two elements for formally specifying
requests for Web services: goal templates as generic objective descriptions and goal instances that
denote concrete requests by instantiating a goal template. Upon this, we specify a two-step discov-
ery procedure along with semantic matchmaking techniques that allow to accurately determine the
usability of a Web service. The presented framework is defined in a language independent manner
so that it is applicable to several languages for semantically describing Web services.

Keywords: Discovery, Goal Templates, Goal Instances, Abstract State Spaces, Functional Descrip-
tions, Matchmaking

1Digital Enterprise Research Institute (DERI) Innsbruck, University of Innsbruck, Technikerstraße 21a, A-6020
Innsbruck, Austria. eMail:{michael.stollberg, uwe.keller }@deri.org.

Acknowledgements: This material is based upon works supported by the EU under the DIP project (FP6 -
507483) and by the Austrian Federal Ministry for Transport, Innovation, and Technology under the project
RW2 (FFG 809250).
The authors like to thank Holger Lausen and Stijn Heymans for constructive feedback and discussion on this
work.

Copyright c© 2006 by the authors

DERI TR 2006-10-20 I

Contents

1 Introduction 1

2 Concepts and Approach 2
2.1 Web Services and Goals. 2
2.2 The Meaning of a Match in Web Service Discovery. 3

3 Formal Functional Descriptions 6
3.1 Definition and Semantics. 6
3.2 Simulation as Logical Formulae. 7

4 Semantic Matchmaking 11
4.1 Goal Template Level Discovery. 11
4.2 Goal Instance Level Discovery. 12

4.2.1 Requirements Analysis. 12
4.2.2 Input Bindings . 13
4.2.3 Matchmaking For Goal Instances. 14

4.3 Integration of Matchmaking Techniques. 15

5 Illustrative Example 16
5.1 Goal and Web Service Description. 16
5.2 Semantic Web Service Discovery. 17

5.2.1 Goal Template Level. 19
5.2.2 Goal Instance Level. 20

5.3 Web Service Discovery for Goal Instances under other Matching Degrees. 21

6 Related Work 22

7 Conclusions 24

A Appendix 27
A.1 Overview of Matchmaking Degrees ForDG ,DW . 27
A.2 Proof for Theorem1: Simulation of Functional Description as FOL Structure. 28
A.3 Proof for Theorem2: Integrated Matchmaking for 2-Phased Web Service Discovery. 29

DERI TR 2006-10-20 1

1 Introduction

Web services are considered as the base technology for service-oriented architectures (SOA). Providing
access to computational facilities over the Internet, the aim is to dynamically detect and execute appropriate
Web services for individual client requests [7]. The initial technology stack around WSDL, SOAP, and
UDDI limits the usage of Web services to manual inspection, hence fails to provide sufficient support for
realizing the SOA vision. The emerging concept of Semantic Web services aims at overcoming this: working
on ontology-based descriptions, inference-based techniques shall enable automated discovery, composition,
mediation, and execution of Web services (see [8] for a recent overview).

One of the central tasks in SOA-systems isdiscovery. As the first precessing step for solving a given
request, this is concerned with detecting usable Web services with respect to the provided and requested
functionalities [11]. The major requirement for semantically enabled Web service discovery isaccuracy:
the discovery result should encompass all those Web service that are definitely able to solve the given
request. Only if this is given, the subsequent processing steps in the system can rely on the appropriateness
of the discovery component.

To ensure accuracy of semantically enabled Web service discovery, an appropriate formal description
model along with adequate matchmaking techniques is needed. Most existing approaches that have been
presented for semantically discovery of Web services lack in this respect. Commonly, the underlying model
of the world and the formal descriptions do not allow to precisely describe requested and provided function-
alities, which results in inaccurate matchmaking techniques. In order to overcome these deficiencies, we
present a framework for Web service discovery with sufficiently rich functional descriptions and semantic
matchmaking techniques that allow to precisely determine the usability of a Web service.

Our approach considers a state-based model of the world that Web services act in. The functionality
provided by a Web service is formally described in terms of pre- and post-state constraints of possible exe-
cutions. We differentiate two notions for formally specifying requests:goal templatesare generic objective
descriptions whereofgoal instancesare created by instantiation. The former are kept in the system while
the latter are defined during runtime. Due to their formal interrelation, we define a two-phase discovery
procedure: the discovery results for goal templates serve as a pre-filter for Web service discovery for goal
instances. In this paper, we explain the underlying model and the formal description of provided and re-
quested functionalities, and upon this specify accurate matchmaking techniques for both the goal template
and the goal instance level.

The presented approach is independent of the description language for Web services and goals. There-
with, we aim at a generic specification for accurate Web service discovery that can be adopted to sev-
eral Semantic Web service frameworks. In this paper, we use classical first-order logic for illustration and
demonstration. Although we introduce the framework in the context of Web services, our approach is not
limited to this but can be exploited to several other technologies that are proposed for the next generation of
the Internet and deal with formally described provided and requested functionalities.

The paper is structured as follows. At first, Section2 explains the concepts of Web services and goals,
and introduces our two-phase discovery framework. Then, Section3 defines the formal description model
for requested and provided functionalities. On the basis of this, Section4 specifies the semantic match-
making techniques for discovery on the goal template and on the goal instance level. Section5 illustrates
the specification of functional descriptions and demonstrates the discovery techniques within an illustrative
example. Section6 examines related work on semantic Web service discovery and positions our approach
therein. Finally, Section7 concludes the paper.

2 DERI TR 2006-10-20

2 Concepts and Approach

The specification of semantic matchmaking techniques for discovery is strongly dependent on the underlying
understanding and the formal description of Web services and requests for these. This section first explains
our understanding of Web services and goals, i.e. formalized client objectives, and then introduces our
approach discussing the meaning of a match.

In the context of discovery, our main focus is on formalized provided and requested functionalities
and the logical relationships between them that denote the usability of a Web service for solving a given
request. Prominent frameworks for Semantic Web services lack of precisely defined semantics for functional
descriptions (see Section6 for an extensive discussion). Hence, we apply so-calledAbstract State Spaces
(short: ASS) as the underlying formal model. Presented in [13], this defines a state-based model for Web
services and the world they act in with rigorous formal definitions. As discussed later, this allows to define
semantic matchmaking on the level of executions of Web services, and therewith is sufficiently expressive
for our purposes.

2.1 Web Services and Goals

In accordance to the commonly accepted conception, we understand a Web service as a computational
facility that is invocable over the Internet via an interface [4, 2]. Following the approach of Semantic
Web services, a Web service is associated with a comprehensive, ontology-based description that covers all
aspects relevant for automated detection and usage for solving client requests. The description element of
central interest in our context is thefunctional description that formally specifies theoverall functionality
provided by the Web services (in accordance to WSMO capabilities [18] and OWL-S Service Profiles [20]).

As the counterpart to Web services in service-oriented architectures, goals represent formally described
client objectives. Integrating works around WSMO – the only Semantic Web service framework that defines
goals as a top level notion – we distinguish two notions:Goal Templatesformally specify client objectives
in a generic manner along with all information required for automated Web service usage, andGoal In-
stancesdefine concrete client requests by instantiation of a goal template with concrete inputs. As a simple
example, consider the objective of travelling from Innsbruck to Vienna. Here, the goal template specifies the
origin and destination to be cities located in Austria as required inputs; the goal instance instantiates them
with ’Innsbruck’ and ’Vienna’ as concrete objects in the domain that satisfy the goal template specification.

Figure1 shows the relation of Web services and goals on a conceptual level with further explanations
below.

An important restriction is that we only consider Web services that provide adeterministic functionality.
Adopted from general computational theory [25], this means that all outputs and post-execution effects that
result from the execution of a Web service are completely dependent of the inputs provided for its invocation
and consumption. Without this restriction, a Web service could create arbitrary objects in the world that are
not related to a usage request. This would contradict the composability of Web services, which is a central
prerequisite for their usage in service-oriented architectures [7].

In consequence, goals define requests for such functionalities. Thereby, goal templates are pre-defined
schemas, while goal instances are defined at runtime. This distinction eases the formulation of requests
by clients, and it allows to allocate expensive operations for Web service detection at the level of goal
templates [29, 6]. As the element of central interest for Web service discovery, a goal template specifies
a generic objective description as arequested functionality. A goal instance defines a variable assignment
for the input values specified therein. These concrete values are used for invoking and consuming the Web

DERI TR 2006-10-20 3

Figure 1:Web services, Goals, Goal Instances

service that has been discovered.

2.2 The Meaning of a Match in Web Service Discovery

We now turn towards the usability of a Web service for solving a request. In particular, we discuss the notion
of a match, i.e. when a Web service is considered to be usable for solving a goal template, respectively a
goal instance. We therefore subsequently introduce Abstract State Spaces (short: ASS) as defined in [13].

An Abstract State SpaceA is defined over a signatureΣ with respect to consistent background domain
knowledgeΩ (most commonly defined as an ontology). A states ∈ A is a static snapshot of the world.
State transitions are achieved by executions of Web services as well as by other acting entities. Each state
is accessible via an observation functionω(s), a total surjective mapping that assignsΣ-interpretations over
the universeUA, a non-empty set of objects that satisfyΩ.

Sufficient for our context, the ASS model defines a Web service as a pairW = (IF, ι) such that
IF = (i1, . . . , in) is a finite sequence of names denoting all required input values forW , and ι is the
implementation ofW . An execution ofW is triggered by an input bindingβ : {i1, . . . , in} → UA, i.e.
a total function that assigns objects ofUA to theIF -names. A particular execution ofW for a givenβ
and a specific start states0 denotes a finite sequence of state transitionsτ = (s0, . . . , sm) such that all
s0, sj , sm ∈ A. Due to the deterministic behavior ofι, for eachτ we can infer the termination statesm from
the start states0.

Hence, the functionality provided by a Web serviceW denotes a set of possible finite sequences of state
transitions, denoted by{τ}W . As illustrated in Figure2, this can be further differentiated into the distinct
sets of possible executions ofW for each valid input binding, such that{τ}W =

⋃{τ}W (β) with W (β)
denoting the invocation ofW with a particular input bindingβ.

Let us now consider an objective that a client wants to achieve by using Web services. In accordance to
related AI research (e.g. [5, 22]), we understand this as the desire of the client to change the world from its
current state into a state wherein the objective is satisfied. The purpose of Web service discovery is to find a
Web service that can perform this change of the world.

4 DERI TR 2006-10-20

Figure 2:Web Service, Executions, Input Bindings in ASS

In our approach, a goal templateG describes such an objective as restrictions on the initial state and the
desired final state to be achieved. In the ASS model, this means thatG specifies possible sequences of state
transitions{τ}G such that for eachτ = (s0, . . . , sm) ∈ {τ}G the start-states0 satisfies the constraints on the
initial state and the end-statesm satisfies the constraints on the desired state of the world. In consequence,
we consider a Web serviceW to be usable for achieving an objective described byG if there exists at least
one execution ofW that is a possible solution forG, i.e.: ∃τ. τ ∈ ({τ}G ∩ {τ}W).

For specifying a concrete client request, a goal instanceGI(G) defines concrete values for the in-
puts specified inG. Essentially, such a goal instantiation is defined over an input bindingβ such that
GI(G) = G(β); these concrete values constitute the input binding for invoking the Web service as discussed
above. Such a goal instantiation restricts the possible solutions forGI(G) to a subset of those forG, so
that{τ}GI(G) ⊂ {τ}G . Hence, for a Web serviceW to be usable for solving a goal instance there must be
at least one execution ofW for this particular input binding that is also a solution forGI(G). Hence, the
matching condition for goal instances is∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β)).

Definition 1. Let W be a Web service,G a goal template, andGI(G) a goal instance that instantiatesG
with an input bindingβ that constitutes the input binding for invokingW . Let{τ} denote a set of sequences
of state transitions in an Abstract State SpaceA such that:

{τ}W := the set of possible executions ofW
{τ}G := the set ofτ that can solveG
{τ}W (β) ⊂ {τ}W := the set of possible executions ofW for β

{τ}GI(G) ⊂ {τ}G := the set ofτ that can solveGI(G)

We define amatchas the basic condition for the usability of a Web service as:

(i) match(G,W) : ∃τ. τ ∈ ({τ}G ∩ {τ}W)
(ii) match(GI(G),W) : ∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β))

It holds that:

DERI TR 2006-10-20 5

(iii) match(GI(G),W) ⇒ match(G,W), and hence
(iv) ¬match(G,W) ⇒ ¬match(GI(G),W)

Definition1 summarizes the above discussion in a concise manner. We make two observations constitute
the foundation of our framework for Web service discovery. At first, evaluating the basic matching condition
in clauses (i) and (ii) requires matchmaking on formal descriptions of the functionalities provided by Web
services and requested by goals – without this, we would need to perform test runs ofW for determining its
usability. We specify accurate semantic matchmaking techniques for the goal template level in Section4.1
and for the goal instance level in Section4.2.

Secondly, there is an invariable correlation of the matches on the goal template and the goal instance
level. Clause (iii) states that a Web service that is usable for solving a goal instance is also usable for the
corresponding goal template. This trivially holds because{τ}GI(G) ⊂ {τ}G , so that if there is a Web service
W with match(GI(G),W) then alsomatch(G,W). Clause (iv) states that a Web service that is not usable
for a goal template is also not usable for any of its goal instances. This also trivially holds as the logical
complement of clause (iii), as(a ⇒ b) ⇔ (¬b ⇒ ¬a).

Because of this, we define a two-phase discovery framework. At first, usable Web services for goal
templatesG are determined. This is performed at design time, i.e. when a new goal template is defined. At
runtime, Web service discovery for the concrete goal instanceGI(G) is performed, whereby merely the set
of Web services that are usable for the corresponding goal templateG need to be taken into consideration.
As shown in [27], this allows to improve the runtime efficiency of discovery engines. However, in the
remainder of this paper we concentrate on the formal description of requested and provided functionalities
as well as semantic matchmaking techniques for precisely determining the usability of a Web service on
both the goal template and goal instance level.

6 DERI TR 2006-10-20

3 Formal Functional Descriptions

The following specifies the means for formally describing the functionality provided by a Web services and
requested by a goal. As the basis for automatically determining the usability of a Web service for solving
the goal by semantic matchmaking, this need to properly describe the possible executions of a Web service
as well as the possible solutions of a goal. We first explain the definition and meaning, and then present their
simulation by conventional logical formulae that eases handling of functional descriptions.

3.1 Definition and Semantics

Deterministic functionalities that we consider here can most properly be described in terms of precondi-
tions and effects [10]. Such a description denotes a black box description of a functionality that neglects
intermediate states that are traversed during the execution as well as technical aspects on the invocation and
consumption of a Web service.

The essential requirements for the appropriateness of functional descriptions is that they allow to explic-
itly specify the dependency of the effect on the precondition and the changes of the world that result from
the execution of a Web service. While prominent frameworks for Semantic Web services lack in this respect
(see Section6), we apply functional descriptions in the ASS model as defined in [13].

Recalling from above, an Abstract State SpaceA is defined over a signatureΣ and some domain knowl-
edgeΩ. Preconditions and effects are defined as statements in a logicL(Σ). To properly specify the changes
of the world that result from a Web service execution, the ASS model defines extensions to the signature.
At first, ΣS denotesstatic symbolsthat are not changed by the execution of a Web service such that for all
s, s′ ∈ A andα ∈ ΣS : α(s) = α(s′). Secondly,ΣD denotesdynamic symbolsthat are explicitly changed
by the execution. The extensionαpre allows to explicate the dependency of a symbol in the effect on its
value in the start-state, i.e. for alls0, s

′ ∈ A andα ∈ ΣD : α(s0) = αpre(s′). Finally, the symbolout
denotes the computational outputs of a Web service execution.

To explicitly specify the dependency between the post- and the pre-state, the ASS model defines so-
called input variablesIF = (i1, . . . , in) as the formal description of the inputs required by a Web service.
Their scope is the complete functional description, and they occur as free variables in the preconditionφpre

and the effectφeff . Concrete inputs for invoking a Web service – respectively for instantiating a goal – are
defined as an input bindingβ : {i1, . . . , in} → UA, a total function that assigns objects of the universe ofA
to theIF -variables.

Definition 2. In an Abstract State SpaceA, a Functional DescriptionD is defined as a 5-tupleD =
(ΣA, Ω, IF , φpre, φeff) such that

(i) ΣA is a signatureΣ explicitly extended with
ΣS (static symbols) andΣD (dynamic symbols)

(ii) Ω ⊆ L(Σ) defines consistent domain knowledge
(iii) IF is a set of variablesi1, . . . , in whose scope isD;

this denotes all required input values wherefore an input binding
β : {i1, . . . , in} → UA assigns objects of the universeUA

(iv) φpre is a statement inL(Σ) that constraints the initial states0 wherein
the only free variables are a subset ofIF

(v) φeff is a statement inL(Σ) that constraints the final statesm wherein
only IF can occur as free variables andout denotes the output.

DERI TR 2006-10-20 7

The mathematical structure of a functional description is identical for provided and requested func-
tionalities. A Web serviceW is considered to provide the functionality described inD if for all possible
executionsτ = (s0, . . . , sm) ∈ {τ}W it holds that the start-states0 satisfies the preconditionφpre and the
termination statesm satisfies the effectφeff . For a goal template,D formally describes all possible solutions
τ ∈ {τ}G with respect to their initial and final states.

While we discuss examples in Section5, the following defines the formal semantics of functional de-
scriptions. Here, the observation functionω(s) assigns aΣ-interpretation over the universeUA to each
abstract states ∈ A, andI, β |=L(Σ) φ expresses that a formulaφ is satisfied under aΣ-interpretationI and
an input bindingβ that defines a variable assignment of theIF -variables.

Definition 3. LetW = (IF , ι) be a Web service in an Abstract State SpaceA, andD = (ΣA,Ω, IFD, φpre, φeff)
be a functional description with an input bindingβ for theIFD-variables.

We say thatW satisfiesD, denoted byW |=A D, if and only if:
(i) there is a bijectionπ : IF → IFD such that for each inputij ∈ IF

required byW there is a corresponding input variablei′j ∈ IFD
(ii) for all possible executionsτ = (s0, . . . , sm) ∈ τW it holds that

if ω(s0), β |=L(Σ) φpre thenω(sm), β |=L(Σ) φeff .

3.2 Simulation as Logical Formulae

While the ASS model and hence functional descriptions therein are language-independent, we use classical
first-order logic (FOL) as the knowledge definition languageL(Σ) in the following. In order to reduce
the complexity of dealing with functional descriptions, we define a first-order logic structure that properly
simulates the semantics of a functional description. Essentially, this structure defines the precondition and
effect as FOL formulae and simulate the formal semantics of functional descriptions from Definition3 as
a logical implication. As we will see below, this allows to apply standard notions from model-theoretic
semantics like entailment and logical equivalence for specifying logical relationships and operations on
functional descriptions [26].

The problem of representing a functional descriptionD that is defined in accordance to Definition2 as
a conventional formulaφDL in a static languageL is that we need to deal with different logical frameworks.
While the former representation is concerned with states and transitions between, the latter is concerned
with models of formulae and does not provide means for presenting dynamics. The following discusses this,
using classical first-order logic as an expressive language for static knowledge specification with model-
theoretic semantics. We commence with discussing the meaning of functional descriptions, and derive a
formal substantiation for representing functional descriptions as conventional FOL formulae.

Above, a functional descriptionD restricts the possible sequences of state transitionsτ = (s0, . . . , sn) in
A with respect to their pre-states0 and their post-statesn; they elide all intermediate states that are traversed
during execution of a Web service. We can omit the dynamic aspects of states and transitions between them,
and thus represent a functional descriptionD by an FOL structuresim(D) = (IF, φD) that is defined over
the same signature asD and with respect to the same formalized domain knowledgeΩ. Therein, the formula
φD defines a logical implication of the post-state constraintφeff by the pre-state constraintφpre.

To properly capture the correlation and dependence of the pre- and post-state constraints, we defineφD

as[φpre]Σpre
D →ΣD

⇒ φeff with the following correspondence to Definition2: IF = (i1, . . . , in) correspond
to theIF -variables that occur as free variables in the state constraints,φpre corresponds to the precondition,
andφeff to the effect. Defined in [13], [φ]Σpre

D →ΣD
denotes the formulaφ′ that is derived fromφ by replacing

8 DERI TR 2006-10-20

any dynamic symbolα ∈ ΣD by its corresponding pre-variantαpre ∈ Σpre
D . This allows handling of

dynamic symbols that are changed by the execution of a Web service, because each symbolαpre ∈ Σpre
D

that occurs inφeff is denoted by the same symbol in the re-written precondition[φpre]Σpre
D →ΣD

.
A Σ-interpretationI that is a model ofsim(D) corresponds to the termination statesn of the execution

of a Web serviceW with W |=A D for a specific input bindingβ for the IF -variablesi1, . . . , in. The
reason is that the (error-free) execution ofW for a specific input binding results in provision of objects
whose properties are described by the effect constraint. This is dependent of the precondition and the free
input variables, which are bound to concrete objects byβ. Hence, we can describe the information space
ωβ(sn) of the termination state of a specific execution of a Web service by an interpretation. Assim(D) is
defined over the same signature and models the intended relationship between the precondition and effect
in D, it holds that every interpretationI that simulatesωβ(sn) is a model ofsim(D). Hence, we say that
sim(D) semantically simulatesD, denoted assim(D) ' D. Figure3 illustrates this correlation that we
formally substantiate in the following.

Figure 3:Correlation of a Functional DescriptionD andsim(D)

Definition 4. Let a Web serviceW be a pairW = (IF, ι) with a set of input variablesIF = (i1, . . . , in)
and an implementationι. LetA be an Abstract State Space with a signatureΣA = (ΣS]ΣD]Σpre

D] out)
and the universeUA as a non-empty set of objects. Let a sequence of state transitionsτW = (s0, . . . , sn)
denote an execution ofW in A over ΣA. For the executionτW (β) of W for a specific input binding
β : (i1, . . . , in) → UA let a ΣA-interpretationIτW (β) = (UA, IτW (β)) denote the mapping of symbols in
IτW (β) to UA in the termination statesn of τW (β). Let aΣ-interpretationIW (β) = (UA, IW (β)) denote
the mapping of symbolsIW (β) to the objects in the universeUA.

We define the simulation of a Web service executionτW (β) by aΣA-interpretationIW (β) as

τW (β) ' IW (β) iff . for τW (β) = ι(s0, β) = (s0, . . . , sn) andsn = (UA, IτW (β)) holds
(i) for all predicatesα ∈ Σ with the arity m holds

∀x1, . . . , xm ∈ UA. (x1, . . . , xm) ∈ IτW (β)(α)
⇔ (x1, . . . , xm) ∈ IW (β)(α).

(ii) for all functionsf ∈ Σ with the arity m holds
∀x1, . . . , xm ∈ UA. IτW (β)(f)(x1, . . . , xm) = x0

⇔ IW (β)(f)(x1, . . . , xm) = x0.

This definition states that the execution of a Web serviceW for a particular input bindingβ can be seman-
tically simulated by an interpretationIW (β) that is defined over the same signature asW . Recall that the

DERI TR 2006-10-20 9

signatureΣ in an Abstract State Space is extended with static symbolsΣS , dynamic symbolsΣD and their
pre-variantsΣpre

D , and theout symbol (see Definition2). Thus, the world in the termination stateω(sn) of
an execution ofW for a particular input bindingβ covers all relevant aspects: the mapping to objects that
exists insn described byφeff in dependence of the pre-state constraintsφpre – which is explicitly defined
via the signature extensionsΣS , ΣD, andΣpre

D – as well as the output objects that are explicitly denoted by
out. This can be represented by a particularΣ-interpretation overΣA such that all predicate and function
symbols have the same meaning as inω(sn).

Definition 5. LetD be a functional description in an Abstract State SpaceA with a preconditionφpre and
an effectφeff defined in first-order logic overΣA and with respect to formalized domain knowledgeΩ. Let
i1, . . . , in be the input variables whose scope isD and that occur as free variables inφpre andφeff . Let
W |=A D denote thatW is a capability model ofD such that all possible executionsτW = (s0, . . . , sn) of
W satisfyD. The set of all input bindings forIF in A is denoted byInA(IF).
We define the simulation of a functional descriptionD by a first-order logic formulaφ as

D ' φ iff . for all s0 ∈ A and for allβ ∈ InA(IF) holds that
(i) for each executionτW (β) of each Web serviceW with W |=A D holds that

for all Σ-interpretationsI such thatτW (β) ' I holds thatI |= φ.
(ii) for all Σ-interpretationsI such thatI |= φ holds that

for all Web servicesW such that for each executionτW (β) of W
holdsτW (β) ' I holds thatW |=A D.

This definition states that a functional descriptionD that is specified in accordance to Definition2 can be
simulated by a FOL-formulaφ that is defined over the same signature asD. It therefore has to hold that
eachΣ-interpretationI that is a model ofφ simulates an execution of a Web serviceW that provides the
functionality described byD such that the modelsM(φ) as the set of such interpretations covers each
possible execution ofW . In combination with Definition4, this provides the correctness criterion of a
first-order structure that represents a functional descriptionD by maintaining the formal semantics.

Definition 6. LetD be a functional description defined in an Abstract State SpaceA. Let sim(D) be a
first-order structure defined overΣA as a pairsim(D) = (IF, φD) with IF = (i1, . . . , in) being the set of
input variables defined inD, andφD being a first-order logic formula of the form[φpre]Σpre

D →ΣD
⇒ φeff

such that:
(i) φpre is the formula defining the preconditionD whereini1, . . . , in occur as free variables,
(ii) φeff is the formula defining the effect ofD whereini1, . . . , in occur as free variables,
(iii) and [φ]Σpre

D →ΣD
as the formulaφ′ derived fromφ by replacing every dynamic symbolα ∈ ΣD

by its corresponding pre-variantαpre ∈ Σpre
D .

This defines a specific first-order structure for representing functional descriptions. The formulaφD defines
an implication between the precondition formula and the effect formula, stating that if the precondition is
satisfied then the effect will be satisfied by executing a Web serviceW with W |=A D. As in Definition2,
the input variables are kept separate fromφD so that theφD can only be evaluated if a concrete input binding
β : (i1, . . . , in) → UA is provided. Therewith,sim(D) simulates a functional descriptionD by omitting
the dynamic aspects related to states and transitions between them.

For illustrating the precondition rewriting, let us recall the bank account withdrawal example form above.
The input variables areIF = {a, x}, and the precondition specifiesφpre = account(a) ∧ float(x) ∧
balance(a) ≥ x (the only occurring variables area, x; as input variables, these are free variables inφpre).

10 DERI TR 2006-10-20

The only dynamic symbol isbalance. Applying clause (iii), this is replaced by its pre-variantbalancepre in
the re-written precondition. Hence,φD = account(a) ∧ float(x) ∧ balance(a)pre ≥ x ⇒ account(a) ∧
balance(a) = balance(a)pre−x. Therewith, the pre-variant of the dynamic symbol occurring in the effect-
part ofφD is denoted by the same variable in the precondition-part, so that the dependence between the two
parts is explicitly specified.

Theorem 1. LetD be a functional description in an Abstract State SpaceA with a preconditionφpre and
an effectφeff defined in first-order logic overΣA and with respect to formalized domain knowledgeΩ. Let
i1, . . . , in be the input variables whose scope isD and that occur as free variables inφpre andφeff . Let
sim(D) be a first-order structure defined overΣA as a pairsim(D) = (IF, φD) with D is a first-order
logic formula of the form[φpre]Σpre

D →ΣD
⇒ φeff .

Then,D ' sim(D).

sim(D) is defined over the same signatureΣ with respect to the same background knowledgeΩ, and
uses the same preconditionφpre and effectφeff asD. The logical implication of the effect by the re-written
precondition simulates the meaning of a functional description as defined in Definition3: for a particular
τ = (s0, . . . , sm), if the start states0 satisfies the preconditionφpre then the termination statesm must
satisfy the effectφeff . Therewith, aΣ-interpretation that is a model ofsim(D) is the same asω(sm) for the
particularτ . Moreover, this holds for allτ ∈ {τ}W for each Web serviceW with W |=A D; otherwise,
W |=A D does not hold. We provide a proof of this theorem in AppendixA.2 of this document.

Proposition 1. Descriptions] Another representation ofD is a first-order logic structuresim(D)2 =
(IF, φD+) with IF = (i1, . . . , in) being the set of input variables defined inD, andφD+ being a first-order
logic formula of the form[φpre]Σpre

D →ΣD
∧ φeff .

It holds thatφD+ |= φD.

The representation of a functional descriptionD by sim(D)2 defines a conjunction of the precondition and
the effect formulae. ForIW (β) |= sim(D)2, it has to hold thatβ |= φpre andβ |= φeff . Therewith,
this representation of a functional descriptionD by a first-order logic structure only considers case (1) as
discussed above. If the preconditions is not satisfied as in case (2), then the Web service is considered to be
not executable – which is a more strict reading of Definition2. Hence, representingsim(D)2 is a stronger
way to represent a functional description that logically entailssim(D). Mainly usable for defining opera-
tions and inference rules that are only concerned with the objects retrievable by executing Web services, this
is referred to as theimplementation perspectivein literature (e.g. [12]); accordingly,sim(D) is called the
modelling perspective.

DERI TR 2006-10-20 11

4 Semantic Matchmaking

This section specifies the semantic matchmaking techniques for Web service discovery. With respect to the
two-phase discovery framework as introduced in Section2.2, we first address discovery for the goal template
level and then on the goal instance level. Finally, we integrate the semantic matchmaking techniques for both
levels.

In order to precisely determine whether a Web service is usable with respect to the basic matching con-
ditions from Definition1, the matchmaking techniques defined in the following work on formal functional
descriptions as defined in Section3. For the goal template level, we define matchmaking degrees that de-
note different relationships between the possible solutions of the requested functionality and the possible
executions of a Web service. Each of these degrees implies certain conditions on the usability of the Web
service for solving a goal instance. We identify these conditions, and present an extension for semantic
matchmaking on the goal instance level. While this section provides the definitions, we demonstrate the
matchmaking techniques within an illustrative example in Section5.

4.1 Goal Template Level Discovery

For Web service discovery on the goal template level, we define matchmaking degrees on formal functional
descriptions of a goal templateG and a Web serviceW . Denoting the relationship between possible execu-
tions{τ}W of a Web service and possible solutions{τ}G for a goal template, these matchmaking degrees
provide a means for evaluating the basic matching condition for the usability of a Web service on the goal
template level.

Four degrees –exact, plugin, subsume, intersect– denote different situations wherein the matching con-
dition in clause (i) of Definition1 is satisfied. Thedisjoint degree denotes that this is not given. Regarding
the usability of a Web service between the goal template and goal instance level, under theexactdegreeW
can be used for any goal instanceGI(G) that instantiatesG. For the three non-exact matchmaking degrees,
this is only given if the input bindingβ defined forGI(G) triggers an execution ofW that results in a
termination state that satisfies the goal description. We discuss this in more detail in the following.

The following provides the definition of each matchmaking degree and discusses its meaning for the
usability of a Web service for solving a goal instance. LetDG be the description of the functionality re-
quested in a goal templateG, andDW as description of the functionality provided by a Web serviceW with
W |=A DW . We define criteria for each matching degree over thesim(DG) andsim(DW) from Theorem1,
along with an explicit quantification of input bindingsβ. Here,Ω |= ∀β. φDG ⇔ φDW defines that, under
consideration of the domain knowledgeΩ, for all Σ-interpretationsI under all possible input bindingsβ
holds thatI |= sim(DG) if and only if I |= sim(DW). As the condition for theexactdegree, this expresses
that every possible execution ofW is a solution forG and vice versa. Refining the matching degree defini-
tions for goal-based Web service discovery from [11], we therewith obtain a means for precisely expressing
the relationship between{τ}G and{τ}W on the basis of sufficiently rich descriptions.

exact(DG ,DW): Ω |= ∀β. φDG ⇔ φDW

This degree denotes that the functionality requested by the goal and the one provided by the Web service
are semantically identical, so that{τ}G = {τ}W . Here,W can be used for solving any goal instance
GI(G), because every input bindingβ that is a valid instantiation ofG triggers aτ ∈ {τ}W such that
τ ∈ {τ}GI(G) ⊂ {τ}G . However, this degree denotes the most implausible situation occurring in real-world
settings.

12 DERI TR 2006-10-20

plugin(DG ,DW): Ω |= ∀β. φDG ⇒ φDW

This defines that the requested functionality is more specific than the provided functionality, i.e.{τ}G ⊆
{τ}W . Under this degree, all possible solutions for the goal can be provided by the Web service but there
can exist aτ ∈ {τ}W such thatτ 6∈ {τ}G . Thus, forW to be usable for a goal instanceGI(G), it has to
hold that the input bindingβ defined forGI(G) triggers such an execution ofW that{τ}W (β) ∈ {τ}G .

subsume(DG ,DW): Ω |= ∀β. φDG ⇐ φDW

As the opposite to the plugin degree, this denotes that the requested functionality is more general than the
provided one, so that{τ}G ⊇ {τ}W . This means that all executions ofW can satisfyG, but there are
possible solutions forG that cannot be provided byW . In consequence, forW to be usable for a goal
instanceGI(G), it has to hold that{τ}GI(G) ⊆ {τ}W . This is given if the input bindingβ defined for
GI(G) allows to invokeW .

intersect(DG ,DW): Ω |= ∃β. φDG ∧ φDW

As the weakest degree that satisfies the matching condition in clause (i) of Definition1, this denotes that
there exists at least one possible solution forG that can be provided byW , so that{τ}G ∩ {τ}W 6= ∅.
However, under this degree there are possible solutions forG that cannot be provided byW , as well as
executions ofW that do not solveG. Hence, forW to be usable for a goal instanceGI(G), it has to hold
that the input bindingβ defined forGI(G) instantiatesG in a way such that{τ}GI(G) ⊆ {τ}W (β).

disjoint(DG ,DW): Ω |= ¬∃β. φDG ∧ φDW

This degree denotes that an execution ofW that can satisfyG does not exists, i.e.{τ}G ∩ {τ}W = ∅. In
consequence, under this degreeW can not be used for solvingG or any of its instantiations.

Table 3 in AppendixA.1 provides a concise compilation of the above definitions. The existence and
denomination of the matchmaking degrees can be considered as a the common result of several research
efforts (e.g. [23, 19, 11]). However, the underlying models of the world as well as the formal descriptions in
these approaches lack of expressivity for accurately describing requested and provided functionalities. We
define the matchmaking degrees on formal functional descriptions as defined in Section3, which provides
a sufficiently rich description model for precise Web service discovery. We discuss related work in more
detail in Section6.

4.2 Goal Instance Level Discovery

We now turn towards the usability of a Web service for a goal instanceGI(G) that instantiates a goal tem-
plateG. As a novel technique that has not been presented in previous works, the following subsequently
determines the requirements for semantic matchmaking on the goal instance level and then specifies a match-
making technique therefore.

4.2.1 Requirements Analysis

As defined above,GI(G) is created by defining an input bindingβ for the IF -variables inDG , i.e. the
formally described functionality requested inG (see Definition2). Hence, the set of possible solutions for
GI(G) is a subset of those forG, i.e. {τ}GI(G) ⊂ {τ}G (see Definition1).

DERI TR 2006-10-20 13

Recalling the foundations of our two-phase discovery framework from Section2.2, clause (iv) in Defi-
nition 1 states that a Web serviceW that is not usable for a goal templateG is also not usable for any goal
instance ofG. Hence, in terms of the matchmaking degrees for Web service discovery on the goal template
level, it holds that under thedisjoint degree a Web service is not usable for any instantiation ofG. For the
other four degrees, it holds that the set of usable Web service for a goal instanceGI(G) is always a subset
of those usable for its goal templateG – which correlates with clause (iii) of Definition1. Thus, we can
use the matchmaking degrees for semantic Web service discovery on the goal template level as a filtering
mechanism for determining usable Web services on the goal instance level.

In the course of specifying the matchmaking degrees in Section4.1, we have shown that the usability of
a Web serviceW is dependent on how theβ defined inGI(G) instantiates the goal templateG. Analyzing
the above discussion reveals the following condition that is common under all matchmaking degrees: a Web
serviceW is usable for solving a goal instanceGI(G) if β instantiatesG in such a way that the possible
solutions forGI(G) are allocated in the intersection of the possible solutions forG and possible executions
of W that are triggered byβ. Naturally, this correlates with the basic matching condition for the goal
instance level (clause (ii) of Definition1).

In order to specify a semantic technique for evaluating these usability conditions on the basis of the avail-
able descriptions, the following first examines the properties of input bindings for goals and Web services
and then define matchmaking conditions for Web service discovery on the goal instance level.

4.2.2 Input Bindings

An input binding is a variable assignment for the input variables in a functional description. Definition2
requiresβ : {i1, . . . , in} → UA as a total function that assigns objects over the universeUA to the IF -
variables. With this, we obtain an assignment of concrete valuesv for all inputs required in a functional
description, i.e.β = {i1|v1, . . . , in|vn}. This is needed to evaluate the precondition and effect formulae in
a functional description, wherein theIF -variables can occur as free variables.

Let us now consider the relationship of an input binding that defines a goal instanceGI(G) and the one
for invoking the Web serviceW that is to be used. Obviously, both need to define the same input values –
otherwise the triggered execution ofW will not solve the goal. However, the input bindings do not have
to be literally identical but they need to define the same input values. There might be a permutation or
renaming of symbols necessary in order to present the concrete input values defined inGI(G) in the form
expected byW . Hence, in the following we distinguish two input bindings:βG as the one defined in a goal
instanceGI(G), andβW as the one to invokeW for solvingGI(G).

Definition 7. LetDG = (ΣA,Ω, IFG , φpre, φeff) be the functional description of a goal templateG, and let
DW = (ΣA,Ω, IFW , φpre, φeff) describe a provided functionality. LetW be a Web service withW |=A
DW . Let a goal instanceGI(G) be defined by the input bindingβG : IFG → UA.
We defineβW as theinput binding to invokeW for solvingGI(G) such that:

(i) there is a bijectionπ : IFG → IFW

(ii) βW (π(i)) = βG(i) for all i ∈ IFG

Clause (i) states that for everyIF -variable in the goal description there is a correspondingIF -variable
in the Web service description (and vice versa). This ensures on the description level that a goal instance
can provide all inputs required for invokingW -asW |=A D requires that there exists a similar bijection
between theIF -variables inDW and the input names required by the Web service (see Definition3). Clause

14 DERI TR 2006-10-20

(ii) defines that the variable assignments inβW are the same as defined inβG. Under the assumption thatW
is usable for solvingGI(G), this ensures that the execution ofW that is triggered byβW will solve GI(G).

The requirement on the compatibility is not trivial to realize in practice. It requires requires a semantic
mapping between the input variables of functional descriptions and the Web service. Furthermore, maybe
also mediation between incompatible ontologies used by the requester and provider. In general, the estab-
lishment of the compatibility requires manual intervention in order to define the semantic mapping between
and to resolve potentially occurring data level mismatches. We therefore can apply mediators that connect a
goal templates and a Web services and define the necessary mappings. The WSMO framework provides the
concept of WG mediators for this purpose [21].

Another aspect is that there must be concrete values for all required inputs in order to invoke Web
service. The two bijections - the one between the input variables of the goal and the Web service description
in clause (i) of Definition7, and the one between the Web service description and the Web service in clause
(i) of Definition 3 – denote the basic requirement therefore. However, requiring the client to provide concrete
values for all inputs is a very restrictive requirement. In some cases, the client may not be able or not willing
to provide specific data (e.g. details on banking information); in other cases, the background ontologyΩ
may define attributes or relations that are not relevant for formulating the client request. To handle both
cases, we specify so-calledgeneric instancesfor each required input value that is not explicitly specified
by the client. A generic instance defines existence of an instance of a concept with universally quantified
variables [27]: if there is a required inputi for which βG does not provide a concrete value assignment,
then we create a generic instance of the form∃x.φpre(i) whereφpre(i) denotes the conditions defined in
the precondition of the goal template description. Therewith, we can ensure that there is a concrete value
assignment for each input required byW .

4.2.3 Matchmaking For Goal Instances

We now can define the semantic discovery technique for determining the usability of a Web service for
solving a goal instance. We therefore need to specific a matchmaking condition that allows to evaluate the
basic matching condition for the goal instance level on basis of the available description elements.

Clause (ii) in Definition1 definesmatch(GI(G),W) to be given if∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β)). In
terms of the introduced notions, this is satisfied ifβG instantiatesG such that there is at least one possible
solution forGI(G) that can be provided by an execution ofW that is triggered byβW .

The approach for determining this on basis of the given description elements is as follows. Formally, an
input bindingβ : {i1, . . . , in} → UA is a total function that defines a variable assignment over the universe
UA for the input variablesIF defined in a functional descriptionD (cf Definition 2). We therewith obtain
an assignment of concrete valuesv for all inputs required inD, i.e. β = {i1|v1, . . . , in|vn}. Given such
a β, we can instantiateD by substituting allIF -variables that occur as free variables inφpre andφeff by
the concrete values defined inβ. We obtain[D]β as the functional description that is instantiated for the
context ofβ; this can be evaluated because it does no longer contain any free variables. By instantiating the
functional descriptionsDG of the corresponding goal templateG andDW of the Web serviceW with the
input bindingβ defined inGI(G), we obtain[DG]β as the functionality requested byGI(G) and[DW]β as
the functionality that can be provided byW when it is invoked withβ.

For W to be usable for solvingGI(G), there must be aτ such thatτ ∈ {τ}GI(G) andτ ∈ {τ}W (β)

(cf clause (ii) from Definition1). To determine this on basis of the given descriptions, it must hold that
– with respect to the domain knowledge – there exists aΣ-interpretationI that is a common model for
φDG andφDW when both functional descriptions are instantiated with the input bindingβ defined inGI(G).

DERI TR 2006-10-20 15

Formally, this means that the union of the formulaeΩA∪{[φDG]β, [φDW]β}must be satisfiable, i.e. that there
exists aΣ-interpretation that is a model for the extended domain knowledgeΩA and for the instantiated goal
description[φDG]β and for the instantiated Web service description[φDW]β. In accordance to Theorem1,
this I represents aτ that is a solution forGI(G) and can be provided byW if it is invoked withβ.

Definition 8. LetDG = (ΣA, Ω, IFG , φ
pre
G , φeff

G) be the functional description of a goal templateG that

is simulated bysim(DG). LetDW = (ΣA,Ω, IFW , φpre
W , φeff

W) be a functional description simulated by
sim(DW), and letW be a Web service such thatW |=A DW . Let the goal instanceGI(G) be defined
by the input bindingβG , and letβW be the input binding to invokeW for solving GI(G). Let ΩA =
Ω ∪ [Ω]]Σpre

D →ΣD
be the background knowledge extended with the pre-variants of each dynamic symbol

α ∈ Σpre
D .

Let there be a bijectionπ : IFG → IFW , and let the[φDG]π be the formula that is is derived fromφDG by
replacing every occurrence of aIFG-variable by the corresponding renamed variableπ(i). Let[φD]β be the
formula that is derived fromφD by substituting every occurrence of anIF -variable by the value assigned in
β for all i ∈ IF .

match(GI(G),W) is given if there exists aΣ-interpretationI such that:

I |= ΩA and I |= [[φDG]π]βW
and I |= [φDW]βW

.

4.3 Integration of Matchmaking Techniques

We complete this section with combing the semantic matchmaking techniques for the goal template and the
goal instance level in order to attain an integrated matchmaking framework for our two-phase Web service
discovery. We therefore extend matchmaking degrees from Table3 with the matchmaking condition for the
goal instance level. Due to their definition, we can simplify the matching condition from Definition8 for
the distinct matchmaking degrees as follows.

Theorem 2. LetDG describe the requested functionality in a goal templateG. LetGI(G) be a goal instance
of G that defines an input bindingβ. LetW be a Web service, and letDW be a functional description such
thatW |=A DW .

W is usable for solvingGI(G) if and only if:
(i) exact(DG,DW) or
(ii) plugin(DG,DW) or
(iii) subsume(DG,DW) and

∧
ΩA ∧ [φDW]β is satisfiable, or

(iv) intersect(DG,DW) and
∧

ΩA ∧ [φDG]β ∧ [φDW]β is satisfiable.

This specifies the minimal matchmaking conditions for determining the usability of a Web service for
solving a concrete client request that is described by a goal instance. Under both theexactand theplugin
degree,W can be used for solving any goal instanceGI(G) because{τ}GI(G) ⊂ {τ}G ⊆ {τ}W and
τ ∈ {τ}GI(G) ⇔ τ ∈ {τ}W (β). Under thesubsumedegree it holds that{τ}G ⊇ {τ}W , i.e. every execution
of W can solveG but there can be solutions ofG that cannot be provided byW . Hence,W is only usable
for solvingGI(G) if the input bindingβ defined inGI(G) allows to invokeW . This is given if there is a
Σ-interpretation that is a model for[φDW]β and the conjunction of the axioms inΩA. Underintersectas the
weakest degree, the complete matchmaking condition for the goal instance level must hold because there
can be solutions forG that can not be provided byW and vice versa. Thedisjoint degree denotes thatW is
not usable for solving the goal template and thus neither for any of its instantiations. The formal proof of
this theorem is provided in AppendixA.3 of this document.

16 DERI TR 2006-10-20

5 Illustrative Example

This section provides a proof of concept for the preceding theoretical elaborations. We therefore exhaus-
tively discuss the following scenario: the goal specifies the objective of finding the best restaurant in a
city, and the Web service provides a search facility for the best French restaurant in a city. As we shall
show below, this is an example for theintersectdegree and hence requires the full range of the extended
matchmaking for Web service discovery on the goal instance level.

We have implemented and verified the matchmaking techniques inVAMPIRE, a resolution-based theo-
rem prover for classical first-order logic with equality [24] that allows to realize matchmaking exactly as
specified in this work and has been successfully applied in previous works [27]. The following first il-
lustrates the modelling of functional descriptions for goals and Web services as defined in Section3, and
then demonstrates the matchmaking techniques for semantic Web service discovery defined in Section4.
Thereafter, we briefly address examples for other matchmaking degrees in the same setting.1

5.1 Goal and Web Service Description

The following illustrates the specification of the functional descriptions in accordance to Definition2. We
use classical first-order logic (FOL, as defined in [26]) as the specification language. In order to express
frame-based modelling of concepts and attributes in FOL, we apply the notation introduced in [14] to model
functional descriptions:memberOf(x,concept) denotes class membership of the variablex to a con-
cept, andhasAttValue(x,attribute,value) defines an attribute for the variablex whose value
can be either a constant or a variable.

In our example setting, the goal templateG describes the objective of finding the best restaurant in a
city. For instantiatingG, the concrete city needs to be specified. In the desired state of the world, the best
restaurant in this city shall be provided. Specifying this in terms of a functional description,DG specifies
oneIF -variable that is constraint in the preconditionφpre to be a member of the conceptcity. The effect
φeff describes the desired state of the world to be given if and only if the output provided by the Web service
is a restaurant in the city such that there does not exists any better restaurant in the city. Analogously,DW

describes the functionality provided by the Web serviceW . The mere difference occurs in the effect because
the output ofW is a French restaurant in the city provided as input such that there does not exist any better
French restaurant in the city.

The signatureΣ for bothDG andDW consists of the predicate symbols for class membership and
attribute values, and the unary predicateout(x) used inφeff for denoting the output objects (see Defini-
tion 2). FOL serves as the logicL(Σ). The domain knowledgeΩ is defined in thebest restaurant ontology
that describes restaurants with attributesin and type , and cities along with their geographic location.
better(x, y) is a transitive predicate that describes the rating of restaurants as a partial order (i.e.true if the
rating for restaurantx is higher than for restauranty, andbetter(x, y) ∧ better(y, z) ⇒ better(x, z)). We
omit the complete ontology specification with respect to space limitations.

It is to remark that in accordance to Definition2, the IF -variablex occurs as a free variable in the
precondition and in the effect of bothDG andDW . Hence, the functional descriptions can only be evaluated
if an input bindingβ is defined. For the sake of simplicity, this example by intent does not encompass
static and dynamic symbols. We refer to [12] for an exhaustive discussion and illustration for the signature
extensions in the ASS model.

1The VAMPIRE implementation along with installation instructions and the proof obligations for the best restaurant search
example are available at:http://members.deri.at/ ∼michaels/software/best-restaurant-example.zip

http://members.deri.at/~michaels/software/best-restaurant-example.zip�

DERI TR 2006-10-20 17

Goal ”find best restaurant in a city”
DG Σ: memberOf(x, concept), hasAttV alue(x, name, value), out(x)

Ω: best restaurant ontology

IF : {x}
φpre: memberOf(x, city)

φeff : ∀y. out(y) ⇔ (

memberOf(y, restaurant)

∧ hasAttV alue(y, in, x)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ better(z, y))).

Web Service ”find best French restaurant in a city”
DW Σ: memberOf(x, concept), hasAttV alue(x, name, value), out(x)

Ω: best restaurant ontology

IF : {x}
φpre: memberOf(x, city)

φeff : ∀y. out(y) ⇔ (

memberOf(y, restaurant)

∧ hasAttV alue(y, type, french)

∧ hasAttV alue(y, in, x)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, x)

∧ hasAttV alue(z, type, french)

∧ better(z, y))).

5.2 Semantic Web Service Discovery

We now demonstrate the semantic matchmaking techniques for Web service discovery on the goal template
and the goal instance level as defined in Section4. The main focus of our discussion is the accuracy, i.e. to
show that the specified techniques allow to precisely determine the usability of a Web service for a concrete
request. For verification, we show the relevant proof obligations from the implementation withVAMPIRE

along the following explanations.
For illustration, it is sufficient to consider the following two cities: cityA wherein the best restaurant

is French and cityB wherein the best restaurant is not French. We then consider two input bindings,
β1 = {x|A} andβ2 = {x|B}, and examine the solutions forG and the executions ofW for each of them.
Table1 shows the descriptions of the citiesA andB that constitute the relevant part of the universeUA.
Table2 shows the results of evaluating the functional descriptionsDG andDW from above under the input
bindings. As the most important information in the following discussion, we here show the obtainable
output values. Forβ1, the result for bothDG andDW is out(y)=r1A , i.e. the best restaurant inA.
For β2, the result forDG is out(y)=r1B , andout(y)=r2B for DW . These denote the only possible
Σ-interpretations that satisfy the respective effect constraints under the particular input binding.

18 DERI TR 2006-10-20

Table 1:Σ-Interpretations in Universe relevant for Example
City A City B

memberOf(A, city)
memberOf(r1A, restaurant)
hasAttV alue(r1A, in, A)
hasAttV alue(r1A, type, french)
memberOf(r2A, restaurant)
hasAttV alue(r2A, in, A)
hasAttV alue(r2A, type, italian)
better(r1A, r2A)
memberOf(r3A, restaurant)
hasAttV alue(r3A, in, A)
hasAttV alue(r3A, type, french)
better(r2A, r3A)

memberOf(B, city)
memberOf(r1B, restaurant)
hasAttV alue(r1B, in, B)
hasAttV alue(r1B, type, italian)
memberOf(r2B, restaurant)
hasAttV alue(r2B, in, B)
hasAttV alue(r2B, type, french)
better(r1B, r2B)
memberOf(r3B, restaurant)
hasAttV alue(r3B, in, B)
hasAttV alue(r3B, type, french)
better(r2B, r3B)

Table 2:Results forDG ,DW under Input Bindings
[sim(DG)]β1 [sim(DW)]β1

memberOf(A, city) ⇒ (

out(r1A) ⇔ (

memberOf(r1A, restaurant)

∧ hasAttV alue(r1A, in, A)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, A)

∧ better(z, r1A)

∧(z = r2A ∨ z = r3A)))).

memberOf(A, city) ⇒ (

out(r1A) ⇔ (

memberOf(r1A, restaurant)

∧ hasAttV alue(r1A, in, A)

∧ hasAttV alue(r1A, type, french)

∧ ¬(memberOf(r3A, restaurant)

∧ hasAttV alue(r3A, in, A)

∧ hasAttV alue(r3A, type, french)

∧ better(r3A, r1A))).

[sim(DG)]β2 [sim(DW)]β2

memberOf(B, city) ⇒ (

out(r1B) ⇔ (

memberOf(r1B, restaurant)

∧ hasAttV alue(r1B, in, B)

∧ ¬∃z.(memberOf(z, restaurant)

∧ hasAttV alue(z, in, B)

∧ better(z, r1B)

∧(z = r2A ∨ z = r3A)))).

memberOf(B, city) ⇒ (

out(r2B) ⇔ (

memberOf(r2B, restaurant)

∧ hasAttV alue(r2B, in, B)

∧ hasAttV alue(r2B, type, french)

∧ ¬ (memberOf(r3B, restaurant)

∧ hasAttV alue(r3B, in, B)

∧ hasAttV alue(r3B, type, french)

∧ better(r3B, r2B))).

Along the way, this illustrates the correlation of input bindings and start states for aτ = (s0, . . . , sm)
in an Abstract State SpaceA: the world is defined by the objects in the universeUA wherefore an input
bindingβ defines a variable assignment. If the world changes – e.g. a new French restaurant is opened in
city B that has a better rating than all the existing ones – then the solutions forG as well as the executions
of W would be different for the same input bindings.

DERI TR 2006-10-20 19

5.2.1 Goal Template Level

Let us now consider Web service discovery on the goal template level. From Table2, we observe that forβ1

there exists aτ that satisfies bothDG andDW and hence denotes a solution forG that can be provided by
W . Thus, the matchmaking condition forintersect(DG,DW) is satisfied. Forβ2, the execution ofW results
in a different end state than the solution forG. Hence,¬∀β. φDG ⇒ φDW and¬∀β. φDG ⇐ φDW , so that
neither the condition for theplugin degree nor for thesubsumedegree is satisfied. Thus, the matchmaking
degree betweenDG andDW is intersect.

The following shows the proof of the intersection match withinVAMPIRE. This is a resolution-based
theorem prover for first-order classical logic with equality [24] that we use for demonstration and proof
of correctness throughout the example. For modelling the goal and the Web service descriptions, their
functional descriptions are separated into three formula: one that specifies the inputs and preconditions, one
for the output and postconditions, and one that defines the relationship between the former two (i.e. the
semantics of the functional description). We also need to explicitly define that thebetter(x, y) relation is
a partial order. The proof obligation for the intersection match is defined as in Section4.1: existence of at
least oneΣ-interpretation for an input-output pair that is a common model ofDG andDW while there is no
logical entailment:DG 6|= DW andDW 6|= DG. For realizing this inVAMPIRE, we use so-called generic
instances that have been introduced in [27]: a generic instance defines existence of an instance of a concept
with universally quantified variables. As therewith the theorem prover always finds an existing instance for
concepts and relations defined in the signature, we can work with incomplete functional descriptions (such
as that the goal description in our example does not define restrictions on the restaurant type).2

% SIGNATURE
% better-relation is a partial order
input_formula(transitivityBetterRelation, axiom,(

! [R1,R2] : (
memberOf(R1, restaurant) & memberOf(R2, restaurant)
& better(R1,R2) => ˜better(R2,R1))

)).
% transitivity of better-relation
input_formula(transitivityBetterRelation, axiom,(! [R1,R2,R3] : (

memberOf(R1, restaurant) & memberOf(R2, restaurant)
& memberOf(R3, restaurant) & better(R1,R2) & better(R2,R3)
=> better(R1,R3))

)).
% GOAL: find best restaurant in a city
input_formula(goalin, axiom,(

! [X] : (goalin(X) <=> (memberOf(X, city))))).
input_formula(goalout, axiom,(! [X,Y] :

(goalout(X,Y) <=> (memberOf(Y, restaurant) & hasAttValue(Y, in, X)
& ˜ ? [Z] : (memberOf(Z, restaurant) & hasAttValue(Z, in, X)
& better(Z,Y)))))).

2VAMPIRE supports TPTP, a first-order logic syntax used for automated theorem proving, see homepage:www.tptp.org .
For traceability, the most important constructs are quantifiers (universal:!, existential: ?), logical connectives (and:&,
or: |, not: ∼, implication: ⇒, equivalence:⇔); variables are denoted by capital letters. FOL formulae are defined as
input-formulae(name,type, φ) with axiom denoting a knowledge definition andconjecture as a proof obligation.

www.tptp.org�

20 DERI TR 2006-10-20

input_formula(goaldescription, axiom,(! [I,O] : (
goal(I,O) <=> (goalin(I) => goalout(I,O))))).

%%
% WEB SERVICE: give best French restaurant in a city
input_formula(wsin, axiom,(! [X] : (

wsin(X) <=> (memberOf(X, city))))).
input_formula(wsout, axiom,(! [X,Y,Z] : (

wsout(X,Y) <=> (memberOf(Y, restaurant)
& hasAttValue(Y, in, X) & hasAttValue(Y, type, french)
& ˜ ? [Z] : (memberOf(Z, restaurant) & hasAttValue(Z, in, X)

& hasAttValue(Z, type, french) & better(Z,Y)))))).
input_formula(wsdescription, axiom,(! [I,O] : (

ws(I,O) <=> (wsin(I) => wsout(I,O))))).
%%
% proof obligation for intersection match G, WS.
input_formula(po, conjecture,(? [I,O] : (goal(I,O) & ws(I,O))

&˜(! [I,O] : ((goal(I,O) => ws(I,O)) | (ws(I,O) => goal(I,O)))))).
%% PROVED

5.2.2 Goal Instance Level

Because of theintersectdegree on the goal template level, clause (iv) of Theorem2 must hold forW to be
usable for solving a goal instanceGI(G). This requires that for the same input values there must be aτ in
A that is both a solution forGI(G) and a possible execution ofW . Following Definition8, this is given if
there exists aΣ-interpretationI overUA that is a model for bothsim(DG) andsim(DW) when they are
instantiated by substituting theIF -variables with the value assignments inβ. Let us consider the following
two goal instances:GI(G)1 that definesβ1 for instantiatingDG , andGI(G)2 that definesβ2.

• For GI(G)1, there is aΣ-interpretationI1 with the variable assignmentx = A, y = r1A, z = r3A
satisfies both[φDG]β1 and[φDW]β1 ; thus,W is usable for solvingGI(G)1.

• ForGI(G)2, theΣ-interpretations that satisfy[φDG]β2 areI2 with y = r1B, z = r2B or I3 with y =
r1B, z = r3B. The onlyΣ-interpretation that satisfies[φDW]β2 is I4 with the variable assignemtn
y = r2B, z = r3B. As I2 6= I4 andI3 6= I4 , W is not usable for solvingGI(G)2.

The following shows the proof obligation in fromVAMPIRE. We therefore define the input bindings by
the respective facts as shown in Table1, and define the matchmaking condition for the goal instance level as
defined in Definition8. The goal template and Web service description are the same as in the listing above.

% Universe for City A (input binding 1)
input_formula(cityA, axiom,(memberOf(A,city))). input_formula(r1A,
axiom,(memberOf(r1A,restaurant) &

hasAttValue(r1A, in, A) &
hasAttValue(r1A, type, french))).

input_formula(r2A, axiom,(memberOf(r2A,restaurant) &

DERI TR 2006-10-20 21

hasAttValue(r2A, in, A) &
hasAttValue(r2A, type, italian))).

input_formula(r3A, axiom,(memberOf(r3A,restaurant) &
hasAttValue(r3A, in, A) &
hasAttValue(r3A, type, french))).

% proof obligation for goal instance level match.
input_formula(po, conjecture,(? [cA,O] : (goal(cA,O) & ws(cA,O)).
% PROVED

%%

% Universe for City B (input binding 2)
input_formula(cityB, axiom,(memberOf(B,city))). input_formula(r1B,
axiom,(memberOf(r1B,restaurant) &

hasAttValue(r1B, in, B) &
hasAttValue(r1B, type, italian))).

input_formula(r2B, axiom,(memberOf(r2B,restaurant) &
hasAttValue(r2B, in, B) &
hasAttValue(r2B, type, french))).

input_formula(r3B, axiom,(memberOf(r3B,restaurant) &
hasAttValue(r3B, in, B) &
hasAttValue(r3B, type, french))).

% proof obligation for goal instance level match.
input_formula(po, conjecture,(? [cB,O] : (goal(cB,O) & ws(cB,O)).
% NOT PROVED

5.3 Web Service Discovery for Goal Instances under other Matching Degrees

For demonstrating Web service discovery on the goal instance level under the other matchmaking degrees,
let us consider a Web serviceW2 that provides a lookup functionality for the best restaurants in Austrian
cities. DW2 definesφpre = memberOf(x, city) ∧ hasAttV alue(x, in, austria), and the same effect as
in the goal description above. As an example for thesubsumedegree, letGI(G)3 be a goal instance that
definesβW2 = {x|Berlin}, i.e. the German capital. Clause (iii) in Theorem2 defines that[φDW2]βW2

needs
to hold forW2 to be usable for solving a goal instance.βW2 does not satisfy the precondition ofDW2 so that
we can not determine aΣ-interpretation that satisfies[φDW2]βW2

, henceW2 is not usable forGI(G)3.
For theplugin degree, let us consider another goal templateG2 for finding the best restaurant in a city

in Tyrol (a state of Austria).DG2 definesφpre = memberOf(x, city) ∧ hasAttV alue(x, in, tyrol), and
the background ontologyΩ defines that Tyrol is located in Austria. Any goal instanceGI(G2) must define
an input bindingβG2 with a city that is located in Tyrol. With respect toΩ, W2 can be invoked with a
complement ofβG2 , and the triggered execution will provide the best restaurant in the city. The same holds
for a Web serviceW3 with DW3 ≡ DG . This demonstrates clauses (ii) and (i) of Theorem2.

22 DERI TR 2006-10-20

6 Related Work

We are not aware of any other approach for semantically enabled Web service discovery that defines accurate
matchmaking techniques in a sufficiently rich description framework for requested and provided function-
alities. However, there are several works that are related to or have influenced the presented approach.
The following discusses them and positions our work with respect to the following aspects: the usage and
description of goals for Web services, the formal semantics of prominent frameworks for Semantic Web
services, and existing approaches for semantically enabled Web service discovery.

The conception of goals as formalized client requests in our approach has been adopted from technolo-
gies for automated problem solving that have been developed in different AI disciplines, such as cognitive
architectures [22] or BDI architectures for intelligent agents [5]. As analyzed in [28], therein goals denote
client requests for moving from the current state of the world to a state wherein some objective is satisfied.
The distinction of goal templates and goal instances in our approach as well as their description as requested
functionalities has been inspired by the conception of generic tasks in the UPML framework [9].

The idea of goal-driven architectures re-emerges in the context of Web services, wherein the distinction
of service providers and requesters becomes a central aspect of technology design [4]. However, the only
framework for Semantic Web service that identifies goals as a top level element is WSMO [8]. While the
WSMO specification itself does not distinguish goal templates and goal instances, related system imple-
mentations such as IRS [6] or SWF [29] define similar notions in order to achieve a better scalability and
ease of use. In contrast to [16], we describe the requested functionality in goal templates by preconditions
and effects. The reason is that in service-oriented architectures usually the current state of the world is not
explicated or not accessible to the interaction partners.

In the introduction, we have claimed that most frameworks for Semantic Web services do not define an
unambiguous formal semantics which hampers the specification of accurate matchmaking techniques. As
the most prominent ones, let us briefly examine the four approaches submitted to be W3C as standardization
proposals. Chronologically the first, OWL-S [20] defines an upper ontology for annotating Web services.
Allocated in the Service Profile, the overall provided functionality is described in terms of inputs, outputs,
preconditions, and effects (short: IOPE) with OWL has the specification language. This description model
has several drawbacks as criticized in [17].

The most important one in comparison to the ASS model used in our approach is that the correlation
between pre-states and post-states of a Web service can not be expressed, as each IOPE is a closed logical
formula. The same holds for the WSDL-S that proposes to annotate WSDL descriptions with preconditions
and effects [1]. This is overcome in WSMO [18] wherein provided and requested functionalities are de-
scribed by capabilities that consist of preconditions, assumptions, postconditions, and effects (short: PAPE).
To specify the correlation and dependencies of these elements, so-calledshared variablesare defined whose
scope is the complete capability – similar toIF -variables in the ASS model. However, the formal distinction
of the four description elements remains to be unclear.

The second aspect to be discussed here is the underlying model of the world wherein Web services act.
OWL-S understands Web services as atomic or composite processes; replacing the initial OWL-S process
model, SWSF [3] defines a formally sound process description model and language. In contrast, WSMO
as well as our approach considers a state-based model wherein Web services perform transitions between
states. The reason therefore is that we understand Web services as passive computational facilities that are
dynamically detected and combined in a specific problem solving context – which can be independent from
Web services. The primary property of such a facility is to perform a (deterministic) transition, wherefore
a state-based model with functional descriptions in terms of preconditions and effects as widely used in

DERI TR 2006-10-20 23

several AI technologies.
As the final aspect of related to be discussed, we examine existing approach for semantically enabled

Web service discovery with special attention to the accuracy as the central focus of this paper. As the ear-
liest works, [23] and [19] present matchmaking on OWL-S service profiles and introduce the matchmaking
degrees that we defined for discovery on the goal template level discovery. Both works define discovery in
terms of concept subsumption in a Description Logic framework. This merely allows to determine semantic
relationships between requested and provided concepts, but does not properly reason about functionalities.

The approach for Web service discovery in WSMO is presented in [11]. The matchmaking degrees
are defined as set-theoretic criteria that is not bound to a particular formal description of requested and
provided functionalities. Different types of matches are distinguished for the usability of a Web service
for a goal description. In particular, thepartial matchdenotes that the usability of a Web service cannot
be definitely determined. The matchmaking technique for the goal instance level presented in this work
allows to precisely do this. The only approach known to us that performs discovery with concrete inputs
is presented in [15]: the inputs defined in the goal are inserted into the internal knowledge base, and then
it is checked whether the hypothetical execution result allows to solve the goal. However, this technique
performs hypothetical executions of Web services instead of matchmaking of declarative descriptions.

24 DERI TR 2006-10-20

7 Conclusions

This paper has presented an approach for accurate semantically enabled Web service discovery that works
on a sufficiently rich descriptions of the requested and provided functionalities.

We have introduced the notions of goal templates and goal instances. The former are generic descriptions
of client objectives whereof the latter are created for expressing a concrete request by defining concrete input
values. Based on the formal relationship, we have defined a two-phase discovery process wherein discovery
on the goal template level is performed at design time and then serves as a filter mechanism for discovery
on the goal instance level at runtime.

We apply a state-based model of the world wherein Web service perform state transitions. To properly
describe the functionality provided by a Web service as well as the one requested in a goal description, we
define functional descriptions that formally describe sequences of state transitions with respect to their start-
and end-state. In order to define logical relationships and operations on functional descriptions of goals and
Web services, we have presented a first-order logic structure that allows to simulate functional descriptions
as conventional formulae.

On the basis of this, we have presented semantic matchmaking techniques that allow to precisely deter-
mine the usability of a Web service for solving a goal. For the goal template level, we have adjusted the
matchmaking degrees commonly identified for Web service discovery. In our framework, they denote the
relationship of the set of possible solutions for a goal and possible executions of a Web service. For the
goal instance level, we have presented a novel matchmaking technique that allows to precisely determine
the usability of a Web service for concrete requests. On basis of the available description elements, this
determines the existence of a solution for a goal instance that can be provided by Web service when it is in-
voked with the inputs defined in the goal instance. Finally, we have integrated the matchmaking techniques
on both levels and demonstrated them in an extensive example.

In conclusion, we have provided a comprehensive framework for semantic Web service discovery. De-
fined in form of rigorous formal definitions, it is independent of the specification language used. Therewith,
this paper provides a generic specification for accurate Web service discovery that can be adopted to several
frameworks that deal with requested and provided functionalities.

DERI TR 2006-10-20 25

References

[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and K. Verma. Web
Service Semantics - WSDL-S. W3C Member Submission 7 November 2005, 2005. online:
http://www.w3.org/Submission/WSDL-S/.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services: Concepts, Architectures and Applica-
tions. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, 2004.

[3] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, Martin. D., McIlraith.
S., D. McGuinness, J. Su, and S. Tabet. Semantic Web Services Framework (SWSF). W3C Member
Submission 9 September 2005, 2005. online: http://www.w3.org/Submission/SWSF/.

[4] D. Booth, H. Haas, F. McCabe, E. Newcomer, I. M. Champion, C. Ferris, and Orchard. D.
Web Services Architecture. Working group note 11 february 2004, W3C, 2006. online at:
http://www.w3.org/TR/ws-arch/.

[5] M. E. Bratman. Intention, Plans and Practical Reason. Harvard University Press, Cambridge, MA
(USA), 1987.

[6] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedrinaci. IRS-III –
A Broker for Semantic Web Services based Applications. InIn Proc. of the 5th International Semantic
Web Conference (ISWC 2006), Athens(GA), USA, 2006.

[7] T Erl. Service-Oriented ArchitectureSOA. Concepts, Technology, and Design. Prentice Hall PTR,
2005.

[8] D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and J. Domigue.Enabling
Semantic Web Services. The Web Service Modeling Ontology. Springer, 2006.

[9] D. Fensel et al. The Unified Problem Solving Method Development Language UPML.Knowledge
and Information Systems Journal (KAIS), 5(1), 2003.

[10] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.Communincations of the ACM,
12(10):576–580, 1969.

[11] U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO Frame-
work. In J. Cardoses, editor,Semantic Web: Theory, Tools and Applications. Idea Publishing Group,
2006.

[12] U. Keller and H. Lausen. Functional Description of Web Services. Deliverable D28.1, WSML Working
Group, 2006. Most recent version available at: http://www.wsmo.org/TR/d28/d28.1/.

[13] U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions of Web Services.
In Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), Montenegro, 2006.

[14] G. Kifer, M. andLausen and J. Wu. Logical Foundations of Object-Oriented and Frame-Based Lan-
guages.JACM, 42(4):741–843, 1995.

26 DERI TR 2006-10-20

[15] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A Logical Framework for
Web Service Discovery. InProc. of the ISWC 2004 workshop on Semantic Web Services: Preparing
to Meet the World of Business Applications, Hiroshima, Japan, Nov. 2004, 2004.

[16] R. Lara, M. A. Corella, and P. Castells. A Flexible Model for Web Service Discovery. InProc. of the 1st
International Workshop on Semantic Matchmaking and Resource Retrieval: Issues and Perspectives,
Seoul, South Korea, 2006.

[17] R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO and OWL-S. In
Proc. of the European Conf. on Web Services, 2004.

[18] H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontology (WSMO). W3C
Member Submission 3 June 2005, 2005. online: http://www.w3.org/Submission/WSMO/.

[19] L. Li and I. Horrocks. A software framework for matchmaking based on semantic web technology. In
Proceedings of the 12th International Conference on the World Wide Web, Budapest, Hungary, 2003.

[20] D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22 November
2004, 2004. online: http://www.w3.org/Submission/OWL-S/.

[21] A. Mocan, E. Cimpian, M. Stollberg, F. Scharffe, and J. Scicluna. WSMO Mediators. WSMO deliv-
erable D29 final draft 21 Dec 2005, 2005. available at: http://www.wsmo.org/TR/d29/.

[22] A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA (USA), 1990.

[23] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web services capabilities.
In Proceedings of the First International Semantic Web Conference, Springer, 2002.

[24] A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE.AI Communications,
15(2):91–110, 2002. Special Issue on CASC.

[25] M. Sipser.Introduction to the Theory of Computation. PWS Publishing Company, 2 edition, 2005.

[26] R. M. Smullyan.First Order Logic. Springer, 1968.

[27] M. Stollberg, U. Keller, and D. Fensel. Partner and Service Discovery for Collaboration Establishment
on the Semantic Web. InProceedings of the Third International Conference on Web Services, Orlando,
Florida, 2005.

[28] M. Stollberg and F. Rhomberg. Survey on Goal-driven Architectures. Technical Report DERI-TR-
2006-06-04, DERI, 2006.

[29] M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel. Semantic Web
Fred – Automated Goal Resolution on the Semantic Web. InProc. of the 38th Hawaii International
Conference on System Science, 2005.

DERI TR 2006-10-20 27

A Appendix

A.1 Overview of Matchmaking Degrees ForDG,DW

Table 3:Definition of Matchmaking Degrees forDG ,DW

Denotation &
Visualization

for DG ,DW

Definition
for: sim(DG) ' DG

sim(DW) ' DW

Meaning
for {τ}G , {τ}W with

W |=A D

exact(DG ,DW)

sim(DG) ≡ sim(DW), i.e.
Ω |= ∀β. φDG ⇔ φDW .

{τ}G = {τ}W

and
τ ∈ {τ}G(β) ⇔ τ ∈ {τ}W (β)

plugin(DG ,DW)

sim(DG) |= sim(DW), i.e.
Ω |= ∀β. φDG ⇒ φDW .

{τ}G ⊆ {τ}W

and
τ ∈ {τ}G(β) ⇒ τ ∈ {τ}W (β)

subsume(DG ,DW)

sim(DW) |= sim(DG), i.e.
Ω |= ∀β. φDG ⇐ φDW .

{τ}G ⊇ {τ}W

and
τ ∈ {τ}G(β) ⇐ τ ∈ {τ}W (β)

intersect(DG ,DW)
Ω |= ∃β. φDG ∧ φDW

∧¬(∀β. (φDG ⇒ φDW)
∨(φDG ⇐ φDW)).

{τ}G ∩ {τ}W 6= ∅
and there exists aβ such that
τ ∈ {τ}G(β) andτ ∈ {τ}W (β)

disjoint(DG ,DW)

Ω |= ¬∃β. φDG ∧ φDW .

{τ}G ∩ {τ}W = ∅ such that
there does not exists a

τ ∈ {τ}G andτ ∈ {τ}W

28 DERI TR 2006-10-20

A.2 Proof for Theorem 1: Simulation of Functional Description as FOL Structure

Proof. We need to show that clauses (i) and (ii) of Definition5 hold forD andsim(D). In essence, these
clauses require an equivalence relation between a Web serviceW |=A D and the models ofsim(D): for all
executionsτ(β) = (s0, . . . , sn) of W the corresponding interpretationIW (β) that simulates the termination
statesn must be a model ofsim(D), and vice versa. Let us consider a Web serviceW such thatW |=A D,
and three different input bindingsβ : (i1, . . . , in) → UA that cover all relevant cases:

(1) β1 |= φpre andβ1 |= φeff .
(2) β2 6|= φpre.
(3) β3 |= φpre andβ3 6|= φeff .

As clause (iii) of Definition6 is merely a symbol substitution, it holds that ifβ |= φpre then also
β |= [φpre]Σpre

D →ΣD
. In case (1), for allΣA-interpretationsIW (β1) = (UA, IW (β1)) it trivially holds that

IW (β1) |= sim(D). For τW (β1) = (s0, . . . , sn) as the execution ofW for β1, the meaning ofD is that
the termination statesn will be reached because ofω(s0) |= φpre (see Definition2). It trivially holds that
τW1(β1) ' IW (β1), asD andsim(D) are both defined overΣA and use the same precondition and effect
formula along with the substitution for dynamic symbols. Hence,D ' sim(D) is given for this case.

In case (2), for allIW (β2) = (UA, IW (β2)) it holds thatIW (β2) |= sim(D) becausefalse implies
anything. However, the definition ofD only allows to make a concrete statement about the execution of
W in the positive case, i.e. whenω(s0) |= φpre. As this is not given in this case, the termination state
sn of execution ofW for this input bindingτW (β2) = (s0, . . . , sn) can be any state – either such that
I1

τW
(β2) |= φeff or such thatI2

τW
(β2) 6|= φeff . This correlates with the possibilities forIW (β2) |= sim(D),

and for both possibilities, it trivially holds thatτW (β2) ' IW (β2). Hence, under the conceptual assumption
that a not satisfied precondition does not allow to make any concrete statement about the behavior of a Web
service,D ' sim(D) is given for this case as well.

In case (3), it unambiguously holds that for allIW (β3) = (UA, IW (β2)) holdsIW (β3) 6|= sim(D). The
definitionD requires that ifω(s0) |= φpre then the execution ofW results in a statesn with ω(sn) |= φpre.
However, this is only given ifD is modelled correctly: if there is an input binding such that the precondition
is satisfiable but the effect is not (or the other way around), then there can not be any Web service that
providesD. Adapting the notion of satisfiability in logic, [13] refer to this as therealizability of functional
descriptions. As there can not be any Web service that provides a not realizable functional description, there
cannot be anyτW (β3) so thatD ' sim(D) is given for this case as well.

This completes the proof.

DERI TR 2006-10-20 29

A.3 Proof for Theorem 2: Integrated Matchmaking for 2-Phased Web Service Discovery

Proof. We commence with the usability of a Web service for a goal instance under theintersectdegree.
This requires the complete matching on the goal instance level from Definition8.

The other matchmaking degrees that satisfy the basal matching condition in clause (i) of Definition1
denote specializations of theintersectas – due to their definitions in Section4.1 – it holds: ¬ disjoint⇒
intersect, intersect⇒ subsume, intersect⇒ plugin, andplugin∧ subsume⇒ exact. We further recall the
following definitions:βG is the input binding forDG that is defined inGI(G), andβW is the input binding
for DW that is used for invokingW and whose input values are semantically equivalent to the ones defined
in βG (cf Definition 7). [φD]β is the contextualized functional description obtained from substituting all
occurrences ofIF -variables by the value assignments inβ, and [φD]π] is a symbol renaming of theIF -
variables inφD (cf Definition8).

intersect(DG,DW) is defined asΩ |= ∃β. φDG ∧ φDW . So, there is at least oneτ1 ∈ ({τ}G ∩ {τ}W)
but there can also be aτ2 ∈ {τ}G but τ2 6∈ {τ}W as well as aτ3 ∈ {τ}W but τ3 6∈ {τ}G . For aτ
to be a solution for a goal instanceGI(G) that instantiates the goal templateG with βG such that thisτ
can be provided byW when invoked withβW , the τ needs to be in the intersection of{τ}G and{τ}W

under the input bindingβG and its compatible counterpartβW . If it there exists aΣ-interpretationI that
is a common model for the instantiated functional descriptions[φDG]βG and[φDW]βW

under the extended
domain knowledgeΩA, then thisI simulates aτ that is a solution forGI(G) and can be provided byW when
invoked withβW (cf Theorem1). If such a common model does not exists, then there does not exists any
τ ∈ ({τ}G(βG) ∩ {τ}W (βW)) (cf Definition8), and – because of¬match(G,W) ⇒ ¬match(GI(G),W) –
W is not usable for solvingGI(G) (cf Definition1). This shows clause (iv) of Theorem2.

We now show clause (iii). Thesubsume(DG,DW) degree is defined asΩ |= ∀β. φDG ⇐ φDW so that
{τ}G ⊇ {τ}W and forall input bindingsβ, if τ ∈ {τ}W (β) thenτ ∈ {τ}G(β) (cf Table3). If [φDW]βW

is not satisfied, then there does not exists any possible execution ofW for the input binding defined in
GI(G). If [φDW]βW

is satisfied, then, due to the degree definition〈1〉 also [φDG]βG is satisfied so that
{τ}W (βW) ⊆ {τ}G , and〈2〉 the provided functionality is instantiated with the same concrete input values as
defined inGI(G) such that the invocation ofW with βW will provide a solution forGI(G).

For clause (ii),plugin(DG,DW) is defined asΩ |= ∀β. φDG ⇒ φDW so that{τ}G ⊆ {τ}W and
τ ∈ {τ}G(β) ⇒ τ ∈ {τ}W (β) (cf Table3). Here,W is usable for every possible goal instanceGI(G) of
G because〈3〉 {τ}GI(G) ⊂ {τ}G ⊆ {τ}W and for each input binding ifτ ∈ {τ}G(β) thenτ ∈ {τ}W (β),
and〈4〉 via βW , W is invoked with the inputs defined inβG so that the execution will provide a solution
for GI(G). Hence, under theplugin degree we do not need to perform an additional matchmaking step for
determining the usability ofW for solving a goal instanceGI(G). As a specialization of theplugin degree,
theexact(DG,DW) degree is defined byΩ |= ∀β. φDG ⇔ φDW so that{τ}G = {τ}W . Hence,〈3〉 and〈4〉
also prove clause (i) of Theorem2.

Finally, it holds that clauses (i) - (iv) define all possible situations whereinW is usable for solving
GI(G), because by definition underdisjoint(DG,DW) there does not exists any execution ofW that can
satisfy any goal instance ofG (cf Table3), and¬match(G,W) ⇒ ¬match(GI(G),W) (cf Definition1).

This completes the proof.

