On the Semantics of Functional Descriptions of Web
Services

Uwe Keller, Holger Lausen, and Michael Stollberg

Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria
{firstname.lastname }@deri.org

Abstract. Functional descriptions are a central pillar of Semantic Web services.
Disregarding details on how to invoke and consume the service, they shall pro-
vide a black box description for determining the usability of a Web service for
some request or usage scenario with respect to the provided functionality. The
creation of sophisticated semantic matchmaking techniques as well as exposition
of their correctness requires clear and unambiguous semantics of functional de-
scriptions. As existing description frameworks like OWL-S and WSMO lack in
this respect, this paper presents so-callbdtract State Spaces a rich and lan-
guage independent model of Web services and the world they act in. This allows
giving a precise mathematical definition of the concept of Web Service and the
semantics of functional descriptions. Finally, we demonstrate the benefit of ap-
plying such a model by means of a concrete use caseseitmantic analysisf
functional descriptions which allows to detect certain (un)desired semantic prop-
erties of functional descriptions. As a side effect, semantic analysis based on our
formal model allows us to gain a formal understanding and insight in matching
of functional descriptions during Web service discovery.

1 Introduction

Enabling automated detection of Web services that adequately serve a given request or
usage scenario is a main objective of Semantic Web service technology. Therefore, the
functional description of a Web service specifies the provided functionality. Disregard-
ing detailed information on how to invoke and consume the Web service the purpose
of functional descriptions is to provide a black box descriptiomofmal runsof a

Web service, i.e. without regard to technical or communication related errors that might
occur during service usage.

In the most prominent overall description frameworks for Semantic Web services,
functional descriptions are essentiahate-base@dnd use at leagirestate and poststate
constraintsto characterize intended executions of a Web service. In OWL-S §i3},
vice Profilesencompass the functional description that is described by the in- and out-
put, and by preconditions and results. Their counterpart in WSMO [11Japabilities
that are defined by preconditions, assumptions, postconditions, and effects. However,
both models lack of clear and unambiguous semantics for functional descriptions [9].
This is essential for developing appropriate semantic matchmaking mechanisms for dis-
covery, or for proving the correctness of functional descriptions - in general for any sort
of symbolic computation based on functional descriptions in these frameworks.

With respect to this necessity, we present a rigorous formal model of Web ser-
vices and the world they act as the basis for clear semantic definitions of functional
descriptions. Addressing the most fine-grained perspective on Web services and their
functional descriptions as identified in previous work [7, 8] (namely, the level of rich
semantic descriptions) we aim at applicability of the presented modahyrsetting
wherestate-based functional descriptioage used, e.g. in frameworks like OWL-S and
WSMO. Since both dmot restrict themselves to articular language for describing
states (i.e. preconditions and postconditions), a formal definition that is usable for these
frameworks must be modular and independent of the language chosen for describing
state-conditions.

The contribution of this paper is as follows:

— we present so-calledbstract State Spaces a sufficiently rich, flexible, and lan-
guage independent model for describing Web services and the world they act in
(Sec. 2)

— based on the model we describe what a functional description actually is and prop-
erly specify their formal semantics (Sec. 2)

— we give concise, formal definitions of all concepts involved in our model (Sec. 3)

— we demonstrate the applicability of the introduced model by a specific use case: the
semantic analysis of functional descriptions (Sec. 4). In particular, we clearly define
desirable properties of functional descriptions like realizability and semantic refine-
ment and show how to determine these properties algorithmically based on existing
tools in a provably correct way. Hereby, we can reconstruct generalized versions of
results on matching between component specifications that are well-known in the
software component community [18], but (based on our formal model) get some
additional insights the relation between g@mantic notiorof refinement and the
syntactic criterionfor checking semantic matches, that have can not be discussed
in [18] (see [10] for a deeper discusson).

The Bigger Picture. The model presented in this paper can be considered as a small
first step towards a mathematical model $ervice-oriented architectureBased on a

more emcompassing and rich mathematical model, we will be able to give semantics
to formal descriptions of suddrchitecturesand (similarly to what we discussed for the
simple case of capabilities here) to reason about such descriptions in a well-understood
and verifiably correct way by extension and refinement of the presented basic model.
We expect that the presented model provides a suitable and flexible foundation for such
non-standard extensions.

Overview of the Solution.As a part of rich model description frameworks like OWL-

S and WSMO, functional descriptions of Web servigearesyntactic expressiorna

some specification language that is constructed from some (non-logical) signature
X7 . Each expressiof® ¢ F captures specific requirements on Web serviéeand

can be used to constrain the set of all Web services to some subset that is interesting
in a particular context. Hence, the set of Web servidéghat satisfy the functional
descriptionD (denoted byl =x D) can be considered as actual meanin@ofThis

way, we can define a naturalodel-theoretic semantider functional descriptions by
defining a satisfaction relatiga:» between Web services and functional descriptions.

In comparison to most common logics, our semantic structures (i.e interpretations that
are used to assign expressidns truth value) are simply a bit more complex. In fact,
they can be seen as generalizations of so-called Kripke structures [1, 17].

In general, various simpler syntactic elements are combined withing a functional
descriptionD € F. State-based frameworks as the ones mentioned above use at least
preconditions and postconditions. Wher&asefers to Web services, these conditions
refer to simpler semantic entities, namstates and thus in a sense to a “static” world.
Such state conditions are expressions in (static) languagever some signatur&~.

Single states determine how the world is perceived an external observer of the world
and thus the truth value of these conditions. Formally, we have a satisfaction relation
=, between states and state expressions wheres =, ¢ denotes that holds in
states. In essence, we can observe that on a syntactic level a langutngecapturing

static aspects of the world é&xtendedo a languageF that captures dynamic aspects of
the world.

In order to define a similar extension on a semantic levelextendthe definition
of the satisfactior=, (in £) to a definition of satisfactiof=# (in F). This way, our
definition is highly modular, language-independent to a maximum extent and focuses
on the description of dynamics (i.e. possilstate transitiony as the central aspect
that the functional description languagéadds on top of state description language
L. It can be applied to various languageésn the very same way as it only requires a
model-theoretic semantics for the static languAdgevhich almost all commonly used
logics provide). Furthermore, our model-theoretic approach coincides to the common
understanding of functional descriptions todeelarativedescriptionsvhatis provided
rather tharhowthe functionality is achieved.

2 Towards a Model of Web Services

The following introducesAbstract State Spacess a flexible approach for defining a
rigorous, formal model of Web services, the world they act in, and the meaning of func-
tional descriptions. While introducing the model informally in the following, mathe-
matically concise definitions are given in Section 3.

A changing world. We consider the world as an entity that changes over time. Enti-
ties that act in the world (which can be anything from a human user to some computer
program) can affect how the world is perceived by themselves or other entities at some
specific moment. At each point in time, the world is in one particular state that deter-
mines how the world is perceived by the entities acting therein. We need to consider
some language for describing the properties of the world in a state. In the following we
assume amrbitrary (but fixed) signature’ (that usually is based on domain ontolo-
gies), and some languag¥) derived from the signature.

We use classical First-order Logic for illustration purposes in the following, how-
ever we stress that we are by no means bound to this specific language, i.e. other lan-
guages such as WSML or OWL can easily be used instead in our framework. Consider
a signatureX’ D {isAccount(-),balance(-),>,0,1,2,...} that allows to talk about

bank accounts and their balance. ThéQY') allows comparing the respective values,

for instance by expressions lik&x.(isAccount(?x) = balance(?xz) > 0) stating

that the balance of any account needs to be non-negative. In the context of dynamics
and properties of the world that change, it is useful to distinguish between symbols in
X’ that are supposed to have always the same, fixed meaning>(e)y.and thus can

not be affected by any entity that acts in the world, and symbols that can be affected and
thus can change their meaning during the execution a Web Services(éwgount(-),
balance(-)). We refer to the former class of symbols $tatic symbolgdenoted by>'s)

and the latter bgynamic symbol&enoted byY'p).

Abstract State SpacesWe consider an abstract state sp&ce represent all possi-
ble statess of the world. Each state € S completely determines how the world is
perceived by each entity acting & Each statement € £(X) of an entity about the
(current state of) the world is either true or false. Thus, a stateS in factdefinesan
interpretatioriZ (of some signature’). However, not all¥-Interpretationg represent
senseful observations sin€amight not respect some “laws” that the woddunderlies,
e.g. that the balance of any bank account is not allowed to be negative. In the follow-
ing, we assume that these laws are captured by a background onfalogg (X) and
denote the set of-Interpretations that respef (i.e. the models of?) by Modx (12).
Considering our example signature from above and a background ont6logith
{V?x.(isAccount(?x) = balance(?x) > 0),isAccount(acey), isAccount(accs)} C
{2, the following interpretation denotes a stéte balance(acc;) = 10. In contrast,
the interpretatio : balance(accy) = —40 does not denote a statedh(wrt. (2).

Changing the World. By means of well-defined change operations, entities can affect
the world and modify their current state. Such operations denote state transitfors in
our setting, these change operations are single conexetation®f Web servicesV.
Following [8, 7], a change operation is represented l3gmviceS that is accessed via
a Web servicdV. S is achieved by executing” with some given inputdata, . .., i,
that specify (for a service providemhatkind of particularserviceS accessible vidal
is requested by the client, i.8.~ W (iy,. .., iy,).

Given input data,, . . ., i,, the execution of a Web servid& essentially causes a
state transition in S, transforming the current state of the wosld S into a new state
s’ € S. However, a transitiom will in general not be aatomic transitionr = (s, s’) €
S x S but a sequence = (sg,...,s,) € ST, wheresy = s, s, = s andn > 1.
In every intermediate statg in 7 some effect can already be perceived by an enitity.
This is especially relevant for Web services that allow accessing long lasting activities
that involve multiple conversation steps between the requester and the Web &grvice
If we consider e.g. some international bank transfer having as concrete input data the
information to transfer M from accs to acc; the web service execution might involve
the following intermediate state between. ands,; :

Spre : balance(acer) = 10 A balance(accz) = 100
s1 : balance(acer) = 10 A balance(accz) = 80

Spost : balance(acecr) = 30 A balance(accz) = 80

Outputs as Changes of an Information SpaceDuring the executio®V (iy, ..., i,)

of a Web servicedV, W can send some information as output to the requester. We
consider these outputs as updates of the so-caifedmation spacef the requester

of a serviceS. More precisely, we consider thaformation spaceof some service
requester as a séf5 C U of objects from some univerdé. Every objecth € 1.S has

been received by the requester fré¥hduring the executiofl’ (i1, . .., i,). During the
execution the information space itself evolves: starting with the empty set when the Web
service is invoked the execution leads to a monotonic sequence of information spaces
=15, C IS, C...C IS,.Within our bank transfer example, during some financial
transactiortid891 we might first receive a message acknowledgmesnfid23 and then

a confirmation that the transaction has been approved and initialized:

1S, ={ack(20051202, msgid23, tid891)}
1S; ={ack(20051202, msgid23, tid891), con firm(acc1, acca, 20, tid891)}

Observations in Abstract States.Our aim is to describall the effects of Web ser-

vice executions for a requester. Obviously, a requester can observe in everystéte
world-related properties represented by statemgmtsC(X) that hold ins. However,
additionally there might be other aspects that an observer of the world can perceive in
an abstract state In our model, this includes at least the information spateC U
described above. Thus, an abstract stateS in a sense ,,corresponds”atl observa-
tions(relevant for the uses of our formal model) that can be madekor our purpose

here, this means all pairs af-interpretation¥ € Mody (£2) and (possible) informa-

tion spaced S C U. Consequently, we represent the observations related to & $tate

an observation functiow : S — Modyx;(£2) x P(U) that assigns every statec S a

pair (Z, 1S) of a X-interpretatiorf (respecting the domain law8) and an information
spacelS. We denote the first component @f s) by w;.,(s) (real-world properties

how an entity perceives the world) and the second componeutdy) (information

space how the invoker perceives the information space). However, we require the ob-
servation functionw to be a (fixed) total function as is caot be arbitrary. This means

that the observations(s) of any entity are well-defined ieveryabstract state. More-

over, any perception representable in term&£QF) andU that is consistent with the
domain model? should actually corresponds to some abstract stateS by means of

w, So thatw is surjectivé. By considering abstract statesatsstractobjects without a
predefined or fixed structure, and the separated assignement of a formal structure rep-
resenting the actual observations that can be made in a state (by meaysvefare

able to address extensions of our model that might be needed in future extensions in a
clean and modular way (e.g. when formally describing conversations between a group
of agents in the world). Moreover, we can easily include representation of contextual
aspects [3] in our model (e.g. that a stais observed differently by various agents).

Web Service Executions.Given some input,...,i,, the Web service execution

! However, since we assume a fixed signatiirend thus a limited language for describing
observations about the world, we do not assumedhiatinjective, i.e. there could be distinct
statess, s’ of the world which camot be distinguished by the (limited) languag¢y), i.e.
Wrw (8) = Wrw(8').

W(i1,...,in) = (so,---,8m) Starting in states, induces a sequence of observa-
tions (w(sg), . ..,w(sm)) which can be made by the service requester during the ex-
ecution. However, not all such sequeneesf abstract states actually do represent a
meaningful state-transition caused by an executioWofFor r to faithfully represent
someW (i1, ...,) We need to require at least that for any two adjacent statésn

W (i1, .. .,1,) SOome change can be observed by the invoker, and that objects which are
in the information space (i.e. have been received by the invoker) at some point in time
during the execution can not disappear until the execution is completed. As discussed
later, in general we need to require some further constraints on a sequsuack that

we can interpret as a possible rufV (4, ...,4,) of a Web servicdV. We call sy

the pre-state of the executios),, the post-state of the execution, and all other states in
W (i, ..., i,) intermediate states.

Web Services A Web servicel’ then can be seen as a set of executiéf(s,, . . ., i)

that can be delivered by the Web service in any given state of the world to a requester
when being equipped with any kind of valid input dafa. . . , i,,. However, in order to

keep track of the input data that caused a specific execution, we need to represent a Web
service in terms of a slightly richer structure than a set, namely a mapping between the
provided input values,, . ..,i, and the resulting executioW (i1, ...,,). Figure 1
illustrates the proposed model.

~

Information

Space u_“is

s

w :
/ State of

the world Wy

) Abstract State Space

e o Web Service W Q@

Fig. 1. An abstract Model of the World and Web services therein.

Functional Description of Web ServicesCombining state-related descriptions with a
functional description (or capability) essentially creates a constraint on possible Web
Service executions. Executions of a Web seniitewhose capability has been de-
scribed in terms of a capability descripti@h(whereD contains a prestate-constraint
P and a post-state constraipit°st) can no longer be arbitrary possible executions

in an abstract state space but whenever the prestatg of = respectsp?”c then the

final states,, of 7 must respecp”°st. Otherwise,r is not considered to represent an
actual execution of a Web servi€E with capabilityD.

3 Abstract State Spaces and Web Services

We will now give a series of definitions which capture the preceding semi-formal dis-
cussion in a rigorous way.

In the following, letX’ be some signature;(X) be some logic over signatute
and{? C L£(X) be some background theory capturing relevant domain knowledge. Let
$(X) denote the set oE-interpretations inC(X) and (X, i) denote the set of-
interpretations such that for dll € J(X) the universe considered if (denoted by
universe(Z)) is a subset of{. For a seUU we useP(U) to denote the powerset 6f.
Let Modx(£2,U) denote theX-Interpretation € (X,) which satisfy the domain
model(? (i.e.Z =, (s £2). We denote the meaning of a symhok X' that is assigned
by an interpretatio by meaningz(«).

Given a signaturey, = Y'p U Xg that is partitioned into a se¥'p of dynamic
symbols and a sels of static symbols, we exten#l to a signatureX’ by adding
a (new) symboky,,. for eacha € X'p. The set of these pre-variants of symbols is
denoted by?¢. Furthermore, add a new symbait to . The intention is as follows:
Xs contains symbols that are interpreted always in the same way (static symbols),
X'p contains symbols whose interpretation can change during the execution of a Web
service (dynamic symbols), and?)“ contains symbols that are interpreted during the
execution of a Web service as they have been right before starting the execution. Finally,
out denotes the objects in the information space. The symbols that have been added to
Yo can be used when formulating post-state constraints to describe changes between
pre-states and post-states in a precise way.

Definition 1 (Abstract State Space)An abstract state spacd = (S,U, X, 2,w) is a 5-
tuple such that (i}S is a non-empty set @bstract stateg(ii) 2/ is some non-empty set of objects
called theuniverseof A (jii) 2 C L(X) is consistent (ivlv : S — Modx=(2,U) x P(U)
is a total surjective function that assigns to every abstract staepair of a X-interpretation
wrw (8) satisfyings2 and an information space;;(s) and (v) for alls, s’ € S anda € Xs :
meaning.,., (s) (o) = meaning,,,., sy (). O

In A, {2 can be considered as a domain ontology representing (consistent) back-
ground knowledge about the world. It is used in any sort of descriptions, like precondi-
tions etc. Clause (v) captures the nature of static symbols. In the followliragways
denotes an abstract state space (S, U, X, 2,w).

For interacting with a Web servid&’, a client can use a technical interface. When
abstracting from the technical details, every such interface basically provides a set of
values as input data. The required input data represent the abstract interface used for
interaction with the Web service from a capability point of view.

Definition 2 (Web Service Capability Interface, Input Binding). A Web service capa-
bility interface IF of a Web servicéV is a finite sequences of nam@s, . . . , i) of all required
input values of &V. Aninput binding 5 for a Web service capability interfacE” in A is a
total functions : {i1,...,in} — U. The set of all input bindings fafF' in A is denoted by
Ina(IF). O

An input binding essentially represents the input that is provided by the invoker of
a Web servicéV during theentire execution ofiV.

Definition 3 (Web Service Execution).A (possible)Web service executiom A is finite
sequences = (so,...,sm) € ST of abstract states such that for all < j < m and
0 < i,k < m() wisj) # w(sjtr), (i) 0 = wis(s0) C wis(s1) C ... C wis(sm), (iii)
universe(wry(8:)) = universe(wrw(sk)), (IV) wis(si) C universe(wrw(s:)), (v) for all
a € Xp 1 meaning,,., (so) (@) = meaning,,., (s,)(qpre) and (Viymeaning,,,.,, (s, (out) =
wis(si). We denote the set of all possible Web service executioAbinExec(A). O

This definition gives detailed conditions under which a sequencan be considered

as a Web service execution. Clause (iii) requires that within an execution the universes
which are related to abstract statgsare the sante In other words, universes (which

are used to interpret state-based expression) that are related by an execution are not
arbitrary, but specifically related to each other. In particular, (iii) ensures that within
a functional descriptiorD postconditions can talk aboavery objecthat the precon-

dition can refer to as well. Hence, precise comparisons between various states of an
execution becomes possible. Clause (iv) requires that for every abstract state that in-
volved in the execution its information space is part of the universe of the abstract state.
This allows to relate and compare information space objects with real-world objects
in state-based expressions. Finally, clauses (v) and (vi) ensure that in all intermediate
and final states, the pre-versiams.. of dynamic symbolsy are interpreted as in the
prestates, of the execution and that the symlaaft represent the respective information
space.

Definition 4 (Web Service, Web Service Implementation)A Web service implemen-
tation W of some Web service capability interfat® = (i1,...,i,) in A is a total function

¢ : Ina(IF) x § — Ezec(A) that defines for all accepted input bindingslin 4 (IF') and ab-
stract states € S the respective Web service executiofofn Ezec(.A). Formally, we require
for . that«(3,s) = (so,...,sm) impliessg = sforall s € S,8 € Ina(IF). AWeb service
W = (IF,.) is a pair of a Web service capability interfa¢€’ and a corresponding Web service
implementation of IF. d

One can consider the mappings a marking of execution sequencesdiy the
input data that triggers the execution. Since we define a Web service implementation
in terms of a function which maps to single Web service executions, we cornsder
terministicWeb services, i.e the execution is fully determined by the input binding
and the intial state, only. Any sort of uncertainty about what is going to happen when
executinglV (e.g. unexpected failures due to the environment the Web service is em-
bedded in) is not considered in our model. In being a total functiofiropn(IF) x S,
the definition reflects the fact thatepresents an (abstragt)plementationi.e. (unlike
for specifications) every possible effect in every situaticiuily determinedy ..

Based on this formal machinery, we can now formalize the meaning of functional
descriptionsD € F that are based on a state-description langua@®). In the fol-
lowing, we writeZ, 3 =, (s) ¢ to express that formula € L(Y) is satisfied under
X-interpretatioriZ and variable assignmefit We assume that a functional description
D = (¢Pre, pPost [Fp) consists of a preconditiopP™ € £(Xy), and a postcondition

2n order to model dynamic universes (e.g. object creation and deletion) one needs to model
object existence in the state-description languégéself, for instance by a dynamic unary
relationexisting

¢Post € L(X). IFp C FreeVars(¢P™, ¢P°%?) denotes the set of (free) variable names
in D which represent inputs for the Web service under consideration. The logical ex-
pressiong?"¢ and$Pst usually refer to some backgound ontolaGyC £(X).

Definition 5 (Extension of an Input Binding, Renaming). Let 3 be an input binding
for some Web service capability interfaé€ = (i1,...,7,), V be a set of symbol names and
U C U. Atotal function3’ : {i1,...,in} UV — U is called aV-extension of3 in U if
B'(i;) = B(i;) forall 1 < j < n.

Let7 be some function and an input binding for/F. Then we denote byename-(3) the
input bindinga’ for IF”’ that is derived frons by replacing all pairs(n, v) € B withn € dom(r)
by (7(n),v). We callrename(3) renaming of 3 by . O

An extension of an input binding is used in the next definition to ensure that
every variable that occurs free in a precondition or postcondition can be assigned a
concrete value. Otherwise, no truth-value can be determined for these statements. The
renaming represents on a technical level the effect of renaming input names in a Web
service interface by the corresponding names in the interface used in the Web service
description.

Definition 6 (Capability Satisfaction, Capability Model). LetW = (IF,.) be a Web
service inA andD = (¢*"¢, ¢*°*, IFp) be a functional description of a Web service. Let
FV denote the set of free variables ¢ and *°** and U denoteuniverse(wy(s0)). W
satisfies capabilityD in A if and only if (i) there exists a subséf’ C IFp of the inputs of
D and a bijection7 : IF — IF’ betweenlF and IF’ such that (ii) for all input bindings
B € Ina(IF) and abstract states € S: for all FV-extensions? of renamex(8) in U: if
t(B,s) = (s0,...,sm)for somem > 0 andw,w(s0), 8’ () ¢77° thenwrw (sm), 8" Eris)
d)post

In this case we writél” = D and call the Web servicd” a capability model(or simply model)
of Din A. O

Clause (i) essentially requires (interface) compatibility between the Web service and
the inputs refered to in Web service description. Note, that we do not require syntactic
equality between these names, but only equivalence up to some renanhilogeover,
it is perfectly fine for models oD to only use a proper subséf’ of the inputsIFp
mentioned in capabilityD. Clause (ii) defines the meaning of preconditions and post-
condition. Please note, that free variables in these expressions are implicitly universally
quantified by our definition.

4 Applying the formal Model for Semantic Analysis

For demonstrating the suitability of the proposed model, this section shows its benefi-
cial application for semantic analysis of functional descriptions Based on our model-

theoretic framework, we can carry over several semantic standard notions from mathe-
matical logic [2, 4] that refer to formal descriptions and are based omtuaelnotion

to our particular context in a meaningful way. For a deeper and extended discussion of
the topic, we refer the interested reader to [10].

Realizability. We definerealizability of a descriptiorD as the corresponding notion to

satisfiability in a logicL: A functional descriptiorD is realizable in an abstract state
spaceA iff. there is a Web servic® in A that satisfieD, i.e. W =z D.

Consider the following functional descriptidd = (P, ¢P°t, [Fp) describing
Web services for account withdrawlsf'p = {?acc, 7amt}

¢ :amt > 0 "+ balance(?acc) = balanceyre(?acc)—?amt

At a first glance, the given description seems to be implementable within some Web
serviceW that satisfiesD. However, taking a closer look at the respective domain
ontology it becomes obvious that this actually is not the case. The ontology defines
that a balance might not be negative, but the precondition does not prevent the balance
being less then the withdraw. Let's assume that there is a Web séWiaalizingD.

When considering an input binding with G(?amt) > balance,..(?acc), then the
precondition is satisfied and thus the postcondition should hold in the final state of the
respective execution, i.€y.,(s,), 8 |E V?acc.balance(?acc) < 0. However, this is
inconsistent with the domain ontology sinfel= balance(?acc) > 0 and thuss,, can

not exist inA. This is a contradiction and shows that no Web serliceith W |=» D

can exist. To fix the description such that it becomes realizable, we need to extend the
precondition tapP™¢ : 0 <?amt A ?amt < balance(?acc).

The example illustrates the usefulness of the notion of realizability. It provides a
tool for detecting functional descriptions that contain flaws that might not be obvious
to the modelers. Moreover, we as we will see soon, we can often rephrase the problem
of realizability of a descriptio® € F to a well-understood problem ifi for which al-
gorithms already exist. We first turn to an important other notion of which realizability
turns out to be a special case (in conformance as with the original notions in mathemat-
ical logic).

Functional Refinement.The notion of logical entailment is usually defined as follows:
An formula ¢ logically entails a formulap iff every interpretatior? which is a models
of ¢ (i.e.Z =, ¢) is also a model ofp. Substituting interpretations by Web services,
formulae by functional descriptions and the satisfaction by capability satisfaction
=~ we derive a criteria that capturésctional refinementLet Dy, D, € F be func-
tional descriptionsD; is a functional refinement of D in A (denoted byD; T Ds)

iff. for each Web servicdV in A, W =z D; impliesW = Ds. Intuitively speak-
ing, D; C D, means thaD; is more specific tha®,: Every Web service (no matter
which one) that provide®; can also provideD,. In other words;D; must describe
some piece of functionality that always fits the requireméntsis well. However, Web
services that provid®, do not have to satisf§p; and therefore, a Web service that
providesD; can do something more specific than required’y

For illustration, consider some Web service descripidan= (42", 4% 1 F)
with TF, = {?prs, 7acc} that advertises the ability to provide access credentials for
a particular web sitekttp : //theSolution.com). A domain ontology specifies that if
some web site has some content and someone can access the web site, then he (is able to)
know about the content. Furthermotgip://theSolution.com is a web site providing
the ultimate answer to life (the universe and everything) and some constart F'ee

has a value less then 42.

@7 :account(?p, Tace) A balance(?ace) > accessFee
@ :balance(?acc) = balanceyre(Tacc) — accessFee
A out(password(?prs, http;//theSolution.com))
A isValid(password(?prs, http://theSolution.com))
2 EV?ws, Tco, Tprs. content(Tws, 7co) A access(?prs, Tws) = knows(?prs, 7co)
content(hitpy//theSolution.com, answer2Life), accessFee < 42

V?prs, tws. isValid(password(?prs, Tws)) = access(?prs, Tws))

Using our formal definition we now can examine another definiflgn= (¢4,
¢b°%t 1 Fy) with TFy, = {?prs, 7acc} and check if it is a functional refinement of the
previous description.

&5 + account(?prs, Tacc) A balance(Tacc) > 100 ¢h%*" :knows(?prs, answer2Life)

This notion can beneficially be applied within functionality-based matchmaking. For
instance, let’'s assume that a Persenis seeking for the ultimate answer to life
(knows(me, answer2Life)); me has an accounicc123 with a current balance of

174 USD. Given this information (and our domain ontology and considering the
specific input bindings(?prs) = me, 3(?acc) = accl23, we can infer that any Web
servicelV that is advertised to provide capabili, can serve forne’s purpose as the
preconditiong™ is satisfied for the inpuB. In consequence, for the specific ingiit

the service delivers what is described the postconditisii’; therefrom, we can infer
knows(me, answer2Li fe). However, sincédd; C D, we know as well, that any Web
serviceW’ that is advertised to provide capabilify; is perfectly suitable fofne and

his endeavor as well. The notion of functional refinement can then be used to pre-index
some set of Web service description, such that for a given request it is not necessary to
consider all available description but only a subset identified by the pre-indexing.

Our framework allows to proof the following theorem (see [10]) , which is espe-
cially useful for reducing the problem of determining functional refinement (and even-
tually all other semantic analysis notions we discuss in this section) to a well-defined
proof obligation in the languagé underlyingF.

Theorem 1 (Reduction of Functional Refinement fromF to £). LetD; = (¢, $2°% IF1)
andDs = (¢5™°, ¢5°*", IF>) be functional descriptions iff with the same interfaces, .8, =
IF,. Let [(;S]E%reﬁ% denote the formula’ which can be derived from by replacing any
dynamic symbak € X'p by its corresponding pre-variani,,. € X% . ThenD; Cr D; if
22U [Q]zgfﬂzD =5 ([¢gre]2§@H2D A [Qﬁwe]zgeazD A @Ot = ¢ho%) g

This gives us the following: If there is an algorithm or an implemented system
that allows us to determine logical entailment4n then we can use the very same

3 Note that we do not expect such knowledge in one central domain ontology, but a number
of knowledge bases (generic, provider- and requester-specific). For simplicity we a&sume
being already aggregated

system or algorithm to determine functional refinement for descriptions of the capability
languageF, i.e. in principle no new calculus for dealing with is needed (at least
for the purpose semantic analysis). However, the algorithm which can be derived from
Theorem 1 is no longer a heuristic, lprovably correctFor further discussion, variants
and generailzations of the theorem, we refer to [10].

To be able to formulate the next corollary (which is an immediate consequence
of the definition of realizability and functional refinement), we us€” to denote a
descriptionD € F that is trivially unrealizable, i.eD = (true, false, I'F).

Corollary 1 (Realizability vs. Refinement).A functional descriptiorD = ("¢, ¢*°¢, IF') is
not realizable iff D = L O

The corollary simply states that any description which is more specific than the
trivially unrealizable functional description must be unrealizable as well. In the light
of Theorem 1, it shows that we can reduce realizability>ofo a well-defined proof
obligation in£ as well. Hence we can deal with realizability algorithmically based on
existing tools.

Omnipotence. For any functional descriptio® we can consider the dual notion of
being not realizable at all, i.e. having every Web servicen A as a model. This no-
tion corresponds to the classical notion of validity and obviously represents another
form of ill-defined or unacceptable type of description. It matches all possible Web ser-
vices, no matter what they actually do. Service providers could use such (non-trivially)
omnipotent descriptions to advertise their Web services in some registry to get maximal
visibility. A trivially omnipotent functional description itF is T/ = (true, true, IF).

As an immediate consequence we can derive the following corollary which shows
that we can reduce omnipotence®fto a well-defined proof obligation it as well
and thus deal with it algorithmically based on existing tools:

Corollary 2 (Omnipotence vs. Refinement)A functional descriptiorD = (¢*"¢, $*°5¢, IF)
is omnipotent iff. T/ C D a

The corollary simply states that any description which is more general than the triv-
ially omnipotent functional description must be omnipotent as well.

Summary. Semantic analysis can be seen as both, (i) a concrete example of symbolic
computation with functional descriptions that we can formally ground in our formal
model, and (ii) as a problem that is interesting in itself. Using our model, we are able to
rigorously define various useful notions that enable us to analyze and relate functional
descriptions semantically. We have shown that we can reduce the various relevant no-
tions to well-defined proof obligations in the underlying langu@geithout making
severe restrictions or assumptions on that language. Using our framework, we are able
to proof the correctness of the reduction. Given the a wealth of different languages that
co-exist on the Semantic Web (and the ones that might still be invented), our uniform
treatment provides a universal approach to the semantics of functional description in-
dependent of the language used.

5 Related Work

By defining the semantics of functional description we provide a basis for applications
like semantic Web service repositories and discovery engines (as illustrated in the use
case for our formalism and the corresponding examples). Work in this area has previ-
ously leveraged a different (less detailed) formal view on the concept of a Web Service:
Web services there have been formally consideresets of objectginput, outputs).

On a description (language) these sets allow for a natural representation by means of
concepts in Description Logics. Matching then has been reduced to standard reason-
ing tasks in the language [15, 12], however the dynamics associated with a detailed
(state-based) perspective on Web services, can not be represented in such a setting. Un-
til recently, it seemed to be a common practice in the Semantic Web Community when
considering semantic descriptions of Web service, to strictly focus on languages (e.g.
description logics) rather than an adequate (language-independent) mathematical model
of the objects of invest igation that underlies such descriptions. The latter question is
conceptually interesting and compatible with various concrete representation languages
such as Description Logics, First-order Logics, etc. as we have demonstrated in this pa-
per.

In the area of software specification, functional descriptions of are a well studied
phenomena. Hoare [5] introduced the approach describing a component by its pre- and
post-conditions. Numerous systems have been developed since then [14, 6, 16] that fol-
low the same line of description. They have significant commonalities with our frame-
work, such as constructs for identifying inputs and outputs as well as means to reference
symbols in pre-state formulae from the post-state. However our framework is different
in two dimensions: (1) we do not fix the underlying language and therefore address the
current situation in the Semantic Web with various different languages used in various
formalisms, and (2) we explicitly take the existence of background knowledge (repre-
sented by some Ontology) and the notion of side effect in the real world modelled
into account. In particular, Theorem 1 in Section 4, represents a generalization of a
well-known criterion proposed in the software component community for specification
matching [18]. TheGuarded Plugin Matchdefined by

matchguardea—pm(D1, D2) = (857 = $17) A (@17 A @77 = ¢5°")

is the equivalent to the necessary condition presented in Theorem 1. However, [18]
covers a much simpler scenario, where specifications do not catytaamicfunctions.
Futhermore, our criterion explicitly deals with a background ontol&ggn which the
functional description®, Dy are based. In contrast to our work (i.e. Theorem 1), [18]
gives no formal investigation of how the criterion call@darded Plugin Matclactually
relates to theemantic notiomf functional refinement, which is to be detected by means
of a well-defined proof obligation.

6 Conclusions and Future Work

We have defined Abstract State Spaces as a formal model for appropriately describing
how Web services act in the world and change it. The main features of the proposed

model are: (i) language independence to a maximum extent, and (ii) modular and flexi-
ble definitions that can easily be extended to fit the needs for specific applications.

Language independence, in particular, means that our approach is applicable to a vari-
ety of static description language (capturing properties of single states). Thus, it is espe-
cially suitable for application in frameworks like OWL-S and WSMO that describe the
functionality provided by Web services in a state-based manner. On basis of our model,
we have rigorously defined the semantics of functional descriptions. We demonstrated
the applicability and benefit of our model in terms of a concrete use case, namely the se-
mantic analysis of functional descriptions. Therein, we have illustrated how to capture
several interesting and naturally arising properties of functional descriptions, in par-
ticular functional refinemenand realizability. We have given mathematically concise
definitions and exemplified how to device a provably correct algorithm for semantic
analysis based on existing algorithms and systems. The use case followed throughout
the explications supports our thesis: the correctness of any sort of symbolic computa-
tion based on functional descriptions of Web services can be analyzed and exposed in
our framework.

While this paper presents the basic model, we plan to apply it to frameworks like
WSMO and OWL-S that strive for genericity and independence of specific static lan-
guages for state descriptions. In particular, we plan to develop a matching mechanism
following the defined notion of functional refinement in order to provide a component
with clear defined functionality for functional Web service discovery. Furthermore, we
consider several extensions of the model, namely integratkegution invariantas
properties that are guaranteed not to change during execution of a Web service (see [10]
for details), the distinction between complete and incomplete functional description (i.e.
some sort of closed-world modelling), as well as integrating behavioral descriptions
like choreography and orchestration interfaces that are concerned with the intermediate
states in order to consume, respectively achieve the functionality of a Web service.

The model presented in this paper can be considered as a first small first step towards an
adequate mathematical model for service-oriented architectures. For this, one needs to
consider and represent a lot more aspects of the world and its states e.g. multiple agents
interacting in a distributed setting and communicating with each other in a concurrent
fashion and integrate respective elements in the mathematical model. We expect that the
presented model provides a flexible and extensible foundation for such non-standard
extensions. Based on a concise and rich model, we will be able to give semantics to
formal descriptions of suchrchitecturesand (similarly to what we discussed for the
simple case of capabilities here) to reason about such descriptions in a well-understood
and verifiably correct way by extension and refinement of the presented basic model.

AcknowledgementsThis material is based upon works supported by the EU within the Knowl-
edge Web Network of Excellence (FP6-507482), the DIP project (FP6-507483), and by the
Austrian Federal Ministry for Transport, Innovation, and Technology under the prigjétt

(FFG 809250). The authors would like to thank the members of the WSMO working group
(www.wsmo.org) for fruitful input and discussion to the presented work.

References

N

10.

11.

12.

13.

14.
15.

16.

17.

18.

P. Blackburn, M. de Rijke, and Y. Venemdodal Logic Cambridge University Press, 2001.
H. B. Enderton. A Mathematical Introduction to Logic Academic Press, second edition
edition, 2000.

. G. F. and B. P. Introduction to Contextual Reasoning. An Artificial Intelligence Perspective.

Technical report, ITC-IRST, Technical Report #9705-19, May 1997.

. M. Fitting. First-Order Logic and Automated Theorem Provin§pringer-Verlag, second

edition edition, 1996.

. C. A. R. Hoare. An axiomatic basis for computer programming.ommun. ACM

12(10):576-580, 1969.

. C. B. Jones.Systematic Software Development using VVDiRtentice-Hall, Upper Saddle

River, NJ 07458, USA, 1990.

. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.

In Proceedings of 2nd European Semantic Web Conference (E®ag&s 1-16, 2005.

. U. Keller and R. Lara (eds.). WSMO Web Service Discovery. Deliverable D5.1v0.1 Nov 12

2004, WSML Working Group. online: http://www.wsmo.org/TR/.

. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of WSMO and

OWL-S. InProc. of the 2nd European Conference on Web ServRE&4.

H. Lausen. Functional Description of Web Services. Deliverable D28.1v0.1 Jan 13 2006,
WSML Working Group, 2006. online: http://www.wsmo.org/TR/.

H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling On-
tology (WSMO). W3C Member Submission 3 June 2005, 2005. online:
http://www.w3.org/Submission/WSMO/.

L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. I'WWW’'03 Budapest, Hungary, May 2003.

D. Martin (ed.). OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November 2004, 2004. online: http://mww.w3.org/Submission/OWL-S.

B. Meyer.Eiffel: the LanguagePrentice Hall PTR, 1992.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Service
Capabilities. INSWGC pages 333-347. Springer Verlag, 2002.

J. Spivey.The Z Notation, A Reference Manu#rentice-Hall International, second edition
edition, 1992.

J. van BenthemHandbook of logic in artificial intelligence and logic programming: epis-
temic and temporal reasoningolume 4, chapter Temporal logic, pages 241-350. Oxford
University Press, Oxford, UK, 1995.

A. M. Zaremski and J. M. Wing. Specification matching of software componeX@v
Transactions on Software Engineering and Methodaol6g¥):333-369, 1997.

