
Two-phase Web Service Discovery based on Rich
Functional Descriptions

Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans

Digital Enterprise Research Institute Innsbruck (DERI Austria),
Institute for Computer Science, University of Innsbruck,

Technikerstrasse 21a, A-6020 Innsbruck, Austria
Email:{firstname.lastname}@deri.org

Abstract. Discovery is a central reasoning task in service-oriented architectures,
concerned with detecting Web services that are usable for solving a given request.
This paper presents two extensions in continuation of previous works towards
goal-based Web service discovery with sophisticated semantic matchmaking. At
first, we distinguish goal templates as generic objective descriptions and goal in-
stances that denote concrete requests as an instantiation of a goal template. Sec-
ondly, we formally describe requested and provided functionalities on the level
of state transitions that denote executions of Web services, respectively solutions
for goals. Upon this, we specify a two-phase discovery procedure along with se-
mantic matchmaking techniques that allow to accurately determine the usability
of a Web service. The techniques are defined in the Abstract State Space model
that supports several languages for describing Web services.

1 Introduction

Discovery is concerned with detecting usable Web services for solving a given request.
This is the first central reasoning task in the context of Semantic Web services, followed
by contracting and behavioral conformance tests [17]. Several research works present
discovery techniques by semantic matchmaking of requested and provided function-
alities, e.g. [16,13,2,7,11]. However, due to deficiencies in the expressiveness and the
formal semantics of functional descriptions most existing approaches lack in the achiev-
able quality of the matchmaking results for Web service discovery.

In this respect, we present the advancements towards a goal-based approach for
semantically enabled Web service discovery with sophisticated matchmaking. Initially
presented in [9], the requester and the provider perspective are separated by formally
describing client objectives as goals; a Web service is understood to provide access to
several services by its invocation with concrete input values. We extend this approach
by differentiating two notions of goals. Agoal templateis a generic objective descrip-
tion that is defined at design time, and agoal instancedenotes a concrete client request
that is created at runtime by instantiating a goal template with concrete input values.
Apart from better supporting goal formulation by clients, this allows to realize an ef-
ficient two-phase Web service discovery. Usable Web services for goal templates are
determined at design time and kept in the system. At runtime, the discovery for goal

instances only needs to investigate those Web services that are usable for the corre-
sponding goal template, so that the number of matchmaking operations necessary at
runtime can be reduced. This paper specifies the semantic matchmaking techniques for
this framework.

In order to properly describe provided and requested functionalities, we consider a
state-based model of the world. Therein, a particular execution of a Web service denotes
a sequence of state transitions; such a sequence is also a solution for a goal if the client
objective is solved in the end-state. The functionality provided by a Web service is a set
of all its possible executions, and a goal template as well as a goal instance describes a
set of possible solutions. We formally describe possible executions and solutions with
respect to the start- and end-states inAbstract State Spaces, a language independent
model that defines precise formal semantics for such functional descriptions [10].

On top of this, we specify semantic matchmaking techniques that allow to precisely
determine the usability of a Web service for solving a goal. In particular, we (1) revise
the definition of previously identified matching degrees and use these to differentiate the
usability of a Web service on the goal template level, (2) present a novel approach for
semantic matchmaking on the goal instance level, and (3) finally integrate the match-
making techniques for the goal template and the goal instance level. We specify the
techniques in a first-order logic framework and illustrate the definitions by a running
example throughout the paper: a goal specifies the objective of finding the best restau-
rant in a city, and a Web service provides a search facility for the best French restaurant
in a city. As we shall discuss, this Web service is only usable for specific goal instances
– namely those that specify a city wherein the best restaurant in French.

The paper is structured as follows. Section2 introduces the concepts of our two-
phase discovery approach, and Section3 defines the formal functional descriptions for
Web services and goals. Section4 specifies the integrated semantic matchmaking tech-
niques for Web service discovery, and Section5 demonstrates this in the running ex-
ample. Section6 discusses related work and positions our approach therein. Finally,
Section7 concludes the paper. A detailed report on this work is provided in [20].

2 Concepts and Approach

The specification of semantic matchmaking techniques for Web service discovery is
strongly dependent on the underlying conception and the formal description of Web
services and goals. This section introduces the relevant concepts and then outlines the
two-phase Web service discovery by discussing the meaning of a match.

2.1 Web Services and Goals

In accordance to the common understanding, we consider a Web service as a computa-
tional facility that is invocable over the Internet via an interface [1]. As an abstraction
that is sufficient for our purpose, we define a Web service as a pairW = (IF , ι) such
thatIF = (i1, . . . , in) is a finite set of names that denotes all inputs required for invok-
ing W , andι is the implementation ofW that is executed whenW is invoked.

Fig. 1. Web Service, Executions, Input Bindings

In the Abstract State Space model (ASS, [10]), a particular execution ofW denotes
a finite sequence of state transitionsτ = (s0, . . . , sm), i.e. a change of the world from
a start states0 to an end statesm. Such aτ is triggered by invokingW with concrete
input values; we refer to this as an input bindingβ : {i1, . . . , in} → U , i.e. a total
function that assigns objects of some universeU to theIF -names. In dependence of the
start state, there can be different executions ofW for the same input binding. Relevant
for the context of discovery, we understand theoverall functionalityprovided byW
as the set of all its possible executions, denoted by{τ}W . As illustrated in Figure1,
this can be further differentiated into the distinct sets of possible executions ofW for
each valid input binding, such that{τ}W =

⋃{τ}W (β) with W (β) denoting the set of
possible executions ofW when invoked with a particular input bindingβ.1

Goals in our approach are formally described client objectives. In accordance to
related AI research (e.g. [3,15]), we understand a goal as the formal description of the
desire of the client to get from the current state of the world into a state wherein the
objective is satisfied. This abstracts from technical details irrelevant to the client objec-
tive. As promoted by the WSMO framework [12], the overall aim is to enable problem-
oriented Web service usage: the client merely specifies the objective to be achieved as
a goal, and the system detects and executes suitable Web services for solving this.

We have refined the initial WSMO goal model based on experiences in realizing
respective technologies [21]. The extension relevant in the context of discovery is the
differentiation ofgoal templatesas generic, reusable objective descriptions, andgoal
instancesthat denote concrete client requests as instantiations of a goal template. In-
spired by related system implementations such as IRS [4] and SWF [22], this allows
to support goal formulation by client via graphical user interfaces. Instead of requiring
the client to specify potentially complex logical formulae for goal formulation, merely
pre-defined templates are instantiated with concrete inputs. Figure2 illustrates this.

1 We consider the functionalities provided by Web services to satisfy two properties: (1)deter-
ministic, i.e. all outputs and effects of an execution are completely dependent on the provided
inputs and the start state; non-deterministic functionalities violate the composability of Web
services [17]; (2) non-adaptive, meaning that in contrast to intelligent software agents a Web
service does not itself change the provided functionality [6].

Fig. 2.Goal Templates, Goal Instances, and Web Services

While we shall specify their formal description in the next section, a goal templateG
defines generic constraints on the initial state and the desired final state to be achieved.
In our restaurant search example, the goal templateG defines that the best restaurant
shall be found in a city that is provided as an input by the client. Its meaning in the
ASS model is thatG specifies a set of sequences of state transitions{τ}G as its possible
solutions. For eachτ = (s0, . . . , sm) ∈ {τ}G , the start-states0 satisfies the constraints
on the initial state, and the end-statesm satisfies the constraints on the desired state
of the world. At runtime, a client creates a goal instanceGI(G) by defining concrete
values for the inputs specified inG. In the example, this is the concrete city in which
the best restaurant shall be found. We refer to this as an input bindingβ for G; this also
constitutes the input binding for invoking a Web service to solveGI(G) as discussed
above. Because of this instantiation, the possible solutions forGI(G) are a subset of
those forG, so that{τ}GI(G) ⊂ {τ}G .

2.2 The Meaning of a Match for Web Service Discovery

We now turn towards Web service discovery. With respect to the conception of Web
services and goals explained above, the aim is to find a Web service that can provide a
τ that is a solution for the goal. Hence, we define the meaning of a match as follows.

Definition 1. Let W be a Web service,G a goal template, andGI(G) a goal instance
that instantiatesG with an input bindingβ. Let τ = (s0, . . . , sm) be a sequence of
states in an Abstract State SpaceA. We define the following sets:

{τ}G := possible solutions forG
{τ}W := possible executions ofW
{τ}GI(G) ⊂ {τ}G := possible solutions forGI(G) that definesβ
{τ}W (β) ⊂ {τ}W := possible executions ofW when invoked withβ

We define theusability of a Web service for solving a goalas:

(i) match(G, W) : ∃τ. τ ∈ ({τ}G ∩ {τ}W)
(ii) match(GI(G),W) : ∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β))

This defines the basic matching conditions for Web Service discovery. Clause (i)
states that a Web serviceW is usable for solving a goal templateG if there exists at

least one execution ofW that is a possible solution forG. Clause (ii) defines thatW is
usable for solving a goal instanceGI(G) if there is at least one execution ofW that is
also a solution forGI(G) whenW is invoked with the inputs defined inGI(G).

Because of{τ}GI(G) ⊂ {τ}G it holds that a Web service that is usable for solving
a goal instance is also usable for the corresponding goal template. IfW can provide a
τ ∈ {τ}GI(G), then thisτ also is also an element of{τ}G . Formally, we can express
this asmatch(GI(G), W) ⇒ match(G,W). As the logical complement, it also holds
that¬match(G,W) ⇒ ¬match(GI(G),W), i.e. that a Web service that is not usable
for a goal template is also not usable for any of its goal instances.

This constitutes the foundation of our two-phase discovery. Usable Web services for
goal templatesG can be determined at design, i.e. when a new goal template is defined.
Web service discovery for concrete goal instancesGI(G) is performed at runtime. Be-
cause of¬match(G,W) ⇒ ¬match(GI(G), W), this merely needs to consider the
set of Web services that are usable for the corresponding goal templateG. While the
achievable efficiency increase is discussed elsewhere [22], this paper specifies the se-
mantic matchmaking techniques for evaluating the matching conditions on the basis of
formal descriptions. Without such techniques, we would need to perform test runs of
W in order to determine its usability for solving a goal.

3 Formal Functional Descriptions

The following defines functional descriptions for Web services and goals that serve as
the basis for semantic matchmaking techniques for Web service discovery. To prop-
erly describe requested and provided functionalities on the level of state transitions, we
apply functional descriptions as defined in the ASS model mentioned above. This sec-
tion specifies their structure and formal meaning in a first-order logic framework, and
illustrates the definitions in our running example.

3.1 Definition and Semantics

The ASS model describes functionalities in terms of preconditions and effects along
with explicitly defining in- and outputs. Focussing on the formal meaning of functional
descriptions, they are defined independent of the language used for specifying precon-
ditions and effects. The following recalls the definitions, referring to [10] for details.

An Abstract State SpaceA is defined over a signatureΣ and some domain knowl-
edgeΩ. A functional description is described as a 5-tuple(Σ, Ω, IF , φpre, φeff). The
signatureΣ differentiatesstatic symbolsΣS that are not changed,dynamic symbolsΣD

that are changed by execution of a Web service, andΣpre
D that denote the interpretation

of a dynamic symbol in the start state. Preconditionsφpre and effectsφeff are defined
as statements in a logicL(Σ). IF = (i1, . . . , in) is a set of variables that denote all
required inputs. To explicitly specify the deterministic dependency between the start-
and end-states with respect to input values, they can occur as the only free variables in
φpre andφeff . An input bindingβ : {i1, . . . , in} → UA is a total function that assigns
objects of the universe ofA to eachIF -variable. Finally, the symbolout denotes the
computational outputs that are constrained byφeff .

The meaning of a functional description is defined with respect to the start- and the
end-state of a sequence of state transitions. Formally, aτ = (s0, . . . , sm) in A is con-
sidered to satisfy the described functionality if and only if it holds that ifs0 |=L(Σ) φpre

thensm |=L(Σ) φeff . Here,s |=L(Σ) φ expresses that the formulaφ is satisfied by the
universeUA in a states under the logicL(Σ). We refer to this asimplication seman-
tics: if the precondition is satisfied ins0, thensm will satisfy the effect; otherwise, we
can not make any statement about the behavior of the described functionality. Because
the IF -variables occur as free variables in both the preconditionφpre and the effect
φeff , the end-statesm is completely dependent on the start-states0. This reflects the
deterministic nature of functionalities provided by Web services.

While functional descriptions in the ASS model are defined independent of the spec-
ification language for preconditions and effects, we use classical first-order logic (FOL,
[19]) for illustration throughout this work. In order to ease the handling of functional
descriptions, we describe them as a first-order logic structure that maintains the formal
semantics as defined in the ASS model.

Definition 2. A functional description is a 4-tupleD = (Σ, Ω, IF , φD) such that:
(i) Σ is a signature consisting ofΣS (static symbols),ΣD (dynamic symbols),

andΣpre
D (pre-variants of dynamic symbols)

(ii) Ω ⊆ L(Σ) defines consistent domain knowledge
(iii) IF is a set of variablesi1, . . . , in that denote all required input values;

an input bindingβ : {i1, . . . , in} → UA is a total function that assigns
objects of the universe ofA to eachIF -variable

(iv) φD is a FOL formula of the form[φpre]Σpre
D

→ΣD
⇒ φeff such that

- φpre is the precondition withIF as the only free variables
- φeff is the effect withIF as the only free variables and the

outputs are denoted by the predicateout
- [φ]Σpre

D
→ΣD

is the formulaφ′ derived fromφ by replacing every dynamic
symbolα ∈ ΣD by its corresponding pre-variantαpre ∈ Σpre

D .

Essentially,φD defines a logical implication between the precondition and the effect
formulae. The rewriting function for the precondition handles dynamic symbols. For ex-
ample, consider a functionality for a bank account withdrawal withφpre : account(a)∧
balance(a) ≥ x, φeff : account(a) ∧ balance(a) = balancepre(a) − x, andΣD =
balance(a). We obtainφD = (account(a) ∧ balancepre(a) ≥ x) ⇒ (account(a) ∧
balance(a) = balancepre(a)− x), so that the relationship between the start- and end-
state is specified explicitly. The following specifies the meaning of such a functional
description that formally describes the overall functionality provided by a Web service.

Definition 3. Let W be a Web service with{τ}W as the set of its possible executions
in an Abstract State SpaceA. LetD = (Σ,Ω, IF , φD) be a functional description. Let
ΩA = Ω ∪ [Ω]Σpre

D
→ΣD

be the domain knowledge extended withαpre ∈ Σpre
D .

W provides the functionality described byD, denoted byW |=A D, if and only if:
(i) everyΣ-interpretationI with I |= ΩA andI, β |= φD under every input

bindingβ : IF → UA represents aτ ∈ {τ}W , and
(ii) everyτ ∈ {τ}W is represented by aΣ-interpretationI with I, β |= φD and

I |= ΩA under every input bindingβ : IF → UA.

Fig. 3. Illustration ofW |=A D

This defines that a Web serviceW provides the functionality described byD if and
only if everyΣ-interpretationI, β that is a model ofφD describes aτ = (s0, . . . , sm) ∈
{τ}W . Such aΣ-interpretation describes the objects that exists in the end-statesm if W
is executed for a particular input bindingβ in a specific start states0. For the implication
semantics from clause (iv) in Definition2, it holds thatI, β |= φD if I, β |= φpre and
I, β |= φeff ; if I 6|= φpre, we can not make any statement about the end-state of aτ .
Hence, if aτ ∈ {τ}W can be described by aΣ-interpretationI with I, β |= φD, then it
satisfies the described functionality; if there is aτ ∈ {τ}W that cannot be described by
such aΣ-interpretation, thenW does not provide the described functionality. Figure3
illustrates this, while we refer to [20] for the formal explanation of this definition and
its relationship to the ASS model.

The meaning of a functional descriptionDG of a goal templateG is analogous. Here,
{τ}G is the set of sequences of state transitions that are solutions forG such that every
τ ∈ {τ}G corresponds to aΣ-interpretation that is a model ofDG . To precisely evaluate
the usability of a Web service, in some cases we need to consider the concrete value
assignments for theIF -variables. These are provided by the creation of a goal instance
GI(G) that defines an input bindingβ for theIF -variables inDG of the corresponding
goal templateG. Subsequently, thisβ constitutes the inputs for invoking a Web service
in order to solveGI(G). We shall discuss this in more detail in the context of discovery
on the goal instance level (Section4.2).

3.2 Illustration in Running Example

In order to illustrate the above definitions, Table1 shows the formal functional descrip-
tions of the goal templateG and the Web serviceW in our restaurant search example.

The goal describes the objective of finding the best restaurant in a city. The specific
city is an input required for instantiation. Hence,DG specifies oneIF -variable that is
constrained in the preconditionφpre to be acity. The effectφeff describes the desired
state of the world to be given if and only if the received output is a restaurant in the
city such that there does not exists any better restaurant in the city. Analogously,DW

describes the functionality provided by the Web serviceW . The mere difference occurs
in the effect: the output ofW is a French restaurant in the city that is provided as input
such that there does not exist any better French restaurant in the city.

We use classical first-order logic (FOL, [19]) as the specification language. The sig-
natureΣ for bothDG andDW defines the respective symbols. Here,?〈name〉 denotes
a variable. The domain knowledgeΩ is defined in thebest restaurant ontology. This
contains axioms specifying that the predicatebetter(·, ·) denotes a partial order, that
any restaurant has exactly one type and that the restaurant typesitalian andfrench
are distinct from each other, and that restaurants are located in cities. We omit the com-
plete ontology specification due to space limitations. The table shows the functional
descriptions with precondition and effects and the correspondingφD in accordance to
Definition2.

Table 1.Functional DescriptionsDG ,DW in Running Example

Goal Web Service
“find best restaurant in a city” “provide best French restaurant in a city”
Ω: best restaurant ontology
IF : {?x}
φpre: city(?x)

φeff : ∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x)

∧ better(?z, ?y))).

Ω: best restaurant ontology
IF : {?x}
φpre: city(?x)

φeff : ∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x) ∧ type(?z, french)

∧ better(?z, ?y))).

φDG : city(?x) ⇒ (

∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x)

∧ better(?z, ?y)))).

φDW : city(?x) ⇒ (

∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x) ∧ type(?z, french)

∧ better(?z, ?y)))).

4 Semantic Matchmaking for Web Service Discovery

On the basis of the formal descriptions we now specify the semantic matchmaking tech-
niques for the two-phased Web service discovery introduced in Section2.2. The aim is
to provide semantic means that allow to precisely determine the usability of a Web ser-
vice with respect to the matching conditions on the goal template and the goal instance
level from Definition1. We therefore define matchmaking on functional descriptions
and input bindings as specified above. These provide sufficiently rich descriptions of
possible Web service executions and possible solution for goals. The following first
specifies semantic matchmaking on the goal template level, then on the goal instance
level, and finally integrates the techniques for both levels. We shall demonstrate the
techniques in our running example in Section5.

4.1 Goal Template Level

We express the usability of a Web serviceW for solving a goal templateG in terms
of matching degrees. Adopting the concept and denotation of the degrees from several
previous works on Web service discovery (e.g. [16,13,8]), we define them over the
functional descriptions of goals and Web services as defined in Section3.1.

The distinct degrees denote specific relationships between the possible executions
{τ}W of W and possible solutions{τ}G for G. Four degrees –exact, plugin, sub-
sume, intersect– denote different situations wherein the matching condition in clause
(i) of Definition 1 is satisfied; thedisjoint degree denotes that this is not given. In our
two-phase discovery, these matching degrees serve as a pre-filter for determining the
usability of a Web serviceW for solving a goal instanceGI(G) that instantiates the
goal templateG. We shall discuss this in more detail in Section4.3.

We define the criteria for each degree overDG andDW from Definition 2, along
with an explicit quantification of input bindingsβ. As the condition for theexactdegree,
ΩA |= ∀β. φDG ⇔ φDW defines that every possible execution ofW is a solution
for G and vice versa. We assume that all functional descriptionsD are consistent, i.e.
that there exists aΣ-interpretationI under aβ that is a model ofφD. Representing a
refinement of the matching degree definitions from [8], we therewith obtain a precise
means for differentiating the usability of a Web service on the goal template level.
Table2 provides a concise compilation of the matchmaking degree definitions.

Table 2.Definition of Matching Degrees forDG ,DW

Denotation
DG = (Σ, Ω, IF , φDG)
DW = (Σ, Ω, IF , φDW)

Definition
β : IF → UA

φD = [φpre]Σpre
D

→ΣD
⇒ φeff

ΩA = Ω ∪ [Ω]Σpre
D

→ΣD

Meaning
for {τ}G , {τ}W with

W |=A DW

exact(DG ,DW) ΩA |= ∀β. φDG ⇔ φDW
if and only if τ ∈ {τ}G

thenτ ∈ {τ}W

plugin(DG ,DW) ΩA |= ∀β. φDG ⇒ φDW if τ ∈ {τ}G thenτ ∈ {τ}W

subsume(DG ,DW) ΩA |= ∀β. φDG ⇐ φDW if τ ∈ {τ}W thenτ ∈ {τ}G
intersect(DG ,DW) ΩA |= ∃β. φDG ∧ φDW

there is aτ such that
τ ∈ {τ}G andτ ∈ {τ}W

disjoint(DG ,DW) ΩA |= ¬∃β. φDG ∧ φDW
there is noτ such that

τ ∈ {τ}G andτ ∈ {τ}W

4.2 Goal Instance Level

A goal instanceGI(G) is created by defining an input bindingβ for the IF -variables
in the functional descriptionDG of the corresponding goal templateG. Recalling from
Definition1, a match on the goal instance level is given if there exists aτ = (s0, . . . , sm)
in A that is a solution forGI(G) and can be provided by a Web serviceW when it is

invoked with the concrete input values defined inGI(G). The following specifies a
general technique for determining this on the basis of the available descriptions, inde-
pendent of the matching degree betweenDG andDW .

Formally, an input bindingβ : {i1, . . . , in} → UA is a total function that defines a
variable assignment over the universeUA for the input variablesIF defined in a func-
tional descriptionD (cf. Definition 2). We therewith obtain an assignment of concrete
valuesv for all inputs required inD, i.e. β = {i1|v1, . . . , in|vn}. Given such aβ, we
can instantiateD by substituting allIF -variables that occur as free variables inφpre

andφeff by the concrete values defined inβ. We obtain[D]β as the functional descrip-
tion that is instantiated for the context ofβ; this can be evaluated because it does no
longer contain any free variables. By instantiating the functional descriptionsDG of the
corresponding goal templateG andDW of the Web serviceW with the input bindingβ
defined inGI(G), we obtain[DG]β as the functionality requested byGI(G) and[DW]β
as the functionality that can be provided byW when it is invoked withβ.

For W to be usable for solvingGI(G), there must be aτ such thatτ ∈ {τ}GI(G)

andτ ∈ {τ}W (β) (cf. clause (ii) from Definition1). To determine this on the basis of
the given descriptions, it must hold that – with respect to the domain knowledge – there
exists aΣ-interpretationI that is a common model forφDG andφDW when both func-
tional descriptions are instantiated with the input bindingβ defined inGI(G). Formally,
this means that the union of the formulaeΩA ∪ {[φDG]β , [φDW]β} must be satisfiable,
i.e. that there exists aΣ-interpretation that is a model for the extended domain knowl-
edgeΩA and for the instantiated goal description[φDG]β and for the instantiated Web
service description[φDW]β . In accordance to Definition3, this I represents aτ that is
a solution forGI(G) and can be provided byW if it is invoked withβ.

Definition 4. LetDG = (Σ, Ω, IFG , φDG) be a functional description of a goal tem-
plateG. Let GI(G) be a goal instance that instantiatesG with the input bindingβ :
IFG → UA. Let DW = (Σ, Ω, IFW , φDW) be a functional description, and let
W = (IF , ι) be a Web service withW |=A DW .

match(GI(G),W) is given if there exists aΣ-interpretationI such that:

I |= ΩA and I |= [φDG]β and I |= [φDW]β .

Another requirement forW to be usable for solvingGI(G) is that theβ defined
in GI(G) provides concrete values for all inputs that are required to invokeW . This is
given if there is a bijectionπ : IFDG → IFDW such that for every input variable inDW

there is a corresponding input variable inDG , and eachi ∈ IFDG is assigned with the
concrete value fromβ. Subsequently, if there is a second bijectionπ2 : IFDW

→ IFW

such that for each input name required byW there is a corresponding input variable in
DW , then there is a concrete value assignment for each input required byW .2

2 We are aware of that this is requirement is not trivial to realize in practice, as it requires a
semantic mapping between the input variables of functional descriptions and the Web service.
Moreover, this may require mediation between incompatible ontologies used by the requester
and provider [5]. However, to invoke a Web service there must be concrete values for all
required inputs – the two bijections denote the basic requirement therefore. [20] discusses
ways to weaken the requirements for the necessary compatibility, e.g. by creating existentially
quantified ontology instances for input values that are not explicitly defined by the client.

4.3 Integration of Matchmaking Techniques

We complete this section with combing the semantic matchmaking techniques for the
goal template and the goal instance level in order to attain an integrated matchmaking
framework for our two-phase Web service discovery. We therefore extend matchmaking
degrees from Table2 with the matchmaking condition for the goal instance level. Due
to their definition, we can simplify the matching condition from Definition4 for the
distinct matchmaking degrees as follows.

Theorem 1. Let DG describe the requested functionality in a goal templateG. Let
GI(G) be a goal instance ofG that defines an input bindingβ. LetW be a Web service,
and letDW be a functional description such thatW |=A DW .

W is usable for solvingGI(G) if and only if:
(i) exact(DG,DW) or

(ii) plugin(DG,DW) or
(iii) subsume(DG,DW) and

∧
ΩA ∧ [φDW]β is satisfiable, or

(iv) intersect(DG,DW) and
∧

ΩA ∧ [φDG]β ∧ [φDW]β is satisfiable.

This specifies the minimal matchmaking conditions for determining the usability of
a Web service for solving a concrete client request that is described by a goal instance.
Under both theexactand theplugindegree,W can be used for solving any goal instance
GI(G) because{τ}GI(G) ⊂ {τ}G ⊆ {τ}W andτ ∈ {τ}GI(G) ⇔ τ ∈ {τ}W (β). Under
thesubsumedegree it holds that{τ}G ⊇ {τ}W , i.e. every execution ofW can solveG
but there can be solutions ofG that cannot be provided byW . Hence,W is only usable
for solvingGI(G) if the input bindingβ defined inGI(G) allows to invokeW . This is
given if there is aΣ-interpretation that is a model for[φDW]β and the conjunction of
the axioms inΩA. Underintersectas the weakest degree, the complete matchmaking
condition for the goal instance level must hold because there can be solutions forG that
can not be provided byW and vice versa. Thedisjoint degree denotes thatW is not
usable for solving the goal template and thus neither for any of its instantiations. We
refer to [20] for the formal proof of this theorem.

5 Evaluation

In order to demonstrate the precision for Web service discovery that is achievable with
the presented matchmaking techniques, this section discusses them for our restaurant
search example. We have implemented and verified the matchmaking techniques in
VAMPIRE [18], a resolution-based theorem prover for classical first-order logic with
equality that allows to realize matchmaking exactly as we have specified above. Due
to space limitations, we here content ourselves with condensed explanations on the
matchmaking techniques for the goal and the Web service as introduced in Section3.2.
A more detailed documentation as well as further examples for discovery under other
matchmaking degrees is provided in [20].3

3 The VAMPIRE implementation along with installation instructions and the proof obligations
for the best restaurant search example are available at:http://members.deri.at/
∼michaels/software/best-restaurant-example.zip

http://members.deri.at/~michaels/software/best-restaurant-example.zip�
http://members.deri.at/~michaels/software/best-restaurant-example.zip�

The following discusses the matchmaking techniques for the goal of finding the best
restaurant in a city and a Web service that provides the best French restaurant in a city
(cf. functional descriptions in Table1). This is an example for theintersectdegree and
hence requires the full range of the extended matchmaking for the goal instance level.

For illustration, it is sufficient to consider cityA wherein the best restaurant is
French and cityB wherein the best restaurant is not French. We define two input bind-
ings,β1 = {?x|A} andβ2 = {?x|B}, and examine the solutions forG and the execu-
tions ofW for each. Table3 provides a concise overview of the information relevant for
our discussion. The first part shows the description of the three best restaurants inA and
B as background ontologiesΩ1, Ω2 ⊆ Ω. The second part shows the goal instances, i.e.
whenDG is instantiated with the concrete values defined in the distinctβ as explained
in Section4.2. Analogously, the third part shows the only possible instantiations forW .
Finally, the fourth part identifies commonΣ-interpretations that serve as a witness for
a semantic match between the goal instances and the described Web Services.

Table 3.Relevant Information for Matchmaking Illustration

City A: Ω1 ⊆ Ω City B: Ω2 ⊆ Ω

Ω1 = {city(A)
restaurant(r1A)
in(r1A, A), type(r1A, french)
restaurant(r2A)
in(r2A, A), type(r2A, italian)
restaurant(r3A)
in(r3A, A), type(r3A, french)
better(r1A, r2A)
better(r2A, r3A)}

Ω2 = {city(B)
restaurant(r1B)
in(r1B, B), type(r1B, italian)
restaurant(r2B)
in(r2B, B), type(r2B, french)
restaurant(r3B)
in(r3B, B), type(r3B, french)
better(r1B, r2B)
better(r2B, r3B)}

[φDG]β1 with β1 = {x|A} [φDG]β2 with β2 = {x|B}
city(A) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y) ∧ in(?y, A)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, A)
∧ better(?z, ?y))))

city(B) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y) ∧ in(?y, B)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, B)
∧ better(?z, ?y))))

[φDW]β1 with β1 = {x|A} [φDW]β2 with β2 = {x|B}
city(A) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y)
∧ in(?y, A) ∧ type(?y, french)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, A) ∧ type(?z, french)
∧ better(?z, ?y))))

city(B) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y)
∧ in(?y, B) ∧ type(?y, french)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, B) ∧ type(?z, french)
∧ better(?z, ?y))))

I1 with I1 |= Ω ∪ {[φDG]β1 , [φ
DW]β1} I2 with I2 |= Ω ∪ {[φDG]β2 , [φ

DW]β2}
Ω1 ∪Ω2 ∪ {out(r1A),

better(r1A, r3A), better(r1B, r3B)} No suchI2 can exist!

We can observe that for the input bindingβ1, there is aΣ-interpretationI1 that is
consistent with the background ontologyΩ and satisfies both the instantiation of the
goal template[φDG]β1 as well as the instantiation of the Web service[φDW]β1 . The wit-
nessing executionτ corresponds to the pair(I1, β1). Hence, the condition for theinter-
sectmatch is satisfied (cf. Table2). Furthermore, we observe that for the input binding
β2 there can not exist such a common interpretation. Hence, neither the condition for
thesubsumesnor for theplugin is satisfied; thus also not the one for theexactdegree.
Assume that there would be such a common interpretationI2, i.e. aΣ-interpretation that
satisfiesΩ, [φDG]β2 and[φDW]β2 . From the second column of Table3 we can conclude
that any object?y that is the best restaurant in cityB is a french restaurant. However,
this is not consistent with the background ontologyΩ as described above, since then
restaurantr1B must be at the same time an italian as well as a french restaurant.

Because of theintersectdegree on the goal template level, clause (iv) of Theorem1
must hold forW to be usable for solving a goal instanceGI(G) that instantiatesG. This
requires that there must be aΣ-interpretation that is (a) consistent with the background
ontologyΩ and (b) a common model for[φDG]β and [φDW]β (cf. Definition 4). Let
us considerGI(G)1 as the goal instance that instantiatesG with β1, andGI(G)2 as
the goal instance that definesβ2. Analyzing the possible solutions and executions in
Table3 reveals the intuitively expected discovery results: theΣ-interpretationI1 serves
as a witness for aτ ∈ {τ}GI(G)1 andτ ∈ {τ}Wβ1

. Hence,W is usable for solving
GI(G)1. On the other hand, as discussed above, there can not exist such a witness for
GI(G)2; thereforeW can not be used to solveGI(G)2.

6 Related Work

Due to its relevance for service-oriented architectures, Web service discovery is subject
to several research efforts. We here discuss directly related works with respect to the
quality of matchmaking techniques and the modelling client objectives, referring to
more exhaustive overviews, e.g. in [9,10,20].

As early works, [16] presents matchmaking of in- and outputs in OWL-S, and [13]
defines matchmaking of requested and provided results in a DL framework. Both define
the matching degrees in terms of concept subsumption, and work on OWL-S service ad-
vertisements and requests described by inputs, outputs, preconditions, and effects [14].
Although using OWL as an expressive specification language, this description neither
explicates the dependency pre- and post execution descriptions nor defines formal se-
mantics for functional descriptions. Hence, the matchmaking algorithms merely allow
to detect ontological relationships between corresponding description elements – but
not to determine whether the invocation of a Web service in a particular state of the
world will satisfy a client request. We can observe the same deficiencies in [2].

In WSMO, provided and requested capabilities are described by preconditions, as-
sumptions, postconditions, and effects, along withshared variablesto define depen-
dencies between the formulae [12]. However, no formal semantics are defined for these
complex functional descriptions – which hampers the specification of accurate match-
making mechanisms. Our functional descriptions overcome this by explicitly describ-
ing dependency of preconditions and effects and defining precise formal semantics. [7]

presents a recent approach with a similar focus. Functionalities are described by inputs,
outputs, and the relationship between them; a match is given if the requester can provide
the input required by the Web service, and the Web service then can provide outputs that
satisfy the ones requested. However, this approach is restricted to stateless Web services
and hence only covers a subset of the functionalities supported by our approach.

WSMO is the only framework that promotes a goal-based approach for Semantic
Web services; most other approaches model client requests as queries for specific Web
service descriptions. The differentiation of goal templates and goal instances is a refine-
ment of the WSMO goal model based on experiences in technology realization [21]. A
similar two-phased discovery approach is presented in [11]. However, therein goals are
described by the desired final state only; the input binding for invoking the discovered
Web service is created at runtime. In contrast, we describe the requested functionality
in goal templates by preconditions and effects. The reason is that in service-oriented ar-
chitectures usually the current state of the world is not explicated or is not accessible to
the interaction partners. Moreover, defining input bindings on the level of goal instances
allows to minimize the client-system interaction as it just needs to be done once.

7 Conclusions

This paper has presented the integrated semantic matchmaking for a two-phased Web
service discovery that distinguishes goal templates and goal instances. Continuing pre-
vious work, we have defined matchmaking techniques that work on sufficiently rich
functional descriptions and can precisely determine the usability of a Web service.

To formally describe client requests on the problem layer, we distinguish goal tem-
plates as generic objective descriptions and goal instances that denote a concrete client
request as the instantiation of a goal template. We use functional descriptions that pre-
cisely describe the start- and end-states of possible executions of Web services as well
as of possible solutions for goals. A match is given if a Web service can provide an
execution that is a solution for the goal. We have specified semantic matchmaking tech-
niques to evaluate this. On the goal template level, we define matching degrees that dif-
ferentiate the relationship between possible executions of a Web service and solutions.
For a goal instance, a Web service is usable if its execution triggered by the invocation
with the concrete inputs is a solution for the instantiated goal description. We therefore
have presented a novel matchmaking technique and formally integrated this with the
matching degrees on the goal template level. Finally, we have demonstrated that the
matchmaking techniques allow to precisely determine the usability of a Web service for
solving a concrete client request that is described as a goal instance.

The presented techniques denote the formal foundations for semantic matchmaking
in this two-phased discovery approach. We plan to extend this with techniques for effi-
cient management of discovery results, and to continue the integration into frameworks
and system implementations for Semantic Web services.

Acknowledgments.This material is based upon works supported by the EU under the
DIP project (FP6 - 507483) and by the Austrian Federal Ministry for Transport, Inno-
vation, and Technology under the projectRW2 (FFG 809250). The authors like to thank
Martin Hepp and Rub́en Lara for constructive discussions on the presented work.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services: Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, 2004.

2. B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On Automating Web Services
Discovery.VLDB Journal, 14(1):84–96, 2005.

3. M. E. Bratman. Intention, Plans and Practical Reason. Harvard University Press, Cam-
bridge, MA (USA), 1987.

4. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedrinaci.
IRS-III – A Broker for Semantic Web Services based Applications. InProc. of the 5th
International Semantic Web Conference (ISWC 2006), Athens(GA), USA, 2006.

5. E. Cimpian, A. Mocan, and M. Stollberg. Mediation Enabled SemanticWeb Services Usage.
In Proc. of the 1st Asian Semantic Web Conference (ASWC 2006), Beijing, China, 2006.

6. I. Dickinson and M. Wooldridge. Agents are not (just) Web Services: Considering BDI
Agents and Web Services. InProc. of the 2005 Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands, 2005.

7. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding Seman-
tic Matching of Stateless Services. InProc. of the 21st National Conference on Artificial
Intelligence (AAAI’2006), 2006.

8. U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO
Framework. In J. Cardoses, editor,Semantic Web: Theory, Tools and Applications. Idea
Publishing Group, 2006.

9. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.
In Proc. of the 2nd European Semantic Web Conference (ESWC 2005), Crete, Greece, 2005.

10. U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions of Web
Services. InProc. of the 3rd European Semantic Web Conference (ESWC 2006), Montenegro,
2006.

11. R. Lara. Two-phased Web Service Discovery. InProc. of AI-Driven Technologies for
Services-Oriented Computing Workshop at AAAI-06, Boston, USA, 2006.

12. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontology (WSMO).
W3C Member Submission 3 June, 2005.

13. L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic Web
Technology. InProc. of the 12th World Wide Web Conference, Budapest, Hungary, 2003.

14. D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November, 2004. online: http://www.w3.org/Submission/OWL-S/.

15. A. Newell.Unified Theories of Cognition. Harvard University Press, Cambridge, MA (USA),
1990.

16. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services
Capabilities. InProc. of the First International Semantic Web Conference, Springer, 2002.

17. C. Preist. A Conceptual Architecture for Semantic Web Services. InProc. of the 3rd Inter-
national Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004.

18. A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE.AI Commu-
nications, 15(2):91–110, 2002. Special Issue on CASC.

19. R. M. Smullyan.First Order Logic. Springer, 1968.
20. M. Stollberg and U. Keller. Semantic Web Service Discovery. Technical report, DERI, 2006.
21. M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. Proc. of the

2nd International Conference on Internet and Web Applications and Services (ICIW 2007),
Mauritius, 2007.

22. M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel. Semantic
Web Fred – Automated Goal Resolution on the Semantic Web. InProc. of the 38th Hawaii
International Conference on System Science (HICSS-38), 2005.

