Two-phase Web Service Discovery based on Rich
Functional Descriptions

Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans

Digital Enterprise Research Institute Innsbruck (DERI Austria),
Institute for Computer Science, University of Innsbruck,
Technikerstrasse 21a, A-6020 Innsbruck, Austria

Email: {firstname.lastname@deri.org

Abstract. Discovery is a central reasoning task in service-oriented architectures,
concerned with detecting Web services that are usable for solving a given request.
This paper presents two extensions in continuation of previous works towards
goal-based Web service discovery with sophisticated semantic matchmaking. At
first, we distinguish goal templates as generic objective descriptions and goal in-
stances that denote concrete requests as an instantiation of a goal template. Sec-
ondly, we formally describe requested and provided functionalities on the level
of state transitions that denote executions of Web services, respectively solutions
for goals. Upon this, we specify a two-phase discovery procedure along with se-
mantic matchmaking techniques that allow to accurately determine the usability
of a Web service. The techniques are defined in the Abstract State Space model
that supports several languages for describing Web services.

1 Introduction

Discovery is concerned with detecting usable Web services for solving a given request.
This is the first central reasoning task in the context of Semantic Web services, followed
by contracting and behavioral conformance te$#}.[Several research works present
discovery techniques by semantic matchmaking of requested and provided function-
alities, e.g./16/13,2/7/11]. However, due to deficiencies in the expressiveness and the
formal semantics of functional descriptions most existing approaches lack in the achiev-
able quality of the matchmaking results for Web service discovery.

In this respect, we present the advancements towards a goal-based approach for
semantically enabled Web service discovery with sophisticated matchmaking. Initially
presented in9], the requester and the provider perspective are separated by formally
describing client objectives as goals; a Web service is understood to provide access to
several services by its invocation with concrete input values. We extend this approach
by differentiating two notions of goals. §oal templatds a generic objective descrip-
tion that is defined at design time, and@al instancalenotes a concrete client request
that is created at runtime by instantiating a goal template with concrete input values.
Apart from better supporting goal formulation by clients, this allows to realize an ef-
ficient two-phase Web service discovery. Usable Web services for goal templates are
determined at design time and kept in the system. At runtime, the discovery for goal

instances only needs to investigate those Web services that are usable for the corre-
sponding goal template, so that the number of matchmaking operations necessary at
runtime can be reduced. This paper specifies the semantic matchmaking techniques for
this framework.

In order to properly describe provided and requested functionalities, we consider a
state-based model of the world. Therein, a particular execution of a Web service denotes
a sequence of state transitions; such a sequence is also a solution for a goal if the client
objective is solved in the end-state. The functionality provided by a Web service is a set
of all its possible executions, and a goal template as well as a goal instance describes a
set of possible solutions. We formally describe possible executions and solutions with
respect to the start- and end-statedAlvstract State Spacea language independent
model that defines precise formal semantics for such functional descripti@lns [

On top of this, we specify semantic matchmaking techniques that allow to precisely
determine the usability of a Web service for solving a goal. In particular, we (1) revise
the definition of previously identified matching degrees and use these to differentiate the
usability of a Web service on the goal template level, (2) present a novel approach for
semantic matchmaking on the goal instance level, and (3) finally integrate the match-
making techniques for the goal template and the goal instance level. We specify the
techniques in a first-order logic framework and illustrate the definitions by a running
example throughout the paper: a goal specifies the objective of finding the best restau-
rant in a city, and a Web service provides a search facility for the best French restaurant
in a city. As we shall discuss, this Web service is only usable for specific goal instances
— namely those that specify a city wherein the best restaurant in French.

The paper is structured as follows. Sect@®mtroduces the concepts of our two-
phase discovery approach, and Sec8atefines the formal functional descriptions for
Web services and goals. Sectiispecifies the integrated semantic matchmaking tech-
niques for Web service discovery, and Secftbdemonstrates this in the running ex-
ample. Sectiol6 discusses related work and positions our approach therein. Finally,
Section? concludes the paper. A detailed report on this work is provide@Gh [

2 Concepts and Approach

The specification of semantic matchmaking techniques for Web service discovery is
strongly dependent on the underlying conception and the formal description of Web
services and goals. This section introduces the relevant concepts and then outlines the
two-phase Web service discovery by discussing the meaning of a match.

2.1 Web Services and Goals

In accordance to the common understanding, we consider a Web service as a computa-
tional facility that is invocable over the Internet via an interfeitle As an abstraction

that is sufficient for our purpose, we define a Web service as dait (IF,:) such

thatIF = (iy,...,1,) is a finite set of names that denotes all inputs required for invok-

ing W, and. is the implementation dfi’ that is executed wheW is invoked.

Abstract State Space /\

Web Service W
T} f O
e) {1} OTTBw S . Sm
o O\O/O-\’O 5 O/O o
@]
@) {ThforB, s, O\OLO/OS,,, le)
o ¥ S o

Fig. 1. Web Service, Executions, Input Bindings

In the Abstract State Space model (ASH]], a particular execution dfi” denotes
a finite sequence of state transitions= (so, .. ., s;,), i-e. a change of the world from
a start state to an end state,,,. Such ar is triggered by invoking?” with concrete
input values; we refer to this as an input bindifg: {i1,...,i,} — U, i.e. a total
function that assigns objects of some univérse the /F-names. In dependence of the
start state, there can be different executiong/ofor the same input binding. Relevant
for the context of discovery, we understand theerall functionalityprovided by
as the set of all its possible executions, denoted by . As illustrated in Figurél,
this can be further differentiated into the distinct sets of possible executiois fof
each valid input binding, such thét }y = {7 }w) with W () denoting the set of
possible executions d#” when invoked with a particular input bindirgg*

Goals in our approach are formally described client objectives. In accordance to
related Al research (e.d3[15]), we understand a goal as the formal description of the
desire of the client to get from the current state of the world into a state wherein the
objective is satisfied. This abstracts from technical details irrelevant to the client objec-
tive. As promoted by the WSMO framewoikd], the overall aim is to enable problem-
oriented Web service usage: the client merely specifies the objective to be achieved as
a goal, and the system detects and executes suitable Web services for solving this.

We have refined the initial WSMO goal model based on experiences in realizing
respective technologie2]]. The extension relevant in the context of discovery is the
differentiation ofgoal templatess generic, reusable objective descriptions, goal
instanceghat denote concrete client requests as instantiations of a goal template. In-
spired by related system implementations such as BR&rjd SWF P2, this allows
to support goal formulation by client via graphical user interfaces. Instead of requiring
the client to specify potentially complex logical formulae for goal formulation, merely
pre-defined templates are instantiated with concrete inputs. F2jliustrates this.

1 We consider the functionalities provided by Web services to satisfy two propertiegetr)
ministig i.e. all outputs and effects of an execution are completely dependent on the provided
inputs and the start state; non-deterministic functionalities violate the composability of Web
services|L7]; (2) non-adaptivemeaning that in contrast to intelligent software agents a Web
service does not itself change the provided functione@ly [

Goal Template service detection .
generic objective description N~ . functional

(requested functionality)

=3 .
Client instantiates e (Web) SeerFe
2 Implementation
defines =
seseassistammadien 9 Goal Instance ° .
% concrete input service usage s (not of interest here)

(Ontology) (Ontology) Domain Knowledge (Ontology) (Ontology)

Fig. 2. Goal Templates, Goal Instances, and Web Services

While we shall specify their formal description in the next section, a goal template
defines generic constraints on the initial state and the desired final state to be achieved.
In our restaurant search example, the goal tem@atiefines that the best restaurant
shall be found in a city that is provided as an input by the client. Its meaning in the
ASS model is thag specifies a set of sequences of state transitjefig as its possible
solutions. For each = (so,...,sm) € {7}g, the start-state, satisfies the constraints
on the initial state, and the end-state satisfies the constraints on the desired state
of the world. At runtime, a client creates a goal instattEG) by defining concrete
values for the inputs specified i In the example, this is the concrete city in which
the best restaurant shall be found. We refer to this as an input bigdimgg; this also
constitutes the input binding for invoking a Web service to s@l&G) as discussed
above. Because of this instantiation, the possible solution&{¢g) are a subset of
those forg, so that{7}c1g) C {7}g-

2.2 The Meaning of a Match for Web Service Discovery

We now turn towards Web service discovery. With respect to the conception of Web
services and goals explained above, the aim is to find a Web service that can provide a
7 that is a solution for the goal. Hence, we define the meaning of a match as follows.

Definition 1. LetW be a Web servicej a goal template, and:1(G) a goal instance
that instantiatesj with an input bindings. Let = (so,..., sm) be a sequence of
states in an Abstract State SpadeWe define the following sets:

{r}g := possible solutions fog

{T}w := possible executions oF

{7}arg) C {7}g = possible solutions fot:1(G) that defineg?
{7}w s C {7}w = possible executions ®F when invoked witl

We define thesability of a Web service for solving a goad:
(i) match(G, W) 3.t e {rgn{r}w)
(II) match(GI(g), W) dr.T € ({T}Gj(g) N {T}W(ﬁ))

This defines the basic matching conditions for Web Service discovery. Clause (i)
states that a Web servid& is usable for solving a goal templageif there exists at

least one execution d¥ that is a possible solution f@f. Clause (ii) defines thdl’ is
usable for solving a goal instanc¢&l (G) if there is at least one execution Bf that is
also a solution for71(G) whenW is invoked with the inputs defined G1(G).

Because of 7}1(g) C {7}¢ it holds that a Web service that is usable for solving
a goal instance is also usable for the corresponding goal templdté chin provide a
7 € {T}a1(g), then thist also is also an element ¢f }g. Formally, we can express
this asmatch(GI(G), W) = match(G, W). As the logical complement, it also holds
that—match(G, W) = —match(GI(G), W), i.e. that a Web service that is not usable
for a goal template is also not usable for any of its goal instances.

This constitutes the foundation of our two-phase discovery. Usable Web services for
goal templateg can be determined at design, i.e. when a new goal template is defined.
Web service discovery for concrete goal instanGé$G) is performed at runtime. Be-
cause of-match(G,W) = —match(GI(G), W), this merely needs to consider the
set of Web services that are usable for the corresponding goal tengplslithile the
achievable efficiency increase is discussed elsew/®2}ethis paper specifies the se-
mantic matchmaking techniques for evaluating the matching conditions on the basis of
formal descriptions. Without such techniques, we would need to perform test runs of
W in order to determine its usability for solving a goal.

3 Formal Functional Descriptions

The following defines functional descriptions for Web services and goals that serve as
the basis for semantic matchmaking techniques for Web service discovery. To prop-
erly describe requested and provided functionalities on the level of state transitions, we
apply functional descriptions as defined in the ASS model mentioned above. This sec-
tion specifies their structure and formal meaning in a first-order logic framework, and
illustrates the definitions in our running example.

3.1 Definition and Semantics

The ASS model describes functionalities in terms of preconditions and effects along
with explicitly defining in- and outputs. Focussing on the formal meaning of functional
descriptions, they are defined independent of the language used for specifying precon-
ditions and effects. The following recalls the definitions, referringlt for details.

An Abstract State Spacd is defined over a signatuté and some domain knowl-
edges?. A functional description is described as a 5-tuple, 12, IF, ¢,). The
signatureX’ differentiatesstatic symbols's that are not changedynamic symbol&'p
that are changed by execution of a Web service, 8{d that denote the interpretation
of a dynamic symbol in the start state. Preconditiofs and effectsy*/ are defined
as statements in a logi€(X). IF = (iy,...,i,) is a set of variables that denote all
required inputs. To explicitly specify the deterministic dependency between the start-
and end-states with respect to input values, they can occur as the only free variables in
#P"¢ and¢*? . An input bindingg : {iy,...,i,} — U4 is a total function that assigns
objects of the universe ofl to eachiF'-variable. Finally, the symbalut denotes the
computational outputs that are constraineds .

The meaning of a functional description is defined with respect to the start- and the
end-state of a sequence of state transitions. Formafly=a(s, . . ., s,,) in A is con-
sidered to satisfy the described functionality if and only if it holds thag if= - (x) ¢P"°
thens,, =5 o Here,s Fr(x) ¢ expresses that the formufais satisfied by the
universel{ 4 in a states under the logicC(X'). We refer to this agmplication seman-
tics: if the precondition is satisfied igy, thens,,, will satisfy the effect; otherwise, we
can not make any statement about the behavior of the described functionality. Because
the [F-variables occur as free variables in both the precondititiii and the effect
»°F | the end-stata,,, is completely dependent on the start-stajeThis reflects the
deterministic nature of functionalities provided by Web services.

While functional descriptions in the ASS model are defined independent of the spec-
ification language for preconditions and effects, we use classical first-order logic (FOL,
[19]) for illustration throughout this work. In order to ease the handling of functional
descriptions, we describe them as a first-order logic structure that maintains the formal
semantics as defined in the ASS model.

Definition 2. A functional description is a 4-tupl® = (X, 2, IF, ¢?) such that:
(i) X is a signature consisting of's (static symbols)Y'p (dynamic symbols),
and 277 (pre-variants of dynamic symbols)
(i) 2 C L(X) defines consistent domain knowledge
(i) IF is a set of variables, . .., 1, that denote all required input values;
an input bindings : {41, ...,4,} — U4 is a total function that assigns
objects of the universe of to each/F-variable
(iv) ¢” is a FOL formula of the fornfp*] gere_ 57, = ¢ such that
- ¢P"¢ is the precondition witlF' as the only free variables
- ol is the effect with F as the only free variables and the
outputs are denoted by the predicatat
- [#] svre 5, Is the formulap’ derived fromg by replacing every dynamic
symbola € X' by its corresponding pre-variant,,. € 7).

Essentiallyp” defines a logical implication between the precondition and the effect
formulae. The rewriting function for the precondition handles dynamic symbols. For ex-
ample, consider a functionality for a bank account withdrawal @t : account(a)A
balance(a) > x, ¢ : account(a) A balance(a) = balancey,(a) — z, andXp =
balance(a). We obtaing? = (account(a) A balancep.(a) > x) = (account(a) A
balance(a) = balancepr.(a) — x), S0 that the relationship between the start- and end-
state is specified explicitly. The following specifies the meaning of such a functional
description that formally describes the overall functionality provided by a Web service.

Definition 3. Let W be a Web service witfir } as the set of its possible executions
in an Abstract State Spacé. LetD = (X, 2, IF, $7) be a functional description. Let
Q4= 2U[2]grre_ 5, be the domain knowledge extended wif. € e,
W provides the functionality described B denoted by/" =4 D, if and only if:
(i) every X-interpretation] with I |= 224 and I, 3 = ¢T under every input

bindings : IF — U 4 represents a € {7}w, and
(ii) everyt € {7}y is represented by &-interpretation/ with I, 3 = ¢” and

I = 24 under every input binding : IF — U 4.

Web service W in Awith W F, D FOL Functional Description D

SoF(27°) o Trorp, s, F (@°)

O N\, _ 0

IZ Q(geff — Qpre)
for B,

IZ Q(@eff « (gpre)
for B,

{T}y <= models of D

Fig. 3. lllustration of W =4 D

This defines that a Web servi€€ provides the functionality described Byif and
only if every X-interpretation/, 3 that is a model o$” describes & = (sq, ..., sm) €
{T}w. Such aX-interpretation describes the objects that exists in the endsstatel’
is executed for a particular input bindigign a specific start statg. For the implication
semantics from clause (iv) in Definiti@® it holds thatl, 3 = ¢P if I, 3 = ¢P" and
I,B = ¢ if T [~ ¢Pre, we can not make any statement about the end-state-of a
Hence, if ar € {7}y can be described by 8-interpretation/ with I, 3 = ¢P, then it
satisfies the described functionality; if there is & {7} that cannot be described by
such aX-interpretation, them’” does not provide the described functionality. Fig8re
illustrates this, while we refer t@®D)] for the formal explanation of this definition and
its relationship to the ASS model.

The meaning of a functional descripti@l; of a goal templat€ is analogous. Here,
{7}¢ is the set of sequences of state transitions that are solutiogssioch that every
T € {r}¢g corresponds to &-interpretation that is a model &fg. To precisely evaluate
the usability of a Web service, in some cases we need to consider the concrete value
assignments for théF'-variables. These are provided by the creation of a goal instance
GI(G) that defines an input binding for the IF'-variables inDg of the corresponding
goal template;. Subsequently, thig constitutes the inputs for invoking a Web service
in order to solve=1(G). We shall discuss this in more detail in the context of discovery
on the goal instance level (Sectidr®).

3.2 lllustration in Running Example

In order to illustrate the above definitions, Talilshows the formal functional descrip-
tions of the goal templaté and the Web servicB’ in our restaurant search example.

The goal describes the objective of finding the best restaurant in a city. The specific
city is an input required for instantiation. Hend®g specifies ondF-variable that is
constrained in the preconditias*™ to be acity. The effectp*? describes the desired
state of the world to be given if and only if the received output is a restaurant in the
city such that there does not exists any better restaurant in the city. AnalogBysly,
describes the functionality provided by the Web ser¥iceThe mere difference occurs
in the effect: the output off is a French restaurant in the city that is provided as input
such that there does not exist any better French restaurant in the city.

We use classical first-order logic (FOI19)]) as the specification language. The sig-
natureX’ for bothDg andDyy, defines the respective symbols. Hetgiame) denotes
a variable. The domain knowledde is defined in thebest restaurant ontologyThis
contains axioms specifying that the predicatéter(-,-) denotes a partial order, that
any restaurant has exactly one type and that the restaurantityippes. and french
are distinct from each other, and that restaurants are located in cities. We omit the com-
plete ontology specification due to space limitations. The table shows the functional
descriptions with precondition and effects and the correspongfthin accordance to
Definition’2.

Table 1. Functional Description®g, Dy in Running Example

Goal Web Service
“find best restaurant in a city” “provide best French restaurant in a city”
(2: bestrestaurant ontology {2: bestrestaurant ontology
IF: {?x} IF: {?x}
@Pe: city(?x) @Pe: city(?x)
¢ Yy out(?y) < (¢ Yy out(?y) < (
restaurant(?y) restaurant(?y)
Ain(?y, 7z) A in(?y, 7x) Atype(?y, french)
A =37z (restaurant(?z) A =37z (restaurant(?z)
A in(?z,7x) A in(?z,7z) Atype(?z, french)
A better(?z,7y))). A better(?z,7y))).
#P9: city(?x) = (dPW: city(?z) = (
V?y. out(?y) < (V?y. out(?y) < (
restaurant(?y) restaurant(?y)
Ain(?y, 7x) A in(?y, 7x) Atype(?y, french)
A =37z (restaurant(?z) A =37z (restaurant(?z)
A in(?z, 7x) A in(?z,7x) Atype(?z, french)
A better(?z,7y)))). A better(?z,7y)))).

4 Semantic Matchmaking for Web Service Discovery

On the basis of the formal descriptions we now specify the semantic matchmaking tech-
nigues for the two-phased Web service discovery introduced in S&@omhe aim is

to provide semantic means that allow to precisely determine the usability of a Web ser-
vice with respect to the matching conditions on the goal template and the goal instance
level from Definitionl. We therefore define matchmaking on functional descriptions
and input bindings as specified above. These provide sufficiently rich descriptions of
possible Web service executions and possible solution for goals. The following first
specifies semantic matchmaking on the goal template level, then on the goal instance
level, and finally integrates the techniques for both levels. We shall demonstrate the
techniques in our running example in Seci®n

4.1 Goal Template Level

We express the usability of a Web servidé for solving a goal templatg in terms
of matching degrees. Adopting the concept and denotation of the degrees from several
previous works on Web service discovery (e£6/13,8]), we define them over the
functional descriptions of goals and Web services as defined in S&ctlion

The distinct degrees denote specific relationships between the possible executions
{r}w of W and possible solution§r}g for G. Four degrees -exact, plugin, sub-
sume, intersect denote different situations wherein the matching condition in clause
(i) of Definition (1 is satisfied; thalisjoint degree denotes that this is not given. In our
two-phase discovery, these matching degrees serve as a pre-filter for determining the
usability of a Web servicéV for solving a goal instancé&'1(G) that instantiates the
goal templatej. We shall discuss this in more detail in Sect@f.

We define the criteria for each degree of&y and Dy from Definition'2, along
with an explicit quantification of input bindings As the condition for thexactdegree,
24 | VB. ¢P9 & ¢Pw defines that every possible executionléf is a solution
for G and vice versa. We assume that all functional descriptidrase consistent, i.e.
that there exists &-interpretation/ under a3 that is a model ofp”. Representing a
refinement of the matching degree definitions fr@h jve therewith obtain a precise
means for differentiating the usability of a Web service on the goal template level.
Table2 provides a concise compilation of the matchmaking degree definitions.

Table 2. Definition of Matching Degrees fdbg, Dy

) Definition)
Denotation B:IF — Uy Meaning
Dg = (X, 02, IF, ¢Dg) 7 = [P7¢] gore 5 = ¢fo for {r}g, {r}w with
Dw = (X, 02,IF, ¢PW p_ D w D
w = (¢) Ni=0U [Q]EZ’THED ’:A w
D D ifand only if 7 € {7}g
exactDg; D) QuEVB. 970 & ¢7 thent € {7}w
pIugin(Dg,DW) 24 ': V3. (ng = ¢DW if e {T}g thenr € {T}W

subsumeDg, D) D4 EVB. ¢P9 <= ¢Pw | if 7 € {r}w thenT € {7}¢
. there is ar such that
D D
intersectDo, Dw) | Qa 30070 not | VRSN
there is nor such that
T €{r}gandr € {r}w

disjoint(Dg, Dw) 24 E-35. ¢P9 A (bDW

4.2 Goal Instance Level

A goal instance=1(G) is created by defining an input bindirgfor the IF'-variables
in the functional descriptio®¢ of the corresponding goal templafe Recalling from
Definition1, a match on the goal instance level is given if there exists=a(sg, . . . , $;m)
in A that is a solution folGI(G) and can be provided by a Web servidéwhen it is

invoked with the concrete input values definedGii(G). The following specifies a
general technique for determining this on the basis of the available descriptions, inde-
pendent of the matching degree betwé&gnand Dy, .

Formally, an input binding? : {i1,...,i,} — U4 is a total function that defines a
variable assignment over the univetgg for the input variabledF' defined in a func-
tional descriptiorD (cf. Definition|2). We therewith obtain an assignment of concrete
valuesv for all inputs required iD, i.e. 6 = {i1|v1,...,in|v,}. Given such &, we
can instantiatéD by substituting all/F'-variables that occur as free variablesgifi®
and¢/ by the concrete values defined@nWe obtain[D]; as the functional descrip-
tion that is instantiated for the context 8f this can be evaluated because it does no
longer contain any free variables. By instantiating the functional descripfigraf the
corresponding goal templageandDyy of the Web servicél” with the input binding3
defined inGI(G), we obtainDg| 5 as the functionality requested B/ (G) and[Dy/]
as the functionality that can be provided By when it is invoked withs.

For W to be usable for solving:1(G), there must be & such thatr € {7}¢(q)
andr € {7}w g (cf. clause (ii) from Definitionl). To determine this on the basis of
the given descriptions, it must hold that — with respect to the domain knowledge — there
exists aX-interpretation/ that is a common model fas”9 and$®* when both func-
tional descriptions are instantiated with the input bindirdefined inGI(G). Formally,
this means that the union of the formul& U {[¢¢]s, [¢P"]5} must be satisfiable,
i.e. that there exists &-interpretation that is a model for the extended domain knowl-
edgef24 and for the instantiated goal descriptiif’¢]; and for the instantiated Web
service descriptiofip”"]5. In accordance to Definitid8, this I represents a that is
a solution forGI(G) and can be provided by if it is invoked with 5.

Definition 4. LetDg = (X, 2, IFg, ¢P¢) be a functional description of a goal tem-
plate G. Let GI(G) be a goal instance that instantiat€swith the input binding3 :
IFg — Uy LetDy = (X,02,IFw,$PW) be a functional description, and let
W = (IF,.) be a Web service with” =4 Dy .

match(GI(G), W) is given if there exists &-interpretation/ such that:

TeQa and TE[6P)y and Ik [6PV],.

Another requirement folV to be usable for solving-I(G) is that thes defined
in GI(G) provides concrete values for all inputs that are required to inVgk& his is
given if there is a bijectiom : /F'p, — IFp,, such that for every input variable
there is a corresponding input variableldg, and eachi € IFp, is assigned with the
concrete value frong. Subsequently, if there is a second bijection: IFp,, — [Fw
such that for each input name requiredibythere is a corresponding input variable in
Dy, then there is a concrete value assignment for each input requirdddy

2We are aware of that this is requirement is not trivial to realize in practice, as it requires a
semantic mapping between the input variables of functional descriptions and the Web service.
Moreover, this may require mediation between incompatible ontologies used by the requester
and provider 5]. However, to invoke a Web service there must be concrete values for all
required inputs — the two bijections denote the basic requirement thereZ6fedi§cusses
ways to weaken the requirements for the necessary compatibility, e.g. by creating existentially
quantified ontology instances for input values that are not explicitly defined by the client.

4.3 Integration of Matchmaking Techniques

We complete this section with combing the semantic matchmaking techniques for the
goal template and the goal instance level in order to attain an integrated matchmaking
framework for our two-phase Web service discovery. We therefore extend matchmaking
degrees from Tabl@ with the matchmaking condition for the goal instance level. Due

to their definition, we can simplify the matching condition from Definitdifior the
distinct matchmaking degrees as follows.

Theorem 1. Let Dg describe the requested functionality in a goal templ@teLet
GI(G) be a goal instance @ that defines an input binding. LetW be a Web service,
and letDy, be a functional description such thHt =4 Dy .

W is usable for solving=1(G) if and only if:
(i) exact(Dg,Dw) or
(i) plugin(Dg, Dw) or
(iii) subsume(D, Dw) and A 24 A [pPW] 4 is satisfiable, or
(iv) intersect(Dg,Dw) and A 24 A [¢pP¢]5 A [¢pPW] 5 is satisfiable.

This specifies the minimal matchmaking conditions for determining the usability of
a Web service for solving a concrete client request that is described by a goal instance.
Under both thexactand theplugindegreeJi’ can be used for solving any goal instance
GI(G)becaus€T}argy) C {T}g € {7}w andr € {7}q1g) & 7 € {T}w(g). Under
thesubsumelegree it holds thafr}g 2 {7}w, i.e. every execution df’ can solveg
but there can be solutions Gfthat cannot be provided By. Hence W is only usable
for solving GI(G) if the input bindings defined inGI(G) allows to invokelV. This is
given if there is aX-interpretation that is a model fo¢™]z and the conjunction of
the axioms inf2 4. Underintersectas the weakest degree, the complete matchmaking
condition for the goal instance level must hold because there can be solutighthidr
can not be provided by’ and vice versa. Thdisjoint degree denotes th&t’ is not
usable for solving the goal template and thus neither for any of its instantiations. We
refer to 2Q] for the formal proof of this theorem.

5 Evaluation

In order to demonstrate the precision for Web service discovery that is achievable with
the presented matchmaking techniques, this section discusses them for our restaurant
search example. We have implemented and verified the matchmaking techniques in
VAMPIRE [18], a resolution-based theorem prover for classical first-order logic with
equality that allows to realize matchmaking exactly as we have specified above. Due
to space limitations, we here content ourselves with condensed explanations on the
matchmaking techniques for the goal and the Web service as introduced in $e2tion

A more detailed documentation as well as further examples for discovery under other
matchmaking degrees is provided B0[.2

% The vaMPIRE implementation along with installation instructions and the proof obligations
for the best restaurant search example are availablét@gt//members.deri.at/
~michaels/software/best-restaurant-example.zip

http://members.deri.at/~michaels/software/best-restaurant-example.zip�
http://members.deri.at/~michaels/software/best-restaurant-example.zip�

The following discusses the matchmaking techniques for the goal of finding the best
restaurant in a city and a Web service that provides the best French restaurant in a city
(cf. functional descriptions in Tabl#). This is an example for thiatersectdegree and
hence requires the full range of the extended matchmaking for the goal instance level.

For illustration, it is sufficient to consider citl wherein the best restaurant is
French and cityB wherein the best restaurant is not French. We define two input bind-
ings, 81 = {?z|A} and(, = {?z|B}, and examine the solutions fGrand the execu-
tions of W for each. Tabl& provides a concise overview of the information relevant for
our discussion. The first part shows the description of the three best restaurdraisdn
B as background ontologi€s, , {2, C (2. The second part shows the goal instances, i.e.
whenDyg is instantiated with the concrete values defined in the distirad explained
in Sectiord.2. Analogously, the third part shows the only possible instantiationgfor
Finally, the fourth part identifies commat-interpretations that serve as a witness for
a semantic match between the goal instances and the described Web Services.

Table 3. Relevant Information for Matchmaking lllustration

City A: 2, C 12 CityB: 2, C 2
21 = {city(A) 25 = {city(B)
restaurant(rlA) restaurant(r1B)
n(r1A, A), type(rlA, french) in(r1B, B), type(rl1B, italian)
restaurant(r2A) restaurant(r2B)
n(r24, A), type(r2A, italian) in(r2B, B), type(r2B, french)
restaurant(r3A) restaurant(r3B)

in(r3A, A), type(r3A, french)
better(rlA,r2A)
better(r2A,r3A)}
[979] 6, with 1 = {x|A}

city(A) = (
V?y.(out(?y) < (
restaurant(?y) Ain(?y, A)
A —3?z.(restaurant(?z)

A in(?z, A)

A better(?z,7y))))

(67]s, with B = {x|A}

in(r3B, B), type(r3B, french)
better(r1B,r2B)
better(r2B,r3B)}

[¢P9]s, with B> = {z|B}
city(B) = (
V?y.(out(?y) < (
restaurant(?y) Ain(?y, B)
A —3?z.(restaurant(?z)
A in(?z, B)
A better(?z,7y))))

(67"], with B, = {x| B}

city(A) = (city(B) = (
V?y.(out(?y) < (V?y.(out(?y) < (
restaurant(?y) restaurant(?y)

A in(?y, A) Atype(?y, french) A in(?y, B) Atype(?y, french)
A =37z (restaurant(?z) A =37z (restaurant(?z)

A in(?z, A) Atype(?z, french)
A better(?z,7y)))

A in(?z, B) Atype

(?z, french)
A better(?z,7y))))

I with 1) = QU {[¢P9)5,, [PV s, }

Iy with I, = 2 U {[¢P<]s,, [0P% s, }

2, U 25 U {out(r1A),
better(r1A, r3A), better(r1B,r3B)}

No suchl; can exist!

We can observe that for the input bindipg, there is a¥-interpretation/; that is
consistent with the background ontolo@y and satisfies both the instantiation of the
goal templatég<] 5, as well as the instantiation of the Web serig€" |5, . The wit-
nessing execution corresponds to the paif, 51). Hence, the condition for theter-
sectmatch is satisfiedcf. Table2). Furthermore, we observe that for the input binding
(2 there can not exist such a common interpretation. Hence, neither the condition for
the subsumesor for thepluginis satisfied; thus also not the one for #veactdegree.
Assume that there would be such a common interpretdtidre. aX-interpretation that
satisfies?, [¢P<] 5, and[¢PW] ,. From the second column of Talave can conclude
that any object’y that is the best restaurant in cify is a french restaurant. However,
this is not consistent with the background ontolagyas described above, since then
restaurant:1 B must be at the same time an italian as well as a french restaurant.

Because of thentersectdegree on the goal template level, clause (iv) of Thedtem
must hold forl¥ to be usable for solving a goal instanGé(G) that instantiate§. This
requires that there must belainterpretation that is (a) consistent with the background
ontology 2 and (b) a common model fdp?9]z and[¢P"]s (cf. Definition/4). Let
us consideiGI(G); as the goal instance that instantiatesvith 5;, andGI(G), as
the goal instance that defingls. Analyzing the possible solutions and executions in
Table3reveals the intuitively expected discovery results: Xhanterpretation/; serves
as a witness for a € {7}q1(g), andt € {7}w,, . Hence,W is usable for solving
GI(G):. On the other hand, as discussed above, there can not exist such a witness for
GI(G)2; thereforelV can not be used to SON&I(G)o.

6 Related Work

Due to its relevance for service-oriented architectures, Web service discovery is subject
to several research efforts. We here discuss directly related works with respect to the
quality of matchmaking techniques and the modelling client objectives, referring to
more exhaustive overviews, e.g. 8110/20].

As early works, 18] presents matchmaking of in- and outputs in OWL-S, atf] [
defines matchmaking of requested and provided results in a DL framework. Both define
the matching degrees in terms of concept subsumption, and work on OWL-S service ad-
vertisements and requests described by inputs, outputs, preconditions, and/®&fjects [
Although using OWL as an expressive specification language, this description neither
explicates the dependency pre- and post execution descriptions nor defines formal se-
mantics for functional descriptions. Hence, the matchmaking algorithms merely allow
to detect ontological relationships between corresponding description elements — but
not to determine whether the invocation of a Web service in a particular state of the
world will satisfy a client request. We can observe the same deficiencigk in [

In WSMO, provided and requested capabilities are described by preconditions, as-
sumptions, postconditions, and effects, along wgitfared variablego define depen-
dencies between the formulde]. However, no formal semantics are defined for these
complex functional descriptions — which hampers the specification of accurate match-
making mechanisms. Our functional descriptions overcome this by explicitly describ-
ing dependency of preconditions and effects and defining precise formal semaptics. [

presents a recent approach with a similar focus. Functionalities are described by inputs,
outputs, and the relationship between them; a match is given if the requester can provide
the input required by the Web service, and the Web service then can provide outputs that
satisfy the ones requested. However, this approach is restricted to stateless Web services
and hence only covers a subset of the functionalities supported by our approach.
WSMO is the only framework that promotes a goal-based approach for Semantic
Web services; most other approaches model client requests as queries for specific Web
service descriptions. The differentiation of goal templates and goal instances is a refine-
ment of the WSMO goal model based on experiences in technology realizatjoi\[
similar two-phased discovery approach is presenteiih However, therein goals are
described by the desired final state only; the input binding for invoking the discovered
Web service is created at runtime. In contrast, we describe the requested functionality
in goal templates by preconditions and effects. The reason is that in service-oriented ar-
chitectures usually the current state of the world is not explicated or is not accessible to
the interaction partners. Moreover, defining input bindings on the level of goal instances
allows to minimize the client-system interaction as it just needs to be done once.

7 Conclusions

This paper has presented the integrated semantic matchmaking for a two-phased Web
service discovery that distinguishes goal templates and goal instances. Continuing pre-
vious work, we have defined matchmaking techniques that work on sufficiently rich
functional descriptions and can precisely determine the usability of a Web service.

To formally describe client requests on the problem layer, we distinguish goal tem-
plates as generic objective descriptions and goal instances that denote a concrete client
request as the instantiation of a goal template. We use functional descriptions that pre-
cisely describe the start- and end-states of possible executions of Web services as well
as of possible solutions for goals. A match is given if a Web service can provide an
execution that is a solution for the goal. We have specified semantic matchmaking tech-
nigues to evaluate this. On the goal template level, we define matching degrees that dif-
ferentiate the relationship between possible executions of a Web service and solutions.
For a goal instance, a Web service is usable if its execution triggered by the invocation
with the concrete inputs is a solution for the instantiated goal description. We therefore
have presented a novel matchmaking technique and formally integrated this with the
matching degrees on the goal template level. Finally, we have demonstrated that the
matchmaking techniques allow to precisely determine the usability of a Web service for
solving a concrete client request that is described as a goal instance.

The presented techniques denote the formal foundations for semantic matchmaking
in this two-phased discovery approach. We plan to extend this with techniques for effi-
cient management of discovery results, and to continue the integration into frameworks
and system implementations for Semantic Web services.

AcknowledgmentsThis material is based upon works supported by the EU under the
DIP project (FP6 - 507483) and by the Austrian Federal Ministry for Transport, Inno-
vation, and Technology under the proj&w/? (FFG 809250). The authors like to thank
Martin Hepp and Ruén Lara for constructive discussions on the presented work.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

. G. Alonso, F. Casati, H. Kuno, and V. Machiraj¥eb Services: Concepts, Architectures and
Applications Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, 2004.
B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On Automating Web Services
Discovery.VLDB Journa) 14(1):84-96, 2005.

. M. E. Bratman. Intention, Plans and Practical ReasorHarvard University Press, Cam-
bridge, MA (USA), 1987.

. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedrinaci.
IRS-IIl — A Broker for Semantic Web Services based Applications. Ptac. of the 5th
International Semantic Web Conference (ISWC 2006), Athens(GA),2088.

. E. Cimpian, A. Mocan, and M. Stollberg. Mediation Enabled SemanticWeb Services Usage.
In Proc. of the 1st Asian Semantic Web Conference (ASWC 2006), Beijing, b0t

. |. Dickinson and M. Wooldridge. Agents are not (just) Web Services: Considering BDI
Agents and Web Services. Proc. of the 2005 Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE’'2005), Utrecht, The Netherlaaas.

. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding Seman-
tic Matching of Stateless Services. Rroc. of the 21st National Conference on Atrtificial
Intelligence (AAAI'2006)2006.

. U.Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO
Framework. In J. Cardoses, edit@emantic Web: Theory, Tools and Applicatioltea
Publishing Group, 2006.

. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.

In Proc. of the 2nd European Semantic Web Conference (ESWC 2005), Crete,, G@if¥ce

U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions of Web

Services. IrProc. of the 3rd European Semantic Web Conference (ESWC 2006), Montenegro

2006.

R. Lara. Two-phased Web Service Discovery. Rroc. of Al-Driven Technologies for

Services-Oriented Computing Workshop at AAAI-06, Boston, R376.

H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontology (WSMO).

W3C Member Submission 3 June, 2005.

L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic Web

Technology. InProc. of the 12th World Wide Web Conference, Budapest, Hungaoa.

D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22

November, 2004. online: http://www.w3.0rg/Submission/OWL-S/.

A. Newell. Unified Theories of CognitiorHarvard University Press, Cambridge, MA (USA),

1990.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services

Capabilities. InProc. of the First International Semantic Web Conference, Sprirf#?2.

C. Preist. A Conceptual Architecture for Semantic Web Service®rado. of the 3rd Inter-

national Semantic Web Conference (ISWC 2004), Hiroshima, J&t@4.

A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRECommu-

nications 15(2):91-110, 2002. Special Issue on CASC.

R. M. Smullyan.First Order Logic Springer, 1968.

M. Stollberg and U. Keller. Semantic Web Service Discovery. Technical report, DERI, 2006.

M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. Proc. of the

2nd International Conference on Internet and Web Applications and Services (ICIW 2007),

Mauritius, 2007.

M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel. Semantic

Web Fred — Automated Goal Resolution on the Semantic WePrdn. of the 38th Hawaii

International Conference on System Science (HICSS288)56.

